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Abstract 

A theory of the electron which is based on the covariant derivative of 

the potential is developed. It is shown that the particle is represented 

by a tensor field which groups all the measured quantities mass, 

charge, spin and magnetic moment of the electron. The theory gives the 

equations which relate these global quantities to the local elements of 

the tensors. 

1. Introduction 

Up to now the electron is represented as a point-like particle of 

matter and a unit of unbreakable electrical charge associated with a 

wave. These paradigms are very powerful to describe atomic, molecular 

and solid state phenomena. However, they become useless to study the 

distribution of mass or electric charge inside an electron. The theory 

presented here proposes a new solution to the electron structure together 
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with its associated characteristics. 

The long quest to understand the electron structure began at the end 

of the XIXth century [1]. In his book published in 1909 [2] Hendrik A. 

Lorentz “ascribes to each electron certain finite dimensions”. However, the 

history [3] of this particle shows that the different models [4, 5, 6, 7] to 

describe the inside of an electron were unsuccessful. 

The use of Maxwell’s equations was the basis of the early works, but a 

turning point was the introduction by Max Born and Leopold Infeld [8] of 

the idea of non-linear electromagnetism in the year 1934. Instead of 

starting from Maxwell’s equations, they built a tensor [ ]kia  which was 

the sum of the (antisymmetric) electromagnetic tensor [ ]kiF  and the 

(symmetric) metric tensor [ ].kig  Then they developed the properties of 

[ ]kia  to describe the electron. However, the elements kiF  have the 

dimensions of a magnetic field while kig  has no dimension. Even if [ ]kiF  

is properly normalized one can question the validity of adding it to [ ].kig  

The new tensor [ ]kia  should be the sum of [ ]kiF  and another symmetric 

tensor of a similar physical nature. But what is this tensor? 

The classical electromagnetic potential [9, 10, 11, 12] is a 4-

components vector in Minkowski’s spacetime and its 16 partial 

derivatives at an event M  are the components of a tensor ( ).iAD  The 

antisymmetric part of ( )iAD  is the widely used electromagnetic tensor 

[ ].kiF  By contrast the symmetric part [ ]kiS  does not appear in classical 

textbooks nor in specialized literature. The answer to the preceding 

question is evidently [ ]kiS  and the tensor whose properties have to be 

analyzed is [ ] ( ).ii ADa =k  We imagine yoctoscopic observers at M  where 

the scale is small as compared to the size of the particle. Such observers 

use the potential as the base paradigm and ( )iAD  as the fundamental 

object. Then they apply standard classical notions to develop their 
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properties. In the course of the theory, we will distinguish between local 

properties (accessible to our yoctoscopic observers) and global properties 

accessible to us. 

[ ]kiS  has two fundamental characteristics which do not appear in 

[ ]:kiF  (1) being symmetric, it can be diagonalized, and (2) the 

corresponding mixed tensor iSk  has a trace which is invariant in a 

coordinate transformation. These two properties result [13] in a 

Helmholtz equation whose solutions show concentrations of potential 

(without any divergence) around the origin. These solutions are 

characterized by three quantum (integer) numbers mn ,, l  starting at 

.0=== mn l  When replacing the potential in ( )iAD  by these 

solutions, one obtains a tensor at each event M  in spacetime. The field of 

these tensors describes a particle ( ).,, mn l  

As the determinant of iSk  is also an invariant, we have associated it 

with a local Lagrangian density L  in the elementary volume around .M  

This quantity can be integrated over the whole volume to give a global 

invariant which allows the calculation of the potential energy, or the total 

mass of the particle. The determinant of [ ]iak  can also be used in 

Lagrange’s equations which shows that the electric charge can be 

deduced from the potential. One finds that only the solution ,1=n  

0== ml  can be globally electrically charged. We naturally named it 

“the electron”. This particle is the most known among elementary 

particles. It can be isolated and trapped [14]. It is characterized by four 

measurable quantities which are its mass, its electric charge, its angular 

momentum (spin) and its magnetic moment. Its Compton wavelength is a 

fifth characteristic quantity which appears when it diffuses Gamma rays. 

Up to now, these quantities seem to be independent of each other. The 

aim of the present study is essentially to show that they are all linked 

together and to express the relations between them and the potential. 
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We first briefly describe the tensors, the way to obtain the basic 

Helmholtz equation and its solutions. We write the tensor field of the 

electron in the static (non rotating) case. The description of the spatial 

distribution of energy and electric density is given. Then the spinning 

particle is described as a vortex with a spatial distribution of angular 

frequency. The angular momentum and the magnetic moment are 

obtained. Finally the theoretical parameters are numerically computed. 

The main results of the following classical theory are the description 

of the structure of the “point-like particle”, the explanation of the de 

Broglie’s pilot wave, the agreement with Wheeler-Feynman’s absorber 

theory and the numerical calculation of the electron characteristics. 

2. Generalities 

2.1. Notations 

The standard notation of the 4-potential vector is ( ,,, yxi AAcA φ=  

)zA  in the Cartesian coordinates frame of Minkowski’s spacetime 

spanned by the normalized basis vectors ( ).,,, zyxt eeee
rrrr

 cφ  is the 

scalar potential and the set ( )zyx AAAA ,,=  is the vector potential at 

an event M  defined by its coordinates ( ).,,, zyxctx i =  The covector 

will be denoted by ( ).,,
~

zyx AAAA =  We choose the convention 

( )−−−+ ,,,  for the metric .mng  It is important to realize that the 

elementary volume surrounding M  is small as compared to the electron 

volume: The particle will thus be characterized by vector and tensor 

fields. The covariant derivative ( )iAD  at point M  is the particle tensor 

( ) [ ] [ ].kk xAaAD iii ∂∂==  ( )iAD  is divided into its symmetric and 

antisymmetric parts [15]: 

[ ] ([ ] [ ]),
2
1

iii aas kkk +=  (1) 
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[ ] ([ ] [ ]),
2
1

iii aaf kkk −=  (2) 

i and k  represent, respectively, the line and the column indices in the 

square table representation. [ ]kif  is the usual electromagnetic tensor 

[16]. [ ]kis  can be named the matter (or mass) tensor. The particle tensor 

is the sum of the matter and the field tensors. They keep their symmetric 

or antisymmetric properties in a coordinate change. It is this association 

which explains the matter-field duality. 

2.2. Helmholtz equation 

[ ]kis  is a symmetric tensor: it can be diagonalized provided its 

determinant is not zero. It follows that an eigenframe exists where 

elements 011 == kk ss  with .4,3,2=k  Some details are given in 

Appendix. This is expressed by the equation: 

.
~

grad
t

A

t

A

∂

∂
−=

∂

∂
=φ  (3) 

Now the mixed tensors [ ] [ ] [ ]iii fsa kkk ,,  are introduced. They are 

characterized by invariants in coordinates changes. Invariants are the 

coefficients of their characteristic polynomials. The most well known are 

the trace and the determinant. The trace [17] of [ ]isk  remains the same in 

a time translation: 

( )
.0=











∂

∂
+

∂

∂
+

∂

∂
+

∂

φ∂

∂

∂
=

∂

∂

z

A

y

A

x

A

tc

c

tctc

s zyxi
i  (4) 

Associating Equations (3) and (4) gives the Helmholtz equation: 

,0
22

2
=φ∆−

∂

φ∂
c

tc

c
 (5) 

where ∆  represents the Laplacian. The permanent solutions oscillating 
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at an angular freqency ω  obey: 

.0
2

2
=φ∆+φ

ω
cc

c
 (6) 

This equation is a tensor equation which remains the same in any system 

of coordinates and we will use it in the spherical reference frame attached 

to .M  This frame is defined by its proper time t and the geometrical 

coordinates ( )ϕθ,,r  such that: 

.cos,sinsin,cossin θ=ϕθ=ϕθ= rzryrx  (7) 

The advantage of the ( )ϕθ,,r  system is that it makes use of the spherical 

symmetry of the electron. Its disadvantage with respect to the Cartesian 

system is that the formulation of ( )iAD  is more complicated in the 

general case. 

Solutions of Equation (6) have been studied in the context of the 

hydrogenoid atoms [18]. Coupled radial-angular solutions are found from 

the ansatz: 

( ) ( ) ( ).θΘϕΦ=φ rRc  (8) 

Decoupled solutions are obtained from the ansatz: ( ) ( ) +ϕΦ+=φ rRc  

( ).θΘ  

In the present case, there is no need to do any approximation to write 

the radial function ( ).rR  Now, we introduce the normalized distance to 

the center: .x crω=  Note the different typography with respect to the 

coordinate .x  This distance will thus be measured in units of the 

reference length .ωc  The solutions are: 

( ) ( ) ( ) ( ).cos,x,,x ,,,, α+ωϕθ=φθφ tYJ m
nmnmn lll

A  (9) 

mn ,, lA  is the amplitude of the solution. We will choose 0=α  or 2π−  

for reasons which will appear later. ( )xnJ  is the spherical Bessel function 
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of order n and ( )ϕθ,mY
l

 is the m,l  spherical harmonic. 

2.3. The tensor field of the electron 

The solution corresponding to the electron is characterized by ,1=n  

.0== ml  The reason is that the global electric charge which is 

associated to a solution vanishes for all of them except for this special one 

[13]. This point is developed in Section 4. The following developments will 

concern this case only. The scalar potential is expressed as an even or an 

odd function of tω  (resp., upper and lower lines). One passes from the 

first to the second solution by removing 2π  from :tω  







ω−

ω

π
=φ

,sin

,cos

4
10,0,1

t

t
J

A
 (10) 

where 1J  is the spherical Bessel function of order 1. This solution is 

spherically symmetric. The potential vector has only one radial 

component given by Equation (3): 







ω

ω
′

π
=

,cos

,sin

4
1

t

t
J

c
Ar

A
 (11) 

where 1J ′  stands for the derivative of 1J  with respect to x. 

The tensor which will represent the electron at point M  is explicitly 

written in its eigenframe for the even solution: 
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(12) 

Terms ( ) ( )
x

sin4 12 J
tcrAr

′
ωπω= A  originate from Christoffel’s 

coefficients which appear when shifting from the Cartesian to the 

spherical system of coordinates [15]. The field tensor is: 

[ ] .

0000

0000
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00cos0
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1 1
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k  (13) 

The matter tensor is: 

[ ] .
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00
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k  (14) 

These tensors are written in the frame spanned by normalized basis 

vectors where the metric tensor is also 1,1,1,1 −−−  along the diagonal. 

It follows that the mixed field tensor is: 

[ ]
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1 1
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k  (15) 
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−

−

=
cE

cE

 (16) 

The three components of the electric field are associated to a pseudo 

vector .E  The radial component 2
1

1
2 EE =  is related to the potential by 

the relation: 

( )
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−
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tc
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c

c
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1
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1
2  
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4
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12

Jt
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A

r

c r

′ω
ω

π
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∂

∂
−=

∂

φ∂
−=

A
 (17) 

The factor 21  follows directly from Equation (2). The standard relation 

[11] does not include this factor. Note that the magnetic field vanishes in 

the eigenframe of coordinates. 

The mixed matter tensor is: 

[ ]
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0
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A

k  (18) 

2.4. The far-field tensor 

The behavior of ( )iAD  is very different in the regions close to or far 

from the origin of coordinates which is the center of the particle. 

Expressions of 11 , JJ ′  and 1J ′′  are: 

,
x

xsin
x

xcos
21 +−=J  
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,
x

xsin
2

x

xcos
2

x
xsin

321 −+=′J  

.
x

xsin
6

x

xcos
6

x

xsin
3

x
xcos

432
+−−=′′

1J  (19) 

At large distances from the origin, only terms in x1  survive and 11 , JJ ′  

and 1J ′′  reduce to: 

,
x

xcos
1 −�J  

,
x

xsin
1 �J ′  

.
x

xcos
�1J ′′  (20) 

The field becomes: 

x
xsin

cos
4

12
1 t

c
E ω

ω

π
−=

A
 

( ) ( )( ).xsinxsin
x
1

4

1
2
1

−ω−+ω
ω

π
−= tt

c

A
 (21) 

The two remaining terms in isk  are: 

x
xcos

sin
4

1
2

2
2

1
1 t

c
ss ω

ω

π
=−=

A
 

( ) ( )( ).xsinxsin
x
1

4

1
2

−ω++ω
ω

π
= tt

c

A
 (22) 

These expressions show travelling advanced waves ( )tω+xsin  and 

retarded waves ( )tω−xsin  which correspond exactly to those described 

in Wheeler-Feynman’s absorber theory [19]. We have thus adopted their 

interpretation which is based on causality: the outgoing waves are 

emitted by the particle and are absorbed by the surrounding medium 
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which acts also as the emitter of waves which are absorbed by the 

particle. The equilibrium is obtained when both incoming and outgoing 

waves have the same energy. This is the condition for the stability of the 

particle and existence of permanent solutions. It follows that the 

amplitude A  is fixed by this condition. 

The two terms 1
1s  and 2

2s  are interpreted as “matter waves” and 

should correspond to the de Broglie’s pilot wave [20]. They intervene in 

self-interference effects in particle diffraction experiments. Their physical 

interpretation is different: 

• 1
1s  originates from the derivative of the scalar potential .cφ  The 

standing wave is scalar. 

• 2
1s  originates from the derivative of the radial potential .rA  The 

standing wave is radially polarized. 

For future use, we write now the tensor (12) at point M  in the far 

field region (subscript “ ff ” stands for far field): 

[ ]

( )

.

0000

0000

00

00

2
1

2
1

























∂

∂
−

−
∂

φ∂

= r

A
cE

cE
tc

c

a
r

ff
i
k  (23) 

One is led to the conclusion that an electron (or more generally, any 

particle) is not localized: it manifests itself everywhere in the universe. It 

follows that one should make the distinction between a theoretical 

vacuum where the potential and its derivatives cancel everywhere and 

the real vacuum which is a superposition of electromagnetic and matter 

waves originating from the multitude of the particles of our universe. 

This state can be understood as the fundamental noise which is 

characterized by the quantities 00 , µ�  and its impedance .377Ω=Z  In a 
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region far from the center of any particle the contribution of one electron 

is very weak, while inside the electron, the noise can be neglected. We 

will come back on this subject later. 

3. Potential Energy 

In this section, we will compute the local energy densities associated 

to [ ] [ ]ii sa kk ,  and [ ].ifk  The Lagrangian density Lδ  at each point M  is 

computed first: It is necessarily associated to an invariant of each of these 

tensors. The Hamiltonian density can then be computed and its 

summation in spacetime will give the total potential energy which is one 

of the macroscopic measurable quantities which characterize the particle. 

Let us consider successively the three tensors. 

3.1. Particle tensor 

Leaving aside the factor ( ) ( ),4 2cπωA  the characteristic 

polynomial of [ ]iak  is: 

( ) ( ) (( ) ( )1JtJt
x

J
tP ′′ω+λω+λλ+

′
ω=λ sinsinsin 1

21  

)2
1

2cos Jt ′ω−  (24) 

and the 4 invariants kI  are: 

,
x

sin
x

sincos
2

2
1

1
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2

2
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1
22

0
J

JJt
J

JttI
′

′′ω+
′

′ωω−= 1  (25) 

,
x

2sin
2
1

11 






 ′
+′′+ω=

J
JJtI 1  (26) 

x
sin2sincos 1

1
2

1
22

1
2

2
J

JtJJtJtI
′

ω+′′ω+′ω−= 1  

,
x

sin
x

sin2
2

2
1212 J

t
J

Jt
′

ω+
′

′′ω+ 1  (27) 
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x
sin2

x
sincos2 1

1
312

1
2

3
J

JJt
J

JttI
′

′′ω+
′

′ωω−= 1  

.
x

sin
x

sin
2

2
13

2

2
1

1
3 J

Jt
J

Jt
′

′′ω+
′

ω+ 1  (28) 

We associate [13] the Lagrangian density [21] to the determinant aLδ  

.0I�  We write: 

.
4
1

0

4

2
I

c
a 







 ω

π
−=δ

A
CL  (29) 

aLδ  has the dimensions of an energy density in the 4-volume ( ).zyxct  

The proportionality constant C  is a physical quantity which has the 

dimensions [ ] .QTLM 4223 −−=C  The minus sign is introduced to have a 

negative potential energy. The trace 1I  is the invariant which leads to 

the Lorentz gauge [13]. 2I  and 3I  are not used here. One should note 

that any power nI0  is also an invariant. We keep 1=n  which will give an 

energy proportional to the fourth power of the amplitude .A  This 

property will explain the wide energy range of elementary particles [22]. 

The Hamiltonian is linked to the Lagrangian through a Legendre 

transform [23]: 

,a
a u

u
L

L
H δ−

∂

δ∂
=δ ∑ k

k
k

 (30) 

where the ku ’s are the independent terms which appear in aLδ  or in 

[ ].iak  There are only four such terms: 
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The upper and lower lines in these expressions correspond, respectively, 

to the even and the odd solutions. The derivatives kua ∂δ∂ L  which 

appear in Equation (30) are the inductions corresponding to each .ku  

If we use the expression for the determinant of [ ],iak  one has: 

( ) ( ( ) ),21
2

2
2

1
1

23
3 aaaaa −−=δ CL  and Equation (30), 

we find: 

.3 aLH δ=δ  (35) 

The Hamiltonian density is now easily obtained: 

( )
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1
A
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Hδ  is the energy included in the 4-volume element ( )( )dvctd  where 

.sin2 ϕθθ= dddrrdv  The energy density in a geometrical volume dv  is 

obtained by integrating Hδ  over the length ωπc2  on the time axis: 
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The total energy associated to the electron is obtained from an integration 

over the whole geometrical volume: 

( ) HH ddrrdd 2

00

2

0
total sin ∫∫∫

∞ππ
θθϕ=  

.xx4 2

03

3
dd

c
H∫

∞

ω
π=  (38) 

One obtains: 

( ) ( )2
11

2
1

04

4

total 3x
16
3

JJJJd
c

′+′′′= ∫
∞

1

A
CH  

( ) .0
x

x
16
3 3

11
04

4
=′= ∫

∞
JJ

d

d
d

c

A
C  (39) 

The total energy of the particle is identically 0: The integral vanishes 

because ( ) 00x1 ==J  and the product 0x1 43
11 →′ �JJ  when .x ∞→  

Its axial distribution includes a positive and a negative part which cancel 

each other after integration. This energy is the same for both even and 

odd solutions; Figure 1 represents the integrant ( ) x3
11 dJJd ′  as a 

function of x. The (essentially) negative part 1JJJ ′′′ 1
2

13  will represent 

the mass energy while the positive part 4
1J ′  is linked to the field energy. 

We will keep in mind that Hδ  in Equation (37) includes two terms: 

• The first term ( ) 2
2

1
1

23
3 aaaC−  is an invariant of the mass tensor, it 

will represent the potential energy 2
0cmWp =  that is associated to the 

mass. 

• The second term ( ) ( )21
2

23
3 aaC  is the difference between two 

invariants. It is also an invariant which will be related to the field energy. 
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These invariants will be used to study the spinning electron (Section 

5) where mass and field moments appear. 

 

Figure 1. Radial distribution of the total electron rest energy vs. x, 

distance to the center (arbitrary units). 

3.2. Matter tensor 

The determinant of the matter tensor (Equation (18)) gives the 

potential energy density of the particle which is the first term in Equation 

(37): 

.
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π
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 (40) 

Applying Poincaré-Einstein relation ,2
0cdmdWp =  we obtain the 

element of mass density 0dm  (in the geometrical volume) which we write 

explicitly below for future use: 
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Note that the potential energy density writes in the 4-volume: 
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Integrating pdW  over the 4-volume, one obtains the potential energy: 

.3x
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1
04

4

1JJJd
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∞A

C  (43) 

One notes that ω  does not appear in this relation. 

The electron rest mass 0m  is an invariant, function of the amplitude 

,A  the constant C  and the speed of light: 

,
6

4

0 moI
c

m
A
C=  (44) 

where the integral is exactly obtained: 

.
18480

17
x2

11
0

π
=′′′= ∫

∞
dJJJImo 1  (45) 

In the region close to the origin, 1x �  and a series expansion gives: 

( ),x
30
x

3
x 4

3

1 OJ +−=  

( ),x
10
x

3
1 4

2

1 OJ +−=′  

( ).x
42
x

5
x 4

3
OJ ++−=′′

1  (46) 

The product 1JJJ ′′′ 1
2

1  converges at :0x =  

( ).x
14175

x86
135
x 5

42

1
2

1 OJJJ ++−=′′′
1  (47) 
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Figure 2 represents the distribution of the mass energy along x. The total 

potential energy which is stored in the particle is the surface under this 

curve. If we subtract ( )massH  from ( ),totalH  we obtain the field energy 

which is stored in the particle. The function 4
1J ′  represents the radial 

distribution of this energy. It is illustrated in Figure 3. 

3.3. Field tensor 

The characteristic polynomial of [ ]ifk  is: 

( ) ( ( ) ).222
1

22 cEP −λλ=λ  (48) 

The field invariants are thus 0 and ( ) .22
1E  In the general case where the 

magnetic field ,0≠H  they are .inv22 =− EH  and .inv=HE  

The local energy density of the field is obtained from the product of 

the field 2
1E  and the induction :2

1
1
2 Ea ∂δ= LD  

1
2

2
1DH Ed =  

.
x

cossin
4

1
2

2

4
122

4

2

J
tt

c

′
ωω







 ω

π
=

A
C  (49) 
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Figure 2. Radial distribution of potential (mass) energy for the electron 

vs. x, normalized distance to the center (arbitrary units). 

 

 

 

Figure 3. Radial distribution of field energy for the electron vs. x, 

normalized distance to the center (arbitrary units). 

After integrating over time, it leads to the field term in Equation (39). 
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As the particle manifests itself at large distances by terms in ,x1  

the potential, the field or the energy stored in an element dv  around a 

point M  are very small in this region as compared to the noncoherent 

sum of the corresponding quantities originating from the multitude of 

particles of the universe. One can thus characterize this region (the 

“vacuum”) by a noise tensor whose components ink  are incoherent and 

with a modulus large as compared to those originating from a single test-

particle. We write the local tensor as a sum of this noise tensor and the 

test-particle tensor (Equation ((23)). The Lagrangian density is the 

determinant: 

.ii
ff

ff
an
kk +−= CL  (50) 

The local induction due to the field ( )2
1E  is the derivative of ffL  with 

respect to .2
1

2
1 acE =  Developing the determinant and performing the 

derivation gives the electric induction: 

( ) ( ) .2 2
1

4
3

3
4

4
4

3
31

2

1
2 cEnnnn

a
D

ff

ff

ff
−−=

∂

∂
= C
L

 (51) 

This relation will be used in the next section. 

4. Electrical Charge 

This section deals with the electric charge Q  associated to the 

electron. In traditional electrostatics, Q  is the time-independent source 

for the field. However, we have seen in Subsection (2.4) that at large 

distances, the field is a longitudinally-oscillating vector (which prevents 

instantaneous action). In the present theory, Q  should thus be an 

oscillating quantity: we will write ( )ttQQ ωω= cosorsin
~

 to display this 

time dependence. 
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The two fundamental equations which are related to Q  in classical 

electromagnetism are: 

• Maxwell’s equation: ρ=Ddiv  ( :D  dielectric induction, :ρ  charge 

density). 

• The Lorentz force EQF
rr

=  or, equivalently the electrostatic energy 

QVWel =  acquired by a charge Q  embedded in an external potential .V  

We study now the relation between the first of these equations and 

the tensor field of the electron. 

4.1. Maxwell equation 

Maxwell’s equation of classical electrostatics: 

ρ=Ddiv  (52) 

relates the charge density ρ  in the small geometrical volume dv  around 

a point M  to the electric displacement D  with .0 ED �=  It is tempting 

to use this relation to define ρ  as a function of the tensor components. 

The integral of this equation over the whole volume would give the total 

electric charge associated to the particle. However, Equation (52) is 

established for the far field region and makes reference to vacuum 

properties through .0�  It follows that the tensor field of the particle alone 

cannot lead to Equation (52). In other words, while E  is created by the 

particle, 0�  originates from the vacuum fields (the “noise”) and D  

contains the properties of both components. The situation is completely 

different inside the particle (close to the origin) where the amplitude of 

the vacuum fields becomes small and negligible as compared to the i
j

a ’s. 

We are thus led to use expression (51) in the far field and to introduce the 

vacuum permittivity 0�  in the next paragraph. 
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4.2. Lagrange equation 

Lagrange’s equations are applied to the potential components jA  

which are considered to be the generalized coordinates. For each 

component :jA  

.0=




















































∂

∂
∂

∂

∂

∂
−

∂

∂
∑

i

j

a

ij

a

i

x

AxA

LL
 (53) 

aL  is the Lagrangian density corresponding to the particle embedded in 

noise, where the components i
j

n  are negligible inside the particle and 

preponderant outside. Terms ( )ij
a xA ∂∂∂∂L  are the components of 

the 4-vector induction .
~

4 D  This equation is again a tensor equation 

which we use in the spherical frame of coordinates. Its dimensions are 

13TQL −−  which shows that an electric charge can be recovered after an 

integration over time and geometrical space. Dimensions of D  (defined in 

the 3-dimensional space) in Equation (52) are .QL 2−  

When Equation (53) is written for the scalar potential ,0 cA φ=  the 

first term cancels because aL  does not depend on cφ  explicitly. The 

second term expresses the 4-divergence of the 4-vector induction D
~

4  

which can be split into its temporal and spatial parts: 

( )
( )

.
~

,
~

4



























∂

φ∂
∂

∂
= D

ct

c
D aL  (54) 

The spatial term has only one (radial) component: 
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( )
.0,0,

~
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∂
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r

c
D aL  (55) 

Equation (53) gives: 

( ) ( )
( )

.0
~

div =+









∂

φ∂
∂

∂

∂

∂
D

ct

cct
aL  (56) 

Here the divergence reduces to a single term: 

( )
.

~
div

r

D

r

c

r
D

r

∂

∂
=

∂

φ∂

∂

∂
=

�

 (57) 

Now expression (56) is integrated over a sphere with a radius R  large as 

compared to the particle size. Applying Gauss’s theorem, one obtains: 

( ) ( )
( )

( ) .0R4 2 =π+









∂

φ∂
∂

∂

∂

∂
∫ �ra DR

ct

cct
dv

L
 (58) 

The electric induction in the far field region is given by Equation (51) 
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The first term in Equation (56) is computed now: 

( ) ( )
( )

( ) ( )
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2
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ct
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Integration over a spherical volume with ωcR �  is equivalent to an 

integration over an infinite volume as in Equation (38): 

( ) ( )
( )

3

22

2

4

1
12~ 







 ω

πω
π−









∂

φ∂
∂

∂

∂

∂
∫ c

c

ct

cct
dv a A

C
L  







ωω−

ωω
′′′× ∫

∞

.sincos

,cos
x

21
2

1
0 tt

tt
dJJ

2
sin

 (61) 

The integral in this equation is: 

[ ] .
3

1
3
1

x
40

3
1

2
1

0
=′=′′′

∞∞

∫ JdJJ 1  (62) 

Now one uses Equations (59) and (61) in Equation (58), simplifies both 

terms by tωsin  or tωcos  ( �rD  reduces to ),rD  and integrates over a 

period of time ωπ2  to obtain: 

( ) .
4

1

3

12
R4

3

23

2

4

2
2

2

0







 ω

πω

π
=π∫

ωπ

c

c
dtDR r A

C  (63) 

Maxwell’s Equation (52) gives the interpretation of these results: the 

l.h.s. gives the electric induction in the geometrical volume and the r.h.s. 

is the electric charge: 

.
4

1

3

12
3

23

2

4

2







 ω

πω

π
=

c

c
e

A
Cm  (64) 

One notes the m  signs which appear in Equation (61) for the different 

parities of the solutions. They correspond to the electron and the positron. 

The l.h.s. in Equation (56) relates the components of the noise tensor 

to the vacuum permittivity :0�  

( ) .2 4
4

3
3

4
3

3
4

2

0
0 dtnnnn

c
−= ∫

ωπC
�  (65) 
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Dimensions of this equation are: .TLQM 2321 −−  

In passing, one notes that the integral which appears in Equation (62) 

nullifies if ( ( ) ).1if01 0x ≠=′≠ = nJn n  The space integral vanishes also 

for solutions containing mY
l

 with m and .0≠n  It follows that particles 

corresponding to solutions other than that for the electron are not 

electrically charged. However, they are still characterized by a field (term 

1
2a  of the tensor). The conclusion is that it is the gravitational field and 

that the potential iA  contains also the gravitational potential. 

The fundamental unit charge e of the electron can thus be expressed 

in terms of the constant ,C  the potential A  and the speed of light: 

.
1

544

1

3

12 3
4

3

23

2

4

2
CA

A
C

cc

c
e

π
=







 ω

πω

π
=  (66) 

Note that ω  disappears again in this formula. Note also that the term 

( ) ( )
( ) 






∂

φ∂
∂

∂

∂

∂

ct

cct
aL  in Equation (60) is not an invariant. It follows that the 

charge e will not be the same for the spinning electron. 

The integrand 1JJ ′′′21  represents the radial distribution of the 

charge. It is represented in Figure 4. 

A series expansion in the vicinity of 0x =  shows the convergence of 

this expression around the origin: 
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Figure 4. Radial distribution of electric charge for the electron vs. x, 

normalized distance to the center (arbitrary units). 

.
9450

x151
45
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~
3

2
1 K++−′′′

1JJ  (67) 

The absolute value of the local charge density at point M  is explicitly 

written below for future use: 

.
x4

11
3

2

2
1

3

2 1J
J

cc
′′

′







 ω

π
π=ρ

A
C  (68) 

It is obtained from (60) after the removal of tωsin  or ,cos tω  and the 

integration over a period of time .2 ωπ  

5. Spinning Electron 

In this section, we will consider the particle in rotation around the z 

axis in the inertial frame of the laboratory. We first compute the tensor in 

this frame. Each volume element around a point M  rotates with a 

tangential velocity which we will deduce from the principle of energy 

conservation. In a preliminary study, we have studied a Maxwell-
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Boltzman distribution function for the angular velocity. However, this is 

only a phenomenological model. The theory should rest on more 

fundamental laws: we use below the principle of energy conservation 

which allows a harmonious transition with the preceding sections. 

5.1. Tensors in the laboratory frame 

The point M  is subject to a rotation around the z axis as seen by an 

observer iO  in the inertial system of the laboratory. We compute now the 

expressions for the components of [ ]ija  in the system of fixed (overlined) 

coordinates of .iO  We consider the local infinitesimal coordinates ,cdt  

,dr  ,θdr  ϕθ dr sin  which define the volume element dv  around M  and 

which are measured by the observer attached to .M  These coordinates 

become ,dtc  ,dr  ,θdr  ϕθdr sin  for .iO  Both sets of coordinates are 

linked by a local, tangential, Lorentz transformation. The motion is along 

the ϕ  axis and the two other local axes r  and θ  are perpendicular to it. 

It follows that the coordinates dr  and θdr  are not affected by the 

rotation. Only the length element ϕθ dr sin  and the time element dtc  

at event M  are subject to the Lorentz transformation: 

,,sin rrdrdtcdtc =ϕθβγ+γ=  

.sinsin, dtcdrdr βγ+ϕθγ=ϕθθ=θ  (69) 

The standard notations for the relative tangential velocity ,β  and for the 

Lorentz factor γ  are used: 

.
1

1
,

2β−
=γ=β

c

v
 (70) 

β  and γ  depend upon coordinates and we will see that the rotation is 

completely different from that of a rigid body. 
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Note that the temporal phase tω  (which is a true scalar) is invariant 

in a Lorentz transformation: .tt ω=ω  Note also that the factor ωc  

which appears in the expression of the potential or its derivatives is the 

normalization parameter which transforms the invariant radial 

coordinate r into the non-dimensioned quantity x. This parameter is not 

modified here. 

The Jacobian of the transformation is the Lorentz matrix: 
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βγγ

=

00
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00

LJ  (71) 

which gives the components pmb  of the tensor in the laboratory frame: 

( ) ( ) .kk hmLhpLpm ab JJ=  (72) 

Now we write expression (12) for [ ]kha  under the compressed form: 
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Applying transformation (72) gives the tensor expressed at M  in the 

laboratory frame: 
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(74) 
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The antisymmetric part is: 

[ ] .
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0000
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As expected one notes the appearance of the magnetic field =θB  

.cErγβ  It is oriented along the local axis .θ  The behavior of θB  is 

governed by β  which is studied in the next paragraph. 

The symmetric part is: 

[ ]
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aaaa

a

a

aaaa

s labik  (76) 

Expression (74) can be used in the far field region together with the noise 

tensor to compute the magnetic induction and the magnetic permeability 

.0µ  The calculation is similar to the computation of 0�  (Equation (65)). 

5.2. Energy conservation 

The aim of this section is to apply the principle of energy conservation 

to the system in rotation. The idea is to consider a first, or initial state in 

the laboratory frame where the potential is flat everywhere. We associate 

a zero energy to this state. The second, or final state, corresponds to the 

creation of potential wells of negative energy as illustrated above (Figure 

2) in the rest frame. The first and the second state should have the same 

energy [25]: the decrease of potential energy mW  is used to create the 

rotational kinetic energy ( )initial: mWWW +kk ( ) .0final =+= mWWk  

This situation is ideal in the sense that we neglect the noise. We develop 
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this idea below. 

The theory of relativity tells us that mass and field are characterized 

each by a momentum-energy 4-vector. The time component is the energy 

divided by c and the spatial components are those of the momentum. 

Momenta are null in the eigenframe and appear in the laboratory frame. 

The Lorentz transformation changes the energy term and brings 

elementary momenta associated (1) to the mass element and (2) to the 

field (Poynting vector). The difference between the new energies and the 

proper energies (which are invariants) is the kinetic energy for the mass 

and a change of the field energy as well. The energy-momentum 4-vectors 

are separately written for the mass and the field parts because there is no 

energy exchanges between both parts of the tensor [ ].ija  After 

integrations the local changes will result in global quantities which can 

be compared with experimental figures. 

The potential energy Hδ  stored in the volume element around M  

has been computed in the preceding sections (Equation (36)) in the rest 

frame of the particle where the 4-momentum density vector P4  for the 

mass and the field is: 

( ).0,0,0,4 cP Hδ=  (77) 

Applying a Lorentz transformation to this vector gives the energies and 

the momenta in the laboratory frame. The kinetic energy kdW  is the 

difference between energies in the eigenframe and the laboratory frame. 

After integration over time it writes: 
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The mass part corresponds to the well-know formula: ( )masskdW  

( ).12
0 −γ= cdm  This kinetic energy is acquired at the expense of 
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potential energy as indicated above. The principle of conservation of 

energy for the whole particle results in the equations for the mass and 

the field parts (see Equation (39)): 

( ) ( ) ( ) ,x313x 1
2

1
0

1
2

1
0

dJJJJJJd 11
′′′−γ=′′′ ∫∫

∞∞
 (79a) 

( ) ( ) ( ) .x313x 2
11

2
1

0

2
11

2
1

0
dJJJJJJJJd ′+′′′−γ=′+′′′ ∫∫

∞∞

11  (79b) 

The simplest solution to these equations is .2=γ  More generally, γ  

could be a function of x. A previous study used a Maxwell-Boltzman 

distribution for the angular velocity. However, this model gives a 

magnetic field which vanishes in the far field which contradicts the 

existence of the vacuum magnetic permeability .0µ  We have thus 

abandoned this model. 

The ideal situation which is studied above deals with a lone electron 

in a perfect vacuum with no noise, i.e., without any interaction with other 

particles. This interaction can change γ  a little bit: we will thus keep γ  

in the equations and consider it as an adjustable parameter whose exact 

value will be obtained from a comparison with experimental values. 

Let us write now the expressions for the spinning charge ,e  the 

angular momentum L  and magnetic moment µ  as functions of the 

theoretical parameters ω,, AC  and .γ  These expressions will be written 

in the geometrical space. The experimental values of Lem ,,  and µ  

should give the numerical values of the parameters. 

5.3. Spinning charge 

The density of charge ρ  has been computed in Subsection 4.2 in the 

eigenframe of the tensor. For this purpose, Lagrange’s equation was 

written for the scalar potential and the temporal derivative was shown to 
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give the charge density .ρ  However, we cannot use this expression for ρ  

in the case of the spinning electron because ρ  is not invariant in a 

coordinates change. One should write Maxwell’s equation in the form: 

ρ=Ddiv  where the notation for the charge density in the laboratory 

frame is .ρ  In this frame, the potential is expressed as ( ,, ri
AcA φγ=  

)cφγβ,0  and the elementary coordinates are given by Equations (69): 

( ).sin,,, ϕθθ= drrrdtcdui  The components of the potential derivative 

are ji uA ∂∂  and the mixed tensor can be expressed in terms of the 

components of [ ]iak  in the eigenframe: 
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(80) 

The determinant of [ ]lab
iak  being the same as that of [ ],iak  it follows that 

the derivative of the Lagrangian with respect to tc  is the minor relative 

to [ ] .1
1 laba  Lagrange’s equation gives: 
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2 cEaaaaa
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r+β+
∂

∂
γ−=  (81) 

It remains to replace the ( )ija ’s and cEr  by their expressions, simplify 

both members by tωsin  or tωcos  to have the modulus and to integrate 
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over a period of time ωπ= 2T  to obtain the electrical density .ρ  We 

recopy below the expressions of the ( )ija ’s for the even solution (from 

Equation 12): 
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The temporal derivative is: 
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The integral of the modulus over a period of time ωπ2  gives the charge 

density: 

( ( ) ).x33
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2
11127

332
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π

ωγ
−=ρ 11 JJJJJJ

c

CA
 (84) 

The total electric charge of the electron in the laboratory frame is 

obtained after replacing 11 , JJ ′  and 1J ′′  by their expressions (19) and 

integrating over the whole volume. The radial integrals are exactly 

computed: 
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and the total spinning charge is: 

( )
4

3
22

21
c

IIe ee
CA

γβ+=  

( ( [ ]))
.

4320
3Log23288180

4

322

c

CA+−β+γπ
=  (86) 

For ,2=γ  one finds: 

.1410807.0
4

3

c
e

CA
K=  (87) 

5.4. Angular momentum 

The angular momentum L  with respect to O  is computed now. It is 

obtained from the sum of the elementary contributions ( )ML  at points 

.M  It is a pseudovector in the geometrical space. The local velocity is 

oriented along .0ϕ  We keep the component θLd  which is oriented along 

the axis :0θ  

( ) ( ).0 cdmrd βγ=θL  

The other component rdL  which is oriented along the axis 0r  will give a 

null contribution after the volume integration. 

The total angular momentum is oriented along the z axis. It is the 
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sum of the projection on this axis of all elementary contributions 

.sin θθLd  It is obtained after an integration over the geometrical volume 

in the laboratory frame where the volume element is: 

( ) ( ).sin ϕθθ= drdrdrdv  (88) 

Integration gives: 

[ ]( )
,

6400
2Log76431

4

4 −π

ω
βγ=

c
z

CA
L  (89) 

where we have included the numerical value of the radial integral: 

[ ]
.

900
2Log7643

xx 2
11

0

−
=′′′= ∫

∞
dJJJIL 1  

For ,2=γ  one finds: 

.00822942.0
4

4

c
z

ω
−=

CA
KL  (90) 

5.5. Magnetic moment 

The tensor field in the fixed inertial frame of the laboratory displays a 

magnetic field, showing that the spinning electron is a little magnet. An 

elementary electric current di  is associated to each volume dv  around 

.M  This current is the quantity of charges which crosses the elementary 

surface drdr θ  during the unit of time: 

,cdrdrdi βθρ=  (91) 

and the modulus of the current density is .cdis βρ=  Its direction is along 

the axis .ϕ  One applies the definition of the differential magnetic 

moment: 

.x
2
1

2
1

θβρ
ω

=∧=µ c
c

dvjrd s  (92) 
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The component zdµ  along the z axis writes: 

.sinx
2
1

c
c

d z βρθ
ω

=µ  (93) 

Integrating over the whole volume gives the total magnetic moment: 

.sinx2
3

3

Vol
ϕθ

ω
µ=µ ∫ ddx

c
d ze  (94) 

Using expression (84) in ,zdµ  one finally obtains: 

( )
.

15360
1403

2

32225

c
e

ω

β+−γβπ
=µ

CA
 (95) 

For ,2=γ  one finds: 

.402415.0
2

3

c
e

ω
=µ

CA
K  (96) 

The calculations are performed with a mathematical software [26]. 

6. Physical Constants 

The parameters which we have introduced in the theory are: 

• the amplitude A  and the frequency ω  of the scalar potential ,cφ  

• the constant C  which relates the energy and the Lagrangian 

densities, 

• the Lorentz parameter γ  which we found to be close to 2 to obey the 

principle of energy conservation. 

We have obtained the expressions of the mass (Equation (45)), the 

electric charge (Equation (87)), the angular momentum (Equation (90)) 

and the magnetic moment (Equation (95)) as functions of these 

parameters. We group below these formula (written with 2=γ ) together 
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with the experimental values [27], written with the index exp. 

,00289.0
6

4

0
c

m
A
CK=  

kg,101093837015.9 31
exp0

−×=m  (97a) 

,1410807.0
4

3

c
e

CA
K=  

C,10602176634.1 19
exp

−×=e  (97b) 

,00822942.0
4

4

c
z

ω
−=

CA
KL  

Js.1027286.5
2

35
exp

−×==
h

zL  (97c) 

,402415.0
2

3

c
e

ω
=µ

CA
K  

T.J102847647043.9 24
exp

−×=µe  (97d) 

These expressions are used now to compute the values of the different 

theoretical parameters. 

We first compute the dimensionless Landé factor g  of the electron. 

The definition of g  is the ratio of ( ) ( ).2 0meze Lµ  For ,2=γ  one 

finds: 

.00338317.2
2 0

−=
µ

=
me

g ze L
 (98) 

This value of the Landé factor is a major result of the theory. 

The experimental value is .620023193043.2−  The difference between 

both figures is probably due to the noise, or to the particle environment 
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effect. It is interesting to note that Paul Dirac found also 2=g  and that 

the difference was computed from the properties of the vacuum in the 

standard model. The value of γ  giving the experimental figure expg  is 

the solution of the equation: 

.620023193043.2
2 exp

0
−==

µ
g

me
ze L

 (99) 

One finds 0006639663.2=γ which is very close to 2. For this value, the 

relative speed .86612.0=β  The following numbers are computed with 

this corrected value of .γ  

Solving Equation (97a) and Equation (97b) for A  and C  gives: 

( ),QLMT10497264943.2 1227 −−×=A  (100a) 

( ).QLTM1088380001.5 42237 −−−×=C  (100b) 

Dimensions of A  and C  are given in parenthesis. 

The remaining symbol to be evaluated is the normalization factor .ω  

Inserting the preceding values of A,γ  and C  in the expressions (97c) of 

zL  or (97a) of eµ  gives: .srad10423325945.4 21×=ω  It follows that 

the unit on the x axis of the figures is m777510.6 14−=ωc  which gives 

an idea of the electron size. We note that the Compton wavelength 

corresponds to an angular frequency .srad1076.7 20×=ω Kc  It is 

outside the scope of the present work to study the Compton diffusion 

process which leads to the difference between ω  and .cω  

This calculation achieves the primary objective of this theory which 

was to demonstrate that the physical constants which characterize the 

electron are not independent. The vortex model based on energy 

conservation leads to satisfying results. 
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7. Conclusion 

We have developed a theory of the electron which is based on well-

known and well-proved classical notions and principles: 

• The base paradigm is the 4-dimensional electromagnetic potential 

in Minkowski’s spacetime; 

• The second notion is the covariant derivative, or the gradient, of 

this potential which groups the 16 partial derivatives in a tensor; 

• The principles of symmetry conservation and invariance of some 

quantities belonging to the tensors in a coordinate change are applied; 

• The association of a Lagrangian density to one invariant together 

with the principle of least action allows the calculation of the mass and 

charge densities; 

• The principle of relativity and the Lorentz transformation are 

applied to describe the spinning electron in the laboratory frame; 

• The principle of energy conservation is used to find the rotation 

speed of the spinning particle; 

• The usual standard definitions of the angular momentum and the 

magnetic moment are used. 

The theory is essentially based on the study of the symmetric part 

[ ]kis  of the covariant derivative [ ] k
k xAa ii ∂∂=  of the 4-potential iA  in 

spacetime .kx  [ ]kis  can be diagonalized and is characterized by an 

eigenframe of coordinates. A relation between the derivatives of the 

scalar and the vector potential occurs in this frame. When this relation is 

associated to the conservation of the trace of [ ]isk  in a time translation, a 

Helmholtz equation results. Among its solutions, one of them is 

electrically charged and represents the electron. The tensor field is 
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obtained by replacing the potential by this solution at each point. Each 

tensor describes local properties such as the electromagnetic field. A 

Lagrangian density is associated to the determinant of [ ]isk  which allows 

the calculation of the potential energy, or the mass of the electron. The 

Lagrangian of [ ]iak  is defined in the same way and used in Lagrange’s 

equations to compute the electric charge. The spinning electron is 

studied. The principle of energy conservation is applied to find the 

particle in rotation. This makes the electron looks like a vortex with the 

same tangential speed everywhere. A Lorentz transformation of local 

coordinates from the tensor eigenframe to the laboratory frame allows us 

to find the spinning electric charge, the angular momentum and the 

magnetic moment. Comparing theoretical formulas with experimental 

figures gives the numerical values of the four parameters used in the 

equations. Neglecting noise effects, a value of the Lorentz parameter is 

found to be 2. This value leads to a Landé factor K0033.2=g  which we 

consider to be a very satisfactory result. The fundamental peculiarity of 

the theory is that it starts from local characteristics of the electron at 

each point of its structure. Integration over the whole volume leads to the 

measurable global properties. 

The different parameters which are used in the equations are (1) the 

amplitude, (2) the frequency of the basic solution, (3) the proportionality 

constant between the determinant of the tensor and the energy density 

and (4) the tangential speed of rotation, or the Lorentz factor .γ  We have 

given the equations which link these parameters to the known 

characteristics of the electron: mass, electrical charge, angular 

momentum, magnetic moment. We have found that its fundamental 

frequency of vibration is close to the Compton frequency. A complete 

coherency between theoretical symbols and measured values is obtained. 

A conclusion is that the electron structure as it is computed here fits 

reasonably the intuitive image of a rotating body with a circulating 
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current. However, it is rather a vortex than a rigid body like a top: the 

angular frequency decreases from the center to the outside of the particle. 

Its representation needs a tensor field whose local properties include 

electromagnetic and matter waves. These are sums of incoming and 

outgoing waves which extend over the whole universe. 

The electron is not a superposition of disconnected quantities: waves, 

electric and magnetic fields, mass and electrical charge. These are all 

included in ( ),iAD  the covariant derivative of the potential. A classical 

description of any experiment (like diffraction experiments) with 

electrons should thus be done with ( )iAD  as the primary tool. 

Understanding the electron structure would allow to use its properties in 

practical devices: for instance mastering its fundamental frequency would 

lead to extraordinary precise clocks. But maybe the most important 

conclusion of this theory is that it offers a new way to study the 

yoctoscopic world of elementary particles. This way is that of a “bottom-

up” approach which is different from (and complementary to) ordinary 

quantum physics which is a “top-down” theory. 
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8. Annex 

The 16 partial derivatives kxAi ∂∂  of the 4-potential ( ,, xi AcA φ=  

)zy AA ,  in spacetime ( )zyxctx i ,,,=  define the components of the 

mixed tensor ( )iAD  in the Cartesian frame: 
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The metric tensor is taken to be: 
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It follows that the covariant tensor is: 
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This tensor is divided into its symmetric and antisymmetric parts 

(Equations (1) and (2)). Elements of the first line of the symmetric part 

are: 

( )
,211 tc

c
s

∂

φ∂
=  

( )
,2

12112 ss
tc

A

x

c
s x −==

∂
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13113 ss
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c
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( )
.4

14114 ss
tc

A

z

c
s z −==

∂

∂
−

∂

φ∂
=  (101) 

[ ]kis  or [ ]isk  can be diagonalized which means that a proper time and a 

eigen-geometrical frame of coordinates exist where all elements but the 

diagonal cancel. 

Let us describe the series of transformations which will lead to a 

tensor with elements .01
4

1
3

1
2 === sss  One starts with [ ]isk  and the first 
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operation is a diagonalization of the lower bottom-right 33 ×  block of this 

tensor in the geometrical space. Only the spatial derivatives of the 

potential vector are concerned by this transformation which gives: 
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where the diagonalizing matrix M  has the form: 
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Now let us transform [ ]
�i
js  with the Lorentz operator: 
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The relative speed of the tensor with respect to the observer along the x 

axis is noted xv  in units of c and .11 2
xx v−=γ  

The transformed tensor is: 

[ ] [ ] 1ˆ −⋅⋅= x
i
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i
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Now we choose xv  to be a solution of the equation: 

( ) ( ) ,0ˆ1 2
2

1
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2 =+−+ xx vssvs  (105) 

i.e., 
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Inserting one of these values of xv  in [ ],
�i
j

s  elements of the first line 

become: 
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One notes also that this manipulation (block diagonalization followed by a 

Lorentz transformation along x) results in the multiplication of the 
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original 1
3s  and 1

4s  by .xγ  It is clear now that the same manipulation 

done on the y and then on the z axis will allow to cancel terms 1
3s  and 1

4s  

in the same way. 

After the last Lorentz transformation, the form of the tensor is such 

that its elements in the first line and the first column are null, with the 

exception of .1
1s  

Without any further developments, we will accept the theorem 

following which the tensor and the observer share the same proper time if 

the terms .04
1

3
1

2
1

1
4

1
3

1
2 ====== ssssss  Let us apply this rule to the 

tensor ( )iAD  when it is written in the spherical frame of coordinates: 
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(108) 

We have used the compressed notation for the derivatives, for instance; 

.,
r
t

r AtcA ≡∂∂  

The elements of the mixed symmetric tensor which should cancel in 

the proper time reference are: 

,0,,
1
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Adding 1
3

1
2 , ss  and 1

4s  together gives: 
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or: 

.grad
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→
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This is the first formula which is used to obtain the fundamental 

Helmholtz equation for the elementary particles. The second equation is 

obtained from the trace of [ ].iak  This trace is invariant in a coordinates 

change: 
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The expression of the divergence of the vector ( )ϕθ= AAAA r ,,  in 

spherical coordinates is: 
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and thus: 

[ ] .divTrace , Aa t
i +φ=k  (113) 

The invariance of [ ]iakTrace  in a time translation leads to the second 

formula which is used to obtain the fundamental Helmholtz equation. 


