Fundamental Journal of Mathematics and Mathematical Sciences p-ISSN: 2395-7573; e-ISSN: 2395-7581 Volume 17, Issue 2, 2023, Pages 15-19 This paper is available online at http://www.frdint.com/ Published online November 1, 2023

TILING THE PLANE WITH *k*- **GONS**

VOLKER THÜREY

Hegelstr. 101, 28201 Bremen Germany e-mail: volker@thuerey.de

Abstract

We present a way to tile the plane by *k* - gons for a fixed *k*. We use usual regular 6 -gons by putting some in a row and fill them with k - gons. We use only one or two or four different $\,k$ - gons.

1. Introduction

It is a widespread opinion that one can tile the plane \mathbb{R}^2 only with triangles, squares and regular 6- gons. This is wrong. A further possibility is to put regular 6- gons in a row.

We think that it is useful to repeat the definition of a *simple polygon*.

A simple polygon with *k* vertices consists of *k* different points of the *plane* (x_1, y_1) , (x_2, y_2) , ... (x_{k-1}, y_{k-1}) , (x_k, y_k) , called *vertices*, and the straight lines between (x_i, y_i) and (x_{i+1}, y_{i+1}) for $1 \le i \le k-1$, called *edges*. Also the straight line between (x_k, y_k) and (x_1, y_1) belongs to

Keywords and phrases: tiling, plane.

²⁰²⁰ Mathematics Subject Classification: 51.

Received September 9, 2023; Accepted September 16, 2023

 ^{© 2023} Fundamental Research and Development International

16 VOLKER THÜREY

the polygon. We demand that it is homeomorphic to a circle and that there are no three consecutive collinear points (x_i, y_i) , (x_{i+1}, y_{i+1}) , (x_{i+2}, y_{i+2}) , for $1 \le i \le k-2$. Also the three points (x_k, y_k) , (x_1, y_1) , (x_2, y_2) and (x_{k-1}, y_{k-1}) , (x_k, y_k) , (x_1, y_1) are not collinear. We call this just described simple polygon a *k*- *gon*.

Definition 1. Let *t* be any natural number. We call a simple polygon a *t* row 6- gon, if *t* regular 6- gons are put in a row. Two neighboring regular 6- gons were glued at a common edge.

See the example in Figure 2. There we show a 5 row 6- gon.

Note that a 1 row 6- gon is just a regular 6- gon.

Proposition 1. *One can tile the plane with t row* 6- *gons for all natural numbers t*.

Proof. Trivial.

Proposition 2. *A* t *row* 6-gon *has* $2 + 4 \cdot t$ *vertices.*

Proof. Easy.

2. Tiling

Theorem 1. *Let k be a natural number larger than* 2. *There exists for all k a tiling of* \mathbb{R}^2 *with k - gons.*

Proof. For $k = 3$ and $k = 4$ and $k = 6$ the theorem is well-known. For *k* = 5 please see Figure 1. We also can take a regular 6- gon instead of a rectangle. We cut it into congruent halves. Now let *k* be a natural number larger than 6.

Lemma 1. *It holds* $k - 2 \equiv p \mod 4$, *where* $p \in \{0, 1, 2, 3\}.$

Proof. Well-known.

We discuss the four possibilities.

Possibility 1. $p = 0$. In this easy case we take the polygon *t* row 6- gon as a k - gon. We get t from the equation $k - 2 = 4 \cdot t$.

The sequence of the numbers of k is 10, 14, 18, By Proposition 2 the number of vertices of a t row 6 -gon is $2 + 4 \cdot t$. This is k .

Possibility 2. $p = 1$. In this case we had to calculate. We take a $(4 \cdot t + 1)$ row 6-gon. It is filled with four k -gons. We use the vertices of the $(4 \cdot t + 1)$ row 6-gon as vertices of the four *k*-gons. See Figure 2. Note that the four *k*- gons have three edges in common. Therefore, we have to subtract 6 from the number of the vertices.

We get *t* from the equation $k - 2 = 4 \cdot t + 1$.

The number of vertices both for a $(4 \cdot t + 1)$ row 6-gon and also 4 *k*-gons – 6 is $16 \cdot t + 6$. The sequence of the numbers of *k* is 7, 11, 15, 19, \dots .

Possibility 3. $p = 2$. We take a $(2 \cdot t + 1)$ row 6-gon. It is filled with two k - gons. We get t from $k-2 = 4 \cdot t + 2$.

The sequence of the numbers of k is $8, 12, 16, 20, \ldots$. Two k -gons alltogether have $8 + 8 \cdot t$ vertices. See Figure 3. Note that if two neighboring *k*- gons tile a polygon a pair of vertices is canceled, since the *k*-gons have a common edge. Therefore, they have $6 + 8 \cdot t$ vertices. This is also the number of vertices of a $(2 \cdot t + 1)$ row 6-gon.

Possibility 4. $p = 3$. We take a $(4 \cdot t + 3)$ row 6-gon. It is filled with four *k*-gons. We get *t* from $k - 2 = 4 \cdot t + 3$. The common number of vertices is $16 \cdot t + 14$. The sequence of the numbers of *k* is 9, 13, 17, 21,

The theorem is proved.

It follows three figures.

Figure 2. A 5 row 6-gon, which is subdivided in four 7-gons. We see also three edges. Each is a common edge of two 7- gons.

Figure 3. We see a 3 row 6- gon. It consists of two 8- gons.

Acknowledgements

We thank Gavin Crosby for information and Prof. Dr. Eberhard Oeljeklaus and Rüdiger Rehberg for a careful reading.

References

- [1] Ehrhard Behrends, Parkettierungen der Ebene, Springer, 2019.
- [2] http://www.willimann.org/A07020-Parkettierungen-Theorie.pdf
- [3] http://www.mathematische-Basteleien.de/parkett2.htm