UNIQUE, FOUNDATIONAL PROPERTIES OF REGULAR, T_3 , WEAKLY URYSOHN AND URYSOHN

CHARLES DORSETT

Department of Mathematics Texas A&M University-Commerce Commerce, Texas 75429 USA e-mail: charles.dorsett@tamuc.edu

Abstract

In this paper additional unique, foundational roles for each of regular, T_3 , weakly Urysohn, and Urysohn in the study of topology are established.

1. Introduction and Preliminaries

The regular separation axiom was introduced in 1921 [9].

Definition 1.1. A space (X, T) is regular iff for each closed set C and each $x \notin C$, there exist disjoint open sets U and V such that $x \in U$ and $C \subseteq V$. A regular T_1 space is denoted by T_3 .

The further investigation of T_3 revealed that the requirement of T_1 in the definition of T_3 can be replaced by the weaker requirement of T_0 [1]. Thus a space

Keywords and phrases: weakly Po spaces and properties, regular, T_3 , weakly Urysohn, Urysohn.

2010 Mathematics Subject Classification: 54A05, 54A10, 54D10, 54D15.

Received March 14, 2017; Accepted March 28, 2017

© 2017 Fundamental Research and Development International

is T_3 iff it is (regular and T_0) giving each of regular and T_0 an important role in defining T_3 , but, at the same time raising additional questions about their roles: (1) Are there topological properties other than regular and T_3 , which together with T_0 , equals T_3 ? (2) If there are others, what are they? (3) If there are others, is there a least one? (4) If there are others, is there a strongest one? Regular and T_3 are longdefined, long-investigated, and long-used topological properties, but, as given above, there continues to be unanswered questions concerning each of them.

The Urysohn separation axiom was introduced in 1925 [8].

Definition 1.2. A space (X, T) is Urysohn iff for distinct elements *x* and *y* in *X*, there exist open sets *U* and *V* such that $x \in U$, $y \in V$, and $Cl(U) \cap Cl(V) = \phi$.

Unlike T_3 , there was no topological property given in the 1925 paper [8] that played the role for Urysohn as regular did for T_3 . Not until 1988 [2] was such a property defined.

Definition 1.3. A space (X, T) is weakly Urysohn iff for elements x and y in X such that $Cl(\{x\}) \neq Cl(\{y\})$, there exist open sets U and V such that $x \in U$, $y \in V$, and $Cl(U) \cap Cl(V) = \phi$.

Within a 2015 paper [3], it was shown that a space is Urysohn iff it is (weakly Urysohn and T_0). Thus weakly Urysohn plays the same role for Urysohn as regular does for T_3 and the same questions for Urysohn and weakly Urysohn, as given above for T_3 and regular, arise.

The continued investigation of regular and T_3 revealed that T_3 is a weakly *P*o property with regular = weakly (regular)o = weakly T_3 [1]. Likewise, the continued investigation of weakly Urysohn and Urysohn revealed that Urysohn is a weakly *P*o property with (weakly Urysohn) = weakly (weakly Urysohn)o = weakly Urysohn [3].

Weakly Po spaces and properties were introduced in 2015 [4].

Definition 1.4. Let P be a topological property for which $Po = (P \text{ and } T_0)$

83

exists. Then a space is weakly Po iff its T_0 -identification space has property P. A topological property Po for which weakly Po exists is called a weakly Po property.

 T_0 -identification spaces were introduced in 1936 [7].

Definition 1.5. Let (X, T) be a space, let *R* be the equivalence relation on *X* defined by xRy iff $Cl({x}) = Cl({y})$, let X_0 be the set of *R* equivalence classes of *X*, let $N : X \to X_0$ be the natural map, and let Q(X, T) be the decomposition topology on X_0 determined by (X, T) and the natural map *N*. Then $(X_0, Q(X, T))$ is the T_0 -identification space of (X, T).

In the paper [3], it was believed that (weakly Urysohn) was the least topological property, which together with T_0 , equals Urysohn. However, further investigations of weakly *P*o spaces and properties determined that not to be true. Below recent discoveries for weakly *P*o spaces and properties are applied to correct the mistake above and to resolve the questions above about regular, T_3 , (weakly Urysohn), and Urysohn.

2. Applications of Weakly Po Spaces and Properties for Regular and T₃

Within the paper [5], it was proven that for a weakly *P*o property *Q*o, the least topological property, which together with T_0 , equals *Q*o is ((weakly *Q*o) or "not- T_0 "). Applying this result to the weakly *P*o property T_3 gives the following result.

Corollary 2.1. (*Regular or "not-T* $_0$ *"*) is the least topological property, which together with T $_0$, equals T $_3$.

The continued investigation of weakly *P*o spaces and properties revealed that for a weakly *P*o property *Q*o, *Q*o is the only topological property stronger than weakly *Q*o, which together with T_0 , equals *Q*o; the only topological property weaker than ((weakly *Q*o) and "not- T_0 "), which together with T_0 , equals *Q*o, and implies weakly *Q*o is weakly *Q*o; there are exactly two topological properties, *Q*o and weakly Q_0 , stronger than or equal to weakly Q_0 , which together with T_0 , equals Q_0 ; and the only topological properties weaker than weakly Q_0 , which together with T_0 , equals Q_0 are ((weakly Q_0 or "not- T_0 ") or (weakly Q_0 or F), where F is a topological property that implies "not- T_0 " [6]. Applying these results to regular and T_3 gives the following unique, foundational properties for regular and T_3 .

Corollary 2.2. T_3 is the only topological property stronger than regular, which together with T_0 , equals T_3 .

Corollary 2.3. Regular is the only topological property weaker than (regular and "not- T_0 "), which together with T_0 , equals T_3 and implies regular.

Corollary 2.4. T_3 and regular are the only two topological properties stronger than or equal to regular, which together with T_0 , equals T_3 .

Corollary 2.5. (*Regular or "not-T* $_0$ *") and (regular or F), where F is a topological property that implies "not-T* $_0$ *", are the only topological properties weaker than regular, which together with T* $_0$ *, equals T* $_3$ *.*

3. Applications for Weakly Urysohn and Urysohn

Corollary 3.1. ((Weakly Urysohn) or "not- T_0 ") is the least topological property, which together with T_0 , equals Urysohn.

Corollary 3.2. Urysohn is the only topological property stronger than weakly Urysohn, which together with T_0 , equals Urysohn.

Corollary 3.3. Weakly Urysohn is the only topological property weaker than ((weakly Urysohn) and "not- T_0 "), which together with T_0 , equals Urysohn and implies weakly Urysohn.

Corollary 3.4. Urysohn and weakly Urysohn are the only two topological properties stronger than or equal to weakly Urysohn, which together with T_0 , equals Urysohn.

84

Corollary 3.5. ((Weakly Urysohn) or "not- T_0 ") and ((weakly Urysohn) or F), where F is a topological property that implies "not- T_0 ", are the only topological properties weaker than weakly Urysohn, which together with T_0 , equals Urysohn.

Thus, as established above, the study of weakly *P*o spaces and properties has been a productive study not only raising questions not asked before, but, also providing a vehicle for resolution of those questions.

References

- C. Dorsett, Weakly (Regular)o and Not-Regular properties and equivalent separation axioms, J. Math. Sci. Adv. Appl. 41 (2016), 35-41.
- [2] C. Dorsett, Generalized Urysohn spaces, Revista Colombiana de Mathematicas 22 (1988), 149-160.
- [3] C. Dorsett, Weakly P properties and Not-Separation axioms for Urysohn and Weakly Urysohn axioms, J. Ultra Scientists of Physical Sciences 27(3)A (2015), 217-222.
- [4] C. Dorsett, Weakly P properties, Fundamental J. Math. Math. Sci. 3(1) (2015), 83-90.
- [5] C. Dorsett, Weakly *P* corrections and new, fundamental topological properties and facts, Fundamental J. Math. Math. Sci. 5(1) (2016), 11-20.
- [6] C. Dorsett, Unique, foundational properties of Weakly *P*o spaces and properties, T_0 , and Not- T_0 used to give unique, foundational properties of R_0 , R_1 , Pseudometrizable, T_0 , T_1 , T_2 and Metrizable, Pioneer J. Math. Math. Sci. 19(1) (2017), 1-9.
- [7] M. Stone, Application of Boolean algebras to topology, Mat. Sb. 1 (1936), 765-771.
- [8] P. Urysohn, Uber die Machtigkeit der Zusammenhangen Mangen, Math. Ann. 94 (1925), 265-295.
- [9] L. Vietoris, Stetige Mengen, Monatsh. Math. 31 (1921), 173-204.