Fundamental Journal of Mathematics and Mathematical Sciences p-ISSN: 2395-7573; e-ISSN: 2395-7581 Volume 17, Issue 2, 2023, Pages 15-19 This paper is available online at http://www.frdint.com/ Published online November 1, 2023

TILING THE PLANE WITH k-GONS

VOLKER THÜREY

Hegelstr. 101, 28201 Bremen Germany e-mail: volker@thuerey.de

Abstract

We present a way to tile the plane by k-gons for a fixed k. We use usual regular 6-gons by putting some in a row and fill them with k-gons. We use only one or two or four different k-gons.

1. Introduction

It is a widespread opinion that one can tile the plane \mathbb{R}^2 only with triangles, squares and regular 6-gons. This is wrong. A further possibility is to put regular 6-gons in a row.

We think that it is useful to repeat the definition of a *simple polygon*.

A simple polygon with k vertices consists of k different points of the plane (x_1, y_1) , (x_2, y_2) , ... (x_{k-1}, y_{k-1}) , (x_k, y_k) , called *vertices*, and the straight lines between (x_i, y_i) and (x_{i+1}, y_{i+1}) for $1 \le i \le k-1$, called *edges*. Also the straight line between (x_k, y_k) and (x_1, y_1) belongs to

Keywords and phrases: tiling, plane.

²⁰²⁰ Mathematics Subject Classification: 51.

Received September 9, 2023; Accepted September 16, 2023

 $[\]ensuremath{\mathbb{C}}$ 2023 Fundamental Research and Development International

VOLKER THÜREY

the polygon. We demand that it is homeomorphic to a circle and that there are no three consecutive collinear points (x_i, y_i) , (x_{i+1}, y_{i+1}) , (x_{i+2}, y_{i+2}) , for $1 \le i \le k-2$. Also the three points (x_k, y_k) , (x_1, y_1) , (x_2, y_2) and (x_{k-1}, y_{k-1}) , (x_k, y_k) , (x_1, y_1) are not collinear. We call this just described simple polygon a k-gon.

Definition 1. Let t be any natural number. We call a simple polygon a t row 6-gon, if t regular 6-gons are put in a row. Two neighboring regular 6-gons were glued at a common edge.

See the example in Figure 2. There we show a 5 row 6-gon.

Note that a 1 row 6-gon is just a regular 6-gon.

Proposition 1. One can tile the plane with t row 6-gons for all natural numbers t.

Proof. Trivial.

Proposition 2. A t row 6-gon has $2 + 4 \cdot t$ vertices.

Proof. Easy.

2. Tiling

Theorem 1. Let k be a natural number larger than 2. There exists for all k a tiling of \mathbb{R}^2 with k-gons.

Proof. For k = 3 and k = 4 and k = 6 the theorem is well-known. For k = 5 please see Figure 1. We also can take a regular 6-gon instead of a rectangle. We cut it into congruent halves. Now let k be a natural number larger than 6.

Lemma 1. It holds $k - 2 \equiv p \mod 4$, where $p \in \{0, 1, 2, 3\}$.

Proof. Well-known.

We discuss the four possibilities.

Possibility 1. p = 0. In this easy case we take the polygon t row 6-gon as a k-gon. We get t from the equation $k - 2 = 4 \cdot t$.

The sequence of the numbers of k is 10, 14, 18, By Proposition 2 the number of vertices of a t row 6-gon is $2 + 4 \cdot t$. This is k.

Possibility 2. p = 1. In this case we had to calculate. We take a $(4 \cdot t + 1)$ row 6-gon. It is filled with four k-gons. We use the vertices of the $(4 \cdot t + 1)$ row 6-gon as vertices of the four k-gons. See Figure 2. Note that the four k-gons have three edges in common. Therefore, we have to subtract 6 from the number of the vertices.

We get t from the equation $k - 2 = 4 \cdot t + 1$.

The number of vertices both for a $(4 \cdot t + 1)$ row 6-gon and also 4 k-gons - 6 is $16 \cdot t + 6$. The sequence of the numbers of k is 7, 11, 15, 19,

Possibility 3. p = 2. We take a $(2 \cdot t + 1)$ row 6-gon. It is filled with two k-gons. We get t from $k - 2 = 4 \cdot t + 2$.

The sequence of the numbers of k is 8, 12, 16, 20, Two k-gons alltogether have $8 + 8 \cdot t$ vertices. See Figure 3. Note that if two neighboring k-gons tile a polygon a pair of vertices is canceled, since the k-gons have a common edge. Therefore, they have $6 + 8 \cdot t$ vertices. This is also the number of vertices of a $(2 \cdot t + 1)$ row 6-gon.

Possibility 4. p = 3. We take a $(4 \cdot t + 3)$ row 6-gon. It is filled with four k-gons. We get t from $k - 2 = 4 \cdot t + 3$. The common number of vertices is $16 \cdot t + 14$.

The sequence of the numbers of k is 9, 13, 17, 21,

The theorem is proved.

It follows three figures.

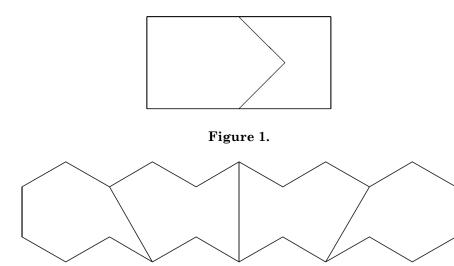


Figure 2. A 5 row 6-gon, which is subdivided in four 7-gons. We see also three edges. Each is a common edge of two 7-gons.

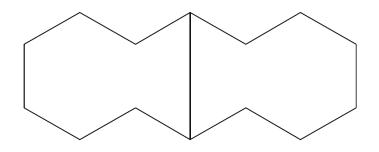


Figure 3. We see a 3 row 6-gon. It consists of two 8-gons.

Acknowledgements

We thank Gavin Crosby for information and Prof. Dr. Eberhard Oeljeklaus and Rüdiger Rehberg for a careful reading.

References

- [1] Ehrhard Behrends, Parkettierungen der Ebene, Springer, 2019.
- [2] http://www.willimann.org/A07020-Parkettierungen-Theorie.pdf
- [3] http://www.mathematische-Basteleien.de/parkett2.htm