Fundamental Journal of Mathematics and Mathematical Sciences p-ISSN: 2395-7573; e-ISSN: 2395-7581 Volume 14, Issue 2, 2020, Pages 27-30 This paper is available online at http://www.frdint.com/ Published online October 3, 2020

WEAKLY NEARLY- *R*⁰ **SPACES**

T. M. NOUR* **and AHMAD T. J. NOUR**

Department of Mathematics University of Jordan Amman Jordan e-mail: tnour@ju.edu.jo

Abstract

The object of the present paper is to define and study weakly nearly $-R_0$ spaces which comes out to be weaker than the nearly $-R_0$ axiom due to Jain [2].

1. Introduction

Keywords and phrases: δ - open sets, δ - closed sets, δ - kernel, δ - closure, nearly - R_0 spaces. 2020 Mathematics Subject Classification: 54A05, 54D10. In a topological space *X*, a set *A* is called regular open [6] if $int(cIA) = A$. The complement of a regular open set is called regular closed [6]. Obviously a set *A* is regular closed if $A = \text{cl(int } A)$. Since the intersection of any two regular open sets is regular open, the family of all regular open sets of a space (X, τ) form a base for some topology τ^* . It is clear that $\tau^* \subseteq \tau$. A space (X, τ) is called semi-regular [6]

*Corresponding author

Received September 3, 2020; Accepted September 24, 2020

© 2020 Fundamental Research and Development International

iff $\tau = \tau^*$. Velicko [6] has defined δ - open sets. A set *A* is δ - open if for each *x* ∈ *A*, there exists a regular open set *U* such that $x \in U \subseteq A$. The complement of a δ -open set is called δ -closed [6]. The closure of a set *A* in (X, τ^*) is denoted by $\delta cI(A)$. A subset *A* of *X* is δ -closed iff $A = \delta cI(A)$.

N. A. Shanin [5] first defined the R_0 axiom. A space (X, τ) is called R_0 [1] iff for each $U \in \tau$, $x \in U$ implies $cl(x) \subseteq U$.

A. S. Davis [1] rediscovered the axiom R_0 and gave several interesting characterizations. Jain [2] defined a space *X* to be nearly $-R_0$ if for each δ -open set *O* and each $x \in O$, $\delta c \leq \{x\} \subseteq O$.

The purpose of the present paper is to introduce weakly nearly $-R_0$ spaces and obtain its basic properties.

Definition 1. A space *X* is said to be nearly $-R_0$ [2] if for each δ -open set *O* and each $x \in O$, $\delta c \leq \{x\} \subseteq O$.

Definition 2. A space *X* is said to be weakly nearly - R_0 iff $\bigcap \delta c \leq l$ *Xx x* ∈ $\delta c \cdot f(x) = \phi.$

It is evident that every nearly $-R_0$ space is weakly nearly $-R_0$. But the converse need not be true as can be seen from the following example:

Example 1. Let $X = \{a, b, c, d\}$ and let $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\} \}.$ Then the space $\{X, \tau\}$ is weakly nearly - R_0 as $\bigcap \delta c \leq \{\tau\}$ *Xx x* ∈ $\delta c l\{x\} = \phi$. But it is not nearly $-R_0$. For, $\{a, c\}$ is δ -open and $a \in \{a, c\}$, but $\delta c \{a\} = \{a, c, d\} \not\subset \{a, c\}$.

Definition 3. A space *X* is said to be weakly - R_0 [3] iff $\bigcap cl\{x\}$ *Xx x* ∈ $cl{x} = \phi$.

Theorem 1. *A space* (X, τ) *is weakly nearly* - R_0 *iff* (X, τ^*) *is weakly* - R_0 .

Proof. Obvious.

Theorem 2. *Every weakly nearly -* R_0 *space is weakly -* R_0 *.*

Proof. The proof is obvious in view of the fact that

$$
\bigcap_{x \in X} \text{cl}\{x\} \subseteq \bigcap_{x \in X} \delta \text{cl}\{x\} \text{ for any } x \in X.
$$

The converse of the above Theorem is not true as is shown by the following example:

Example 2. Let $X = \{a, b, c, d\}$ and let $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\},$ $\{a, b, d\}, \{b\}, \{a, b\}\}\$. Then the space (X, τ) is weakly - R_0 as $\bigcap cl\{x\}$ *Xx x* ∈ $cl{x} = \phi$. But

it is not weakly nearly - R_0 since $\bigcap \delta c \mathcal{L}\{x\} = \{d\}$ *Xx* x } = {*d* ∈ $\delta c1\{x\} = \{d\}.$

Definition 4 [4]**.** Let *X* be a topological space and $x \in X$. Then the δ -kernel of *x* is $\delta \text{ker}\{x\} = \bigcap \{U : U \text{ is } \delta \text{- open and } x \in U\}.$

Theorem 3. *A space X is weakly nearly* $-R_0$ *iff* δ *ker*{ x } \neq *X for any* $x \in X$.

Proof. Necessity: Let $a \in X$ such that $\delta \text{ker}\lbrace a \rbrace = X$. This means that *a* is not contained in any proper δ -open subset of *X*. Thus *a* belongs to the δ -closure of every singleton. Hence $a \in \bigcap \delta c \cdot l\{x\}$ *Xx* $a \in \int \delta c \, dx$ ∈ \in \bigcap δ cl{x}, which is a contradiction.

Sufficiency: Assume that $\delta \text{ker}\{x\} \neq X$ for any $x \in X$. If there is a point $a \in X$ such that $a \in \bigcap \delta c \leq x\}$, then every δ -open set containing *a* must contain *Xx* ∈ every point of *X*. Therefore, the unique δ -open set containing *a* is *X*. Hence δ ker{*x*} = *X*, which is a contradiction. Thus *X* is weakly nearly - R_0 .

Definition 5. A function $f : X \to Y$ is said to be pre $-\delta$ -closed if the image of every δ -closed set in *X* is δ -closed in *Y*.

Theorem 4. Let $f: X \to Y$ is a pre- δ -closed injection. If X is weakly

nearly - R_0 , then so is *Y*.

Proof. We have

$$
\bigcap_{x \in X} \delta \text{cl}\{y\} \subseteq \bigcap_{x \in X} \delta \text{cl}\{f(x)\} \subseteq f\left(\bigcap_{x \in X} \delta \text{cl}\{x\}\right) = f(\phi) = \phi.
$$

Hence *Y* is weakly nearly - R_0 .

Theorem 5. If a space X is weakly nearly- R_0 , then for any space Y , the *product space* $X \times Y$ *is weakly nearly - R*₀.

Proof. We have

$$
\bigcap_{(x, y) \in X \times Y} \delta \text{cl}\{(x, y)\} \subseteq \bigcap_{(x, y) \in X \times Y} \{ \delta \text{cl}\{x\} \times \delta \text{cl}\{y\} \}
$$
\n
$$
\subseteq \bigcap_{x \in X} \delta \text{cl}\{x\} \times \bigcap_{y \in Y} \delta \text{cl}\{y\} \subseteq \phi \times Y = \phi.
$$

Hence the product space $X \times Y$ is weakly nearly - R_0 .

References

- [1] A. S. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly 68 (1961), 886-893.
- [2] R. C. Jain, The role of regularly open sets in topological spaces, Ph.D. thesis, Meerut University, India, 1982.
- [3] J. D. Maio, Weakly R_0 spaces, Indian J. Pure Appl. Math. 16 (1985), 373-375.
- [4] T. M. Nour, Nearly R_0 and almost regular spaces, Dirasat: Pure Sciences 2(26) (1999), 179-183.
- [5] N. A. Shanin, On separation in topological spaces, Doklady URSS 48 (1943), 110- 113.
- [6] N. V. Velicko, On H-closed spaces, Mat. Sb. 20 (1965), 98-112.