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Abstract 

Modern cosmology rests on two pillars: general relativity (GR) and 

cosmological principle (CP). However, the CP is only vaguely defined. A 

close examination of its definition and applicability is provided, as well 

as a topological interpretation of them. The new interpretation of CP 

will have astronomical implications that may shed light on dark energy. 

1. Introduction 

The cosmological principle is the cornerstone of modern cosmology. A 

common definition of the cosmological principle is that the universe is 

isotropic and homogeneous on a large scale [1]. Based on this principle, 

cosmologists use spherical symmetry to simplify the Einstein field 

equation into the Friedmann equation. This has led to an expanding 

universe solution and big bang theory [1, 2]. This expanding universe was 
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confirmed by observations [3]. Later observations revealed that the 

expansion rate is accelerating [4, 5], which inevitably leads to the dark 

energy hypothesis [4, 6]. 

However, universe expansion is noticeable only when we look far into 

the distance. Locally, no expansion was observed. For example, the 

spectrum of hydrogen atoms has remained the same for the past 7.13  

billion years. The solar system has been of approximately the same size 

for the past 5.4  billion years. The Milky Way galaxy has been of 

approximately the same size for the past 5.13  billion years. 

There are two possible outcomes of the expanding universe. The first 

is that dark energy will eventually overtake any physical forces, such that 

even the atomic nuclei will be ripped apart [7]. Second, the natural forces 

can still hold the galaxy intact, but galaxies will fly away from each other, 

so that eventually there is only one galaxy within our event horizon. 

The first outcome was not supported by observations. The 

aforementioned three examples contradict this. The second outcome 

contradicts Mach’s principle. Mach’s principle was developed by Ernst 

Mach to counter Newton’s absolute motion. Newton used the bucket of 

water thought experiment to demonstrate absolute motion [8, 9]. In this 

experiment, a bucket of water will have a flat surface if it stands still, but 

the water surface will curve when the bucket rotates around its axis. 

From this experiment, Newton conceived of both motion and space-time 

as absolute [8, 9]. Later, when Mach considered the same experiment, he 

drew a different conclusion, which eventually became Mach’s principle. In 

Mach’s principle, any motion, with or without acceleration, is relative; if 

the bucket of water is the only object in the universe, then its surface 

must be flat, even if it stands still, when all the surrounding objects, 

including distant stars, rotate around it, the water surface will curve [10, 

11]. The central theme of Mach’s principle is that we cannot talk about 

motion without a reference frame, and the reference frame must be 
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defined by concrete objects. Therefore, if our galaxy is the only object in 

the observable universe, then there is no way to determine if the universe 

is expanding. 

On a small scale, the cosmological principle is apparently not true 

because of the local motion of the observer and the local structure of the 

universe [12]. This principle seems to be true on a large scale. However, if 

we do not define an applicable scale quantitatively, this principle cannot 

be falsified. What is the applicable scale above which the cosmological 

principle is true, and why? 

Observations have shown that the universe is full of cosmic filaments, 

ranging from a few hundred million light years to a few billion light years 

[13]. They are the largest structures in the universe. Recent observations 

reveal that the cosmic filament has spin [14, 15]. For example, most 

galaxies reside on cosmic filaments, and the spin direction of a spiral 

galaxy is aligned with the cosmic filament where it resides. This indicates 

that the cosmic filament is a physical structure that plays an important 

role in galaxy formation [16]. Can the scale of the largest cosmic filament 

be used to define the applicable scale of the cosmological principle? If so, 

why does the universe appear isotropic and homogeneous above this 

scale? 

In hyperbolic geometry, a pair of parallel geodesics will diverge 

further apart when going to a distance [17]. This is true in both 

directions. If we use the Ricci tensor to track the volume along a bundle of 

geodesics, then this volume grows increasingly larger when we travel 

along the geodesics to a distance [17]. This certainly resembles cosmic 

expansion. 

In topology, the surface of a multiholed torus forms a hyperbolic 

geometry [18]. If the universe is a finite, compact manifold with many 

holes, then we must use hyperbolic geometry to describe it. If this 

hypothesis is correct, can we find the holes in the universe? If a cosmic 
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filament is a spinning tube that accretes matter to form galaxies [16], can 

this spinning tube be a hole in the compact manifold of the universe? If 

so, the scale of the largest cosmic filament can be used as the 

approximate size of the universe. If so, then our universe is probably only 

a few billion light years across; when we look through a light ray into the 

past for 7.13  billion years, we probably follow a geodesic on this compact 

manifold multiple times already. 

If the universe is a multiholed torus, then when we look farther away, 

the universe appears to expand owing to hyperbolic geometry. This 

perfectly explains the conundrum that, on a small scale, the universe 

does not seem to expand, but on a large scale, the universe appears to 

expand globally. 

If this hypothesis is correct, then when we look 7.13  billion years 

back, we will see the same universe repeatedly. If so, we should observe 

some pattern of repetition in deep-space observations. Unfortunately, 

such a pattern of repetition has not been observed [19, 20]. 

We must realize that our universe is a dynamic system. If we treat 

each galaxy as a particle, then these particles are constantly moving. 

Large-scale cosmic filaments constantly merge and morph. In such a 

dynamic system, finding the static pattern is not very useful because 

when we traverse the universe once through a light ray, a few billion 

years have already passed, so the shape and topology of the universe may 

have dramatically changed. 

In the field of signal processing, when we search for a pattern of 

repetition in a time-varying signal, we look at the signal’s power 

spectrum to identify resonances [21]. For example, a white noise signal is 

a stationary signal that looks statistically similar to a constant, but it is 

not a static signal; the signal rapidly oscillates at every frequency [21]. 

When we observe the universe on a large scale, we can use the same 

technique to search for repetition patterns. We observed resonances in 
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the power spectrum of the received light. In this respect, CMB data are 

ideal for such studies. We have already found resonances in the CMB 

power spectrum [22]. If the resonances in the CMB power spectrum are 

the revelation of patterns of repetition for the universe, can we derive the 

exact size of the universe from it? 

The CMB is believed to be a remnant of the big bang [23]. This is a 

major support of the big bang theory [23]. This is also a major support of 

the cosmological principle because the CMB temperature is almost the 

same in every direction. Moreover, the CMB signature, which is the CMB 

power spectrum, is the same in all directions [22]. However, this 

perfection raises doubts about the big bang theory. In the labs on Earth, 

it is impossible to create an explosion that is perfectly isotropic and 

homogeneous. If such a perfect explosion cannot be created locally on a 

small scale, how can it be created for the entire universe? To overcome 

this difficulty, inflation theory comes to rescue [24]. Inflation theory 

postulates that after the big bang, the universe went through a quick 

period of rapid and uniform inflationary expansion that smoothed 

everything out [24]. 

Inflation theory requires a hypothetical particle, the inflaton. These 

particles form a dark energy field, which is also responsible for 

accelerating the expansion of the universe [24]. However, neither inflaton 

nor dark energy is well understood. Hunting for inflatons also comes up 

empty [25]. 

On the other hand, if the universe is a stationary, finite, compact 

multiholed manifold, then its geometry is hyperbolic. This universe 

appears stationary locally but appears expanding globally. There are two 

standard terms to describe a manifold: the fundamental domain and 

universal cover [18, 19]. For example, the surface of a two-holed 2-torus 

can be represented as an octagon on a flat 2D surface. This octagon forms 

the fundamental domain of a two-holed 2-torus manifold. When we look 
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through a geodesic on this manifold, the same octagon is repeated in 

every direction. These repeated octagons form a universal cover that 

extends to infinity [18, 19]. 

Even if the fundamental domain is not isotropic, the universal cover 

is isotropic and homogeneous. However, if we misinterpret the universal 

cover by considering that each copy of the fundamental domain is a 

unique piece, the universal cover can be mistreated as an infinite, flat 

manifold by itself. 

In the universal cover, a pair of parallel geodesics diverges further 

and separates into infinity [17, 18]. This can easily lead people to think 

that the universal cover is expanding, but that the size of the 

fundamental domain may not change at all. If the universe is a finite, 

compact manifold, it must be stationary instead of static because every 

galaxy in the universe is moving. A stationary universe does not expand 

locally but appears to expand globally owing to hyperbolic geometry. To 

prove this hypothesis, we must identify repeated patterns in the universe. 

To search for patterns of repetition in a stationary universe, we cannot 

rely on any static patterns; we must look for resonances in its power 

spectrum, as is commonly done in the field of signal processing [21]. 

If the above hypothesis is correct, then we do not need dark energy to 

explain the accelerating expansion of the universe, and we do not need 

inflation to smooth the remnants of the big bang. As in any explosion, the 

universe after a big bang can be very rough. It is not even singly 

connected but has many holes in it. Each hole was a spinning tube that 

accreted matter to form galaxies. These holes have become cosmic 

filaments in the universe [16]. 

The cosmological principle will only be true for the universal cover 

when we traverse the universe through a light ray multiple times, and we 

will see many copies of the same universe. Each copy of the universe was 

statistically identical. We can look for harmonic signals in the power 
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spectrum of the CMB data to look for patterns of repetition. From these 

harmonic signals, we can calculate the size of the universe accurately. 

2. Mathematical Background 

Now, let us briefly describe some mathematical tools that will be used 

in subsequent sections. In this section, most descriptions and figures are 

obtained from mathematical textbooks and reviews [17, 18, 19, 20, 21]. 

2.1. Topology 

References [19, 20] provide an excellent review of the topology and its 

astronomical applications. We consider some terminology from these two 

review papers. 

Because it is difficult to visualize an -n dimensional ( )2>n  manifold, 

we will use a popular 2D manifold, the two-holed 2-torus manifold, to 

illustrate some basic ideas. 

On the surface of the two-holed 2-torus in Figure 1, if one travels 

along a geodesic orbit, the orbit is not necessarily a closed orbit. Most of 

the orbits on the surface are not closed. In a nonclosed orbit, a 2D surface 

can be traversed over and over without an intersection. If two persons 

travel on a pair of parallel nonclosed orbits, unlike in Euclidean 

geometry, the separation between the two persons becomes increasingly 

larger as they travel a distance. We refer to the geometry on this surface 

as hyperbolic geometry [17]. 

 

Figure 1. 
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We can find 4 closed orbits (a, b, c and d) on the surface and cut the 

surface along these orbits to form a flat octagon in Figure 2. This octagon 

forms the fundamental domain of the two-holed 2-torus manifold [18]. 

 

Figure 2. 

We can reflect the octagon on each edge to form a new copy. Each 

copy of the octagon is a representation of the same fundamental domain. 

If this octagon is a regular octagon in Euclidean geometry, then its 

interior angle at each vertex is .
4

3
π  Therefore, we cannot pack 8 octagons 

at each vertex without overlap. However, in hyperbolic geometry, we can 

shrink the interior angle of each vertex to π
4

1
 by expanding the octagon, 

as in Figure 3, so that we can perfectly pack 8 octagons at each vertex 

without overlap, as in Figure 4 [18]. 
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Figure 3. 

These copies of the octagon form a perfect tessellation on the flat 2D 

hyperbolic disk in Figure 4. This hyperbolic disk is called the Poincare 

disk, whose boundary is the unit circle, which represents infinity [17]. 

 

Figure 4. 

This octagon tessellation covers the entire Poincare disk or the entire 

2D hyperbolic space. It forms the universal cover of the two-holed 2-torus 

manifold [18]. In the universal cover, even if a copy of the octagon looks 

smaller and smaller when it approaches infinity, it has the same size and 

shape as the fundamental domain, so every copy of the octagon in the 
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universal cover is an identical representation of the fundamental domain 

[18]. 

A geodesic orbit on the universal cover is either a straight line or 

semicircle perpendicular to the unit circle [17, 18]. The separation of any 

pair of nonintersecting geodesic obits becomes infinite when approaching 

infinity, as shown in Figure 5. This may give people the wrong impression 

that the space represented by the universal cover is expanding, even 

though the size of the fundamental domain or manifold itself remains the 

same. 

 

Figure 5. 

When we shift from 2D manifolds to 3D manifolds, the fundamental 

domain will change from a polygon to a polyhedron, and the universal 

cover will change from the Poincare disk to the unit 3-ball with its 

boundary, the unit 2-sphere, representing infinity [26]. Because it is 

difficult for humans to visualize a 3D manifold, it is not easy to find the 

appropriate lower-dimensional surfaces to cut the manifold to form a 

polyhedron, the fundamental domain, and then glue the surfaces of 

neighboring copies of the fundamental domain to form a tessellation 

pattern in the universal cover. Fortunately, in the last few decades, 

mathematicians have made huge progress in the study of high-
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dimensional manifolds [26], and these results can be used to study the 

topology of the universe. Despite the difficulty in high-dimensional 

manifolds, the basic concepts of the fundamental domain and universal 

cover remain the same. For pedagogical reasons, in the rest of this paper, 

we will use Figure 4 to describe 3D manifolds instead of drawing a 

convoluted 3D picture. 

Our universe is apparently much more complicated than a simple 

two-holed 2-torus. If the universe is a manifold, it can be viewed as either 

a 4D space-time manifold or a 3D space manifold with an evolutionary 

history in time. In the remainder of this paper, we take the second view. 

If each cosmic filament in the universe is a spinning tube that 

accretes matter to form galaxies [16], and if each spinning tube is a hole 

in the universe, then the universe is a multiholed 3-torus that evolves in 

time. This manifold has a fundamental domain and universal cover in 3D. 

Its fundamental domain can be finite and compact; however, its universal 

cover is infinite. 

Unlike the static two-holed 2-torus described above, the universe is 

constantly changing. For example, when cosmic filaments merge and 

morph, the number of holes in the universe also changes. Therefore, both 

the shape and topology of the multiholed 3-torus of the universe are 

changing. Even though the size of the fundamental domain remains the 

same, the tessellation on the universal cover is not static. Therefore, 

when we try to find the pattern of repetition in the universal cover, we 

cannot rely on any static pattern. Other methods must be used [21]. 

2.2. Hyperbolic geometry 

It is very convenient to study the geometry in the universal cover 

because it is isotropic and homogeneous even if the underlying manifold 

has an exotic shape and topology. The universal cover is also infinite in 

size even though the underlying manifold is finite and compact. 
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There are three types of geometries: Euclidean, spherical and 

hyperbolic. The most important task in geometry is to measure length 

and angle. Thus, the metric tensor is used. For example, in Euclidean 

geometry, the metric tensor of the space-time manifold is the Minkowski 

metric described in Equation (1): 

( ) 22222 dzdydxcdtdXdXds −−−=η= νµ
µν  

( ) Ω−−= drdrcdt 222
 

( ) ( ( ) ).sin 222222
φθ+θ−−= ddrdrcdt  (1) 

In the last step of Equation (1), we use spherical coordinates owing to the 

spherical symmetry in the universal cover. The spherical symmetry 

originates directly from the isotropic and homogeneous properties of the 

universal cover [18]. 

In spherical geometry, we must use the spherical metric, and 

Equation (1) becomes Equation (2): 

 ( ) ( ( ) ).sinsin 222
2

222 φθ+θ













π

π
−−= dd

D

rD
drcdtds  (2) 

In Equation (2), D  is the diameter of the spherical manifold. Locally, on a 

small scale, when ,1<<
D

r
 Equation (2) is reduced to Equation (1); 

therefore, locally, the spherical geometry approximately becomes the 

Euclidean geometry. 

In hyperbolic geometry, we must use the hyperbolic metric, and 

Equation (1) becomes Equation (3): 

 ( ) ( ( ) ).sinsinh 222
2

222 φθ+θ













−−= dd
D

r
Ddrcdtds  (3) 

In Equation (3), D  is the size of the multiholed 3-torus manifold. Locally, 
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on a small scale, when ,1<<
D

r
 Equation (3) is reduced to Equation (1); 

therefore, locally, the hyperbolic geometry approximately becomes the 

Euclidean geometry. 

In Equations (2) and (3), we assume that the manifold is finite and 

compact. However, if we believe that the universe is infinite so that 

,∞≈D  then both Equations (2) and (3) are reduced to Equation (1), and 

the universe will become a flat Euclidean space. 

Equations (1), (2), and (3) differ slightly from the Friedmann-

Lemaitre-Robertson-Walker (FLRW) metric in GR textbooks [1]. More 

specifically, we replace the scale factor in the FLRW metric with the 

physical size of the space 3-manifold. This will be very useful when 

dealing with stationary, compact, and finite space manifolds. 

2.3. Signal processing and Fourier analysis 

According to Fourier theory, any periodic function can be expanded 

into a Fourier series [27]. For example, the periodic function in Equation 

(4) can be expanded into Equation (5): 

( ) ( ),xfnTxf =+       ,...,2,1,0 ±±=n  (4) 

( ) ( ) ( ),cossin

...,2,1,0

nkxbnkxaxf nn

n

+= ∑
±±=

      .
2

T
k

π
=  (5) 

In Equation (4), function ( )xf  is a static function. For a static function, 

we can either look for the repeated patterns in the coordinate space or 

look for harmonic resonances in the frequency space to determine if 

function ( )xf  is a periodic function or not, and its period if it is [27]. 

For a time-varying function, finding periodicity is not 

straightforward. For example, searching for patterns of repetition in the 

coordinate space is difficult because the patterns are constantly changing. 
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However, we can still search for statistical resonance in the frequency 

space. In this respect, stochastic signal analysis is convenient [21]. 

For example, the white noise signal appears statistically similar to a 

constant, but the signal is not static; it oscillates rapidly at every 

frequency. In the coordinate space, the signal appears as random noise. 

In the frequency space, the signal is also very boring because its 

frequency spectrum is constant, which is why it is called white noise. 

There were no features of it. We call this type of signal a stationary signal 

to differentiate it from a static signal [21]. 

For a stationary signal, if its spectrum shows harmonic resonances, 

there are peaks at certain frequencies, and these frequencies are integer 

multiples of the base frequency, as in Equation (5), then, it is a 

manifestation of periodicity in the signal in the coordinate space. This 

type of analysis is widely used in signal processing [21]. 

Our universe is not static because every object in it is constantly 

moving, but it could be stationary, as Newton and Einstein originally 

thought, because locally, the universe does not seem to expand or 

contract. What about Hubble’s law? Do we observe distant galaxies 

moving away from us [3]? 

Can this seemingly expansion be considered an illusion of hyperbolic 

geometry? According to Figures 4 and 5, everything in the universal cover 

seems to move away from one another. Is it possible that we mistakenly 

treat the universal cover as our universe, but, in fact, is the universe just 

the size of its fundamental domain? If so, can we use the methods 

described in this section to identify patterns of repetition in the universal 

cover of the universe? 

3. Astronomical Implications 

Over the past century, physicists and astronomers have made 
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significant advances in cosmology. Large telescopes and sophisticated 

astronomical instruments enable accurate astronomical measurements, 

and large databases have been compiled and made available for research. 

In theory, the developed CDMΛ  standard model can provide accurate 

mathematical predictions, which are confirmed by observations [28]. 

However, several unsolved mysteries remain. The two biggest 

mysteries are dark matter and dark energy, which account for 95%  of the 

material in the universe [19, 28]. In this study, we attempt to answer two 

questions: 1) the flat universe, which is revealed by CMB data [19], and 2) 

the accelerating expansion of the universe [4, 5]. We would like to 

demonstrate that these problems can be solved without dark matter or 

dark energy. 

3.1. The cosmological principle and large-scale structures of the 

universe 

The cosmological principle is a cornerstone of modern cosmology, and 

many theories are based on it [28]. However, the definition is vague. It 

states that, on a large scale, the universe is isotropic and homogeneous. 

However, this does not specify the scale size. Can we define a scale and 

explain why, above this scale, the universe looks isotropic and 

homogeneous? 

Astronomers like to say that, on the CMB scale, the universe is quite 

uniform. The CMB temperature is almost the same in all directions. After 

correcting the dipole anisotropy that results from the solar motion with 

respect to the CMB [29, 30], the temperature fluctuation was only 

K0002.0  [31]. 

Some astronomers use different radio galaxy sources to measure 

dipole anisotropy [12]. Their study shows that such dipole anisotropy 

cannot be solely kinematic but also structural [12, 32]. 

Astronomers have found that galaxies are not randomly distributed 
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in the universe; they normally live on cosmic filaments, which are the 

largest structures in the universe. In the compiled cosmic filament 

catalog [13, 37], the size ranged from a few hundred million light years to 

a few billion light years. Large voids exist between the cosmic filaments, 

where the galaxy population is very low. 

It is obvious that within the scale of the cosmic filaments, the 

cosmological principle cannot be true. Can we use the largest size from 

the cosmic filament catalog as the defining scale for the cosmological 

principle? When we do so, we must be very careful because we could 

erroneously combine two unrelated cosmic filaments to form a larger one. 

To avoid this problem, we can use the spin property of the cosmic 

filament to trim its catalog. For example, if we find one cosmic filament 

with opposite spin directions, it is most likely that we combined a cosmic 

filament with its mirror image. Nevertheless, this scale is only a few 

billion light years. 

If we use this scale to define the cosmological principle, can we 

explain why the universe appears isotropic and homogeneous above this 

scale? 

If our universe is a finite, compact manifold with many holes, each of 

which is a cosmic filament, then its topology is most likely a multiholed 3-

torus that evolves in time. If so, the geometry is hyperbolic. This manifold 

can be described by its universal cover, as shown in Figure 4. The only 

difference is that both its fundamental domain and universal cover are 

3D; however, the concept is the same. 

From Figure 4, we can see that the shape of the fundamental domain 

can be very exotic, but when we look further, we see identical copies of 

the fundamental domain over and over in every direction. Therefore, the 

universal cover is infinite, isotropic, and homogeneous. 

In 1995, Bob Williams and his team pointed the Hubble Space 

Telescope to a patch of dark sky previously known to have nothing for 100 
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hours [33]. Surprisingly, the image from the dark sky patch contains 

thousands of galaxies. Later, similar observations were carried out on 

other patches of dark sky, and the results were the same [34]: there were 

plenty of galaxies in every direction. This phenomenon is easily explained 

in Figure 4. 

In Figure 4, when you look at any direction from the center, even in 

the direction of a large void, you will see copies of the fundamental 

domain in different orientations, so you are bound to see something if you 

look far enough. 

Figure 1 shows that the size of the largest hole in our universe is a 

good approximation of the size of the fundamental domain of the 

universe. Inside the fundamental domain, the manifold is full of 

structures and is highly anisotropic. However, above this scale in the 

universal cover, different copies of the same fundamental domain smooth 

things out, and the universe appears increasingly isotropic when one 

looks further into the distance (or into the past). 

3.2. CMB and its power spectrum 

Accurate CMB measurements show that the CMB temperature is 

uniform for up to four decimals [19, 31]. This means that, on the CMB 

scale, the universe is isotropic and homogeneous. The small temperature 

fluctuations show that the CMB signal has features. These features 

manifest as harmonic peaks in the frequency spectrum [22]. The most 

astonishing fact is that this signature is the same in all directions. 

The CMB is believed to be a remnant of the big bang [23]. The perfect 

homogeneity of the CMB also raises doubts on the big bang theory; not 

only is the CMB temperature almost identical everywhere, but its 

signature is also identical everywhere. No one has orchestrated such a 

perfect explosion in the laboratory. How is it possible to create such an 

explosion for the entire universe? 
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This homogeneity can be easily explained by the topology. If our 

universe is a finite multiholed 3-torus whose size is approximately a few 

billion light years (the scale of large cosmic filaments), then when we look 

7.13  billion light years into the distance, we will see the same universe 

6~4  times. As shown in Figure 4, many copies of the fundamental 

domain are equally distributed on a sphere with a radius of 13.7  billion 

light years. These copies form a periodic signal whose frequency spectrum 

exhibits harmonic resonances. This is exactly what we see in the CMB 

spectrum in Figure 6 [22]. 

 

Figure 6. 

If the CMB signal is a perfect periodic static signal, then according to 

Equation (5), we should see a sequence of pulses whose locations are 

integer multiples of the base frequency. However, our universe is a 

dynamical system, and every object in the universe is constantly moving, 

so the signal can only be stationary instead of static [21]. In such a signal, 

the sequence of pulses will become a sequence of peaks. This is very 

similar to the following process. 

When we use the ground-based telescope to observe a point source in 

the universe, owing to the thermal motion in the Earth’s atmosphere, the 
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CCD image of the point source becomes a distribution function instead of 

a point. Astronomers refer to this function as a point-spread function. 

They used this function to calibrate the observed image and produce a 

sharper image [35]. 

The CMB spectrum undergoes a similar process in which the random 

motion of galaxies causes a single frequency to spread into a frequency 

distribution; thus, the pulse train will become a smooth spectrum with 

multiple peaks whose locations are integer multiples of the base 

frequency. 

If this analysis is correct, then the base frequency will indicate the 

size of the universe, the amplitudes of the harmonics will indicate the 

shape of the universe, and the width of the peaks will indicate the 

thermal character of the universe [21, 27]. 

From CMB data, astronomers concluded that our universe was very 

flat [19]. Such flatness requires 25%  of the material in the universe to be 

dark matter, and 70%  of the material is dark energy [19, 28]. Can we 

explain a flat universe without dark matter or dark energy? 

Figure 4 shows that the universal cover of the universe is infinite, 

isotropic, and homogeneous. However, if we misinterpret the universal 

cover as the universe itself by treating each copy of the fundamental 

domain as a unique piece, our universe will be infinite and flat. For 

example, in Equation (3), if we take ,∞≈D  then Equation (3) becomes 

Equation (1); hyperbolic geometry becomes Euclidean geometry. 

People may argue that if what we observe is the universal cover of 

our universe, then we should see the pattern of repetition when we do 

deep-sky observations, but such repeated patterns are missing [19]. This 

is because our universe is a dynamic system in which every object is 

moving. Its topology also changes when cosmic filaments merge and 

morph; therefore, the tessellation pattern in the universal cover is also 
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constantly changing. Although our universe is finite, it is still very large. 

Thus, when traversing the universe once through a light ray, a few billion 

years have already passed, and any patterns will be totally different. 

As discussed in Section 2.3, in such a dynamical system, finding static 

patterns is not very useful; we need to look for harmonic resonances in its 

spectrum to find the pattern of repetition. This is exactly what we 

observed in the CMB spectrum in Figure 6 [22]. 

3.3. Size of the universe 

In 240 BC, the Greek astronomer Eratosthenes used the shadow of 

the Sun and simple geometry to calculate the circumference of the Earth 

to be 250000  stadia, which is between 24000  miles and 29000  miles 

[36]. The modern-day measurement of the circumference around the 

equator was 24900  miles. Can we perform the same feats for the 

universe? 

In Euclidean geometry, an object of size l  at distance r  will have an 

angular size, as in Equation (6): 

 .
r

l
=θ  (6) 

In hyperbolic geometry, according to Equation (3), the angular size of the 

object is given by Equation (7): 

 .

sinh 
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D
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D
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In Equation (7), D  is the size of the universe. 

According to Figure 6, if the base frequency 
180

9.0
9.0

π
=°=θ  

0157.0=  corresponds to the size of the universe, then, according to 

Equation (7), 
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In Equation (8), 7.13  billion light years is the distance to the CMB image. 

Solving Equation (8), the size of the universe is: 

 .826.2

0157.0

2
ln

7.13
=









=D  (9) 

Therefore, our universe is only 826.2  billion light years in size, if it is a 

finite, compact manifold. This size is much smaller than the standard 

model prediction but agrees with the scale of large cosmic filaments [13, 

37]. In the compiled cosmic filament catalog, only four out of 46 exceeded 

the above size; in the compiled cosmic void catalog, only one out of 117 

exceeded this size [37]. 

There is still some debate regarding the size of the largest cosmic 

filaments [38, 39]. From Figure 4, we can see that it is very easy to 

combine structures from neighboring copies of the fundamental domain in 

the universal cover if they are very close. If we can use the spin property 

of the cosmic filament to triage the catalog of large cosmic structures, it 

will remove some of the controversies. 

3.4. Expanding universe 

A century ago, when Albert Einstein first applied his famous         

field equation to the universe, he could not believe that the universe     

was expanding, so he added a cosmological constant to his equation         

to create a stationary universe [1, 28]. After Edwin Hubble         

discovered that all distant galaxies receded from us, Einstein admitted 

that the cosmological constant was his biggest mistake and removed it 

from his equation [1, 28]. 

At the end of the last century, astronomers astonishingly found that 
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the expansion of our universe was accelerating [4, 5]. Therefore, they 

returned the cosmological constant and attributed it to dark energy [4, 6]. 

As discussed earlier, the expanding universe has dire consequences, 

such as a big rip when everything is ripped apart by dark energy [7]. 

However, locally, we did not observe any expansion. Can this seemingly 

expansion be attributed to a hyperbolic geometry? From Figures 4 and 5, 

everything in the hyperbolic geometry seems to fly away from each other 

when approaching infinity. 

In astronomy, when light is used to measure distance, time and 

distance are used interchangeably. In cosmology, we know that the 

Hubble constant, which measures the expansion rate of the universe, is 

not constant and is a function of time [1]. The Hubble constant is defined 

in Equation (10) [3]: 

 .
yearsbillion963.1

1

yearslight10

mph1042.3
6

5

0 =
×

=H  (10) 

If the expansion of the universe is due to hyperbolic geometry, then from 

Equations (1) and (3), the expansion rate can be defined as in Equation 

(11): 
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In Equation (11), when we look far into distance, we look back in time. 

Locally, when ,1<<
D

ct
 ,1

~
≈H  there is no expansion. Globally, when 

,1>>
D

ct
 ,

2

~ D

ct

e
ct

D
H ≈  the expansion becomes exponential. The 

exponent rate is 
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In Equation (12), c  is the speed of light and D  is the size of the universe 

given by Equation (9). 

These results are consistent with observations: locally, both the solar 

system and the Milky Way galaxy have maintained their size throughout 

their lifetime; globally far into the distance, the expansion is accelerating 

exponentially [4, 5]. If the universe is a stationary, finite, and compact 

manifold, then the size of its fundamental domain will not change, but its 

universal cover will be infinite and expanding. In this view, cosmic 

expansion is just a hyperbolic illusion in the universal cover; physically, 

the universe maintains its size within the fundamental domain. 

When trying to solve the GR equation for the universe, we must solve 

it in the fundamental domain. If our universe is a multiholed 3-torus 

instead of a spherical 3-ball, the cosmological principle will not be 

applicable in the fundamental domain, so we cannot use spherical 

symmetry to simplify the Einstein field equation into the Friedmann 

equation. Thus, the dynamics do not necessarily lead to simple expanding 

or contracting solutions. 

3.5. Crucial observation tests 

Any scientific theory should be falsifiable. We propose a crucial test 

that can either prove or falsify the new theory presented in this study. 

The standard interpretation of the CMB power spectrum in Figure 6 

is that it is the spectrum of the acoustic waves frozen in the last 

scattering epoch [42]. To fit the observed spectrum, one must rely on two 

large unknowns: dark matter and dark energy [19]. We interpret it as a 

manifestation of the pattern of repetition in the universal cover, as shown 

in Figure 4. In this interpretation, the CMB map is composed of all ghost 

images of the fundamental domain on the sphere with a radius of 7.13  
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billion light years (bly). 

If we choose a smaller sphere with a radius of 8 billion light years, 

according to Figure 4, the ghost images of the fundamental domain on 

that sphere will also form a stationary periodic signal. Name the signal as 

the cosmic microwave foreground (CMF). According to Equation (11), for 

the CMB: 
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For the CMF: 
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In Equations (13) and (14), D  is the size of the fundamental domain 

given by Equation (9). From Equations (13) and (14): 
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Therefore, the CMF temperature is: 

 K.96.11
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According to Equation (7), the harmonic base frequency of the CMF is: 
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The new theory predicts that if we look for a CMF at a temperature of 
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K,96.11  then the harmonics of its power spectrum will have a base 

frequency of .6.76°  

According to Figure 4, the ghost image of the fundamental domain at 

the CMB is much more focused than that at the CMF owing to cosmic 

lensing; therefore, the CMF is more transparent than the CMB. 

Nevertheless, the CMF is detectable with existing telescopes. 

When I stand on the shore of Lake Tahoe, which is only a few miles 

across, I love to stare at water waves propagating on the lake surface. 

Patches of different wave patterns can be easily seen in different regions 

of the lake surface. According to the big bang theory, at the epoch of the 

last scattering, the universe was a lake of hot plasma with a size of 42 

million light years. It is mind-boggling that the acoustic waves in this 

giant lake were not only uniform but also uniform at every single 

frequency. On the other hand, if the CMB is composed of all ghost images 

of the background radiation in the universe on a sphere with a radius of 

7.13  billion light years, then the harmonic resonances in its power 

spectrum become easy to understand. 

With the advent of James Webb telescope, more and more high 

redshift galaxies will be observed [40, 41]. The high redshift will push the 

age of these galaxies to approach the age of the universe. This will pose a 

serious threat to the big bang theory. The high redshift can be easily 

explained by the new theory. According to Equations (11) and (9), the 

redshift z  is 

 .
2

826.2826.2
sinh826.2sinh

1 826.2

r

e
rr

r

r

D

r
D

z ≅








=








=+  (18) 

So, 52.12=z  when bly.8.13=r  For ,52.12>z  bly.8.13>r  This is 

allowed by the new theory; the light ray only needs to traverse the finite 

stationary universe in more iterations. 
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3.6. Comparison with previous works 

In the past, many physicists explored the subject of cosmic topology. 

References [19, 20] provide excellent reviews on this subject. The most 

common way for people to test finite universe models is to look for 

patterns of repetition in the observable universe. For example, they 

searched for ghost images or ran correlations on the CMB map. As 

explained in Section 2.3, our universe is a dynamical system described by 

a stationary signal instead of a static signal [21]. Identifying static 

patterns in such systems is futile. The correct way to look for patterns of 

repetition in such a system is to look for harmonic resonances in the 

signal’s power spectrum, which is a standard procedure in stochastic 

signal processing [21]. 

People prefer to use flat or positively curved manifolds to model the 

universe. Part of the reason is that these 3-manifolds are better classified 

than the negatively curved 3-manifolds, and part of the reason is that 

observations point slightly toward the flat or positively curved space, as 

well as favorable mathematical properties, such as permitting a larger 

collection of Killing vectors in these models [26]. For example, in 

reference [43], Jean-Pierre Luminet chose a manifold with positive 

curvature, namely, the Poincare dodecahedral space (PDS) model. The 

metric of this model, which is a spherical geometry, is described by 

Equation (2). According to this metric, if the universe is stationary, then 

when we look far into the distance, the universe expands, contracts, 

alternates on and on. This contradicts the observations unless the 

diameter is physically expanding. 

Another popular cosmic model is the single-holed 3-torus, which is the 

simplest 3-torus model. Almost all the torus models in the literature are 

single-holed [20]. The space represented by this model was a flat 

Euclidean space. In this model, the universe must be physically expanded 

to agree with observations. In paper [16], we demonstrated that a cosmic 
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filament is a spinning hole that accretes matter to form galaxies. If a 

cosmic filament is a hole in the universe, then according to the catalog 

[37], there must be more than one hole in the universe. 

We chose the multiholed 3-torus manifold, which has a negative 

curvature. In our model, this metric is described by Equation (3), which is 

a hyperbolic geometry. According to this metric, the universe appears to 

expand when we look far into the distance, even though its physical size 

remains the same. As previously explained, the expanding universe has 

dire consequences, such as a big rip or contradicting Mach’s principle. We 

postulate that cosmic expansion is just a hyperbolic illusion in the 

universal cover, and that the physical size of the fundamental domain 

remains the same. 

It is well known that positively curved manifolds have fewer 

symmetries [17, 18]. Therefore, only five platonic solids were present. 

Tessellation patterns in the universal cover are very limited. On the other 

hand, a negatively curved manifold has more symmetries, and there are 

many tessellation patterns to choose from [17, 18]. Pedagogically, this is 

best illustrated in Figure 3, where the interior angle of the polygon can be 

shrunk to the size so that more copies of the polygons can be fitted at a 

vertex. 

We postulate that cosmic filaments are a manifestation of holes in the 

manifold of our universe. These physical structures are similar to blood 

veins in the body of the universe. A complicated cosmic web means that 

the tessellation in the universal cover is not only exotic but also changing. 

This certainly favors a hyperbolic geometry over a spherical geometry or 

Euclidean geometry. The multiholed 3-torus model is more realistic than 

the PDS model, single-holed 3-torus, or many other models. 

4. Conclusion 

By using the scale of large cosmic filaments, we quantitatively define 
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the cosmological principle and explain why, above this scale, the universe 

appears isotropic and homogeneous. We propose a stationary, finite, and 

compact universe whose topology is a multiholed 3-torus manifold that 

evolves over time. 

Using topology, hyperbolic geometry, and signal processing, we 

explain the flatness of the universe, which is revealed by the CMB data 

without dark matter and dark energy. Using the CMB frequency 

spectrum, we calculated the size of the universe accurately. Using 

hyperbolic geometry, we quantitatively explain the accelerating 

expansion of the universe without dark energy. We propose a crucial test 

to prove or falsify the proposed theory. 
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