Fundamental Journal of Mathematics and Mathematical Sciences p-ISSN: 2395-7573; e-ISSN: 2395-7581 Volume 14, Issue 1, 2020, Pages 1-15 This paper is available online at http://www.frdint.com/ Published online June 27, 2020

THE TRANSMUTED UNIFORM-EXPONENTIAL (GENERALIZED LAMBDA) DISTRIBUTION WITH APPLICATION TO WHEATON RIVER DATA

CLEMENT BOATENG AMPADU

31 Carrolton Road Boston, MA 02132-6303 USA e-mail: drampadu@hotmail.com

Abstract

The Uniform-Exponential (Generalized Lambda) distribution [1] have been shown to be practical in modeling real life data, in particular the Wheaton river data, Table 6 [1]. In the present paper, we introduce a socalled Transmuted Uniform-Exponential (Generalized Lambda) distribution, and compare its performance with the Uniform Exponential (Generalized Lambda) distribution in modeling the Wheaton river data. Some properties of the Transmuted Uniform-Exponential (Generalized Lambda) distribution are presented.

Received March 3, 2020; Accepted June 1, 2020

© 2020 Fundamental Research and Development International

Keywords and phrases: transmuted distribution, uniform distribution, exponential distribution,

generalized lambda distribution, wheaton river data.

²⁰²⁰ Mathematics Subject Classification: 62Exx.

1. Uniform Distribution

Recall from [2], the uniform distribution with parameters $-\infty < a < b < \infty$ has PDF

$$
f_{a,b}(x) = \begin{cases} \frac{1}{b-a}, & \text{if } x \in [a, b], \\ 0, & \text{if otherwise} \end{cases}
$$

and CDF

$$
F_{a,b}(x) = \begin{cases} 0, & \text{if } x < a, \\ \frac{x-a}{b-a}, & \text{if } x \in [a, b), \\ 1, & \text{if } x \ge b. \end{cases}
$$

2. Exponential Distribution

Recall from [3], the exponential distribution with parameter $\lambda > 0$ and $x \in [0, \infty)$ has PDF

$$
f_{\lambda}(x)=\lambda e^{-\lambda x}
$$

and CDF

$$
F_{\lambda}(x)=1-e^{-\lambda x}.
$$

3. Generalized Lambda Distribution

According to [1], the four-parameter generalized lambda distribution is defined in terms of its quantile function, this distribution was proposed by Ramberg and Schmeiser [4]. In particular, with parameters λ_1 , λ_2 , λ_3 , λ_4 and $0 < u < 1$, the quantile function is given by

$$
Q_{\lambda_1, \lambda_2, \lambda_3, \lambda_4}(u) = \lambda_1 + \frac{u^{\lambda_3} - (1 - u)^{\lambda_4}}{\lambda_2}.
$$

When $\lambda_1 = 0$ and $\lambda_2 = \lambda_3 = \lambda_4$, we obtain the Tukey lambda distribution [5].

4. The Uniform-Exponential (Generalized Lambda) Family of Distributions

Recall from [1], the CDF of the Uniform-Exponential (Generalized Lambda) Family of Distributions, for $x \ge 0$; θ , λ_3 , $\lambda_4 > 0$, is given by

Figure 1. The graph of $F_{0.1134, 5.3192, 3.0133}(x)$.

and the PDF, for $x \ge 0$; θ , λ_3 , $\lambda_4 > 0$, is given by

$$
f_{\theta,\lambda_3,\lambda_4}(x) = \frac{1}{2} \theta e^{-\theta x} \Big[\lambda_3 (1 - e^{-\theta x})^{\lambda_3 - 1} + \lambda_4 (e^{-\theta x})^{\lambda_4 - 1} \Big].
$$

Figure 2. The graph of $f_{0.1134, 5.3192, 3.0133}(x)$.

5. The Transmuted Uniform-Exponential (Generalized Lambda) Family of Distributions

Definition 5.1 (Owoloko et al. [6]). A random variable X is said to have a transmuted distribution if its PDF and CDF are, respectively, given by

$$
f(x) = g(x)[1 + \xi - 2\xi G(x)],
$$

$$
F(x) = (1 + \xi)G(x) - \xi[G(x)]^{2},
$$

where $x > 0$, $-1 \le \xi \le 1$ and the baseline distribution has PDF and CDF, respectively, given by, $g(x)$ and $G(x)$.

Definition 5.2. A random variable *X* is said to have a transmuted uniformexponential (generalized lambda) distribution if its PDF and CDF are, respectively, given by

$$
f_{\theta, \lambda_3, \lambda_4, \xi}(x) = g_{\theta, \lambda_3, \lambda_4}(x) [1 + \xi - 2\xi G_{\theta, \lambda_3, \lambda_4}(x)],
$$

$$
F_{\theta, \lambda_3, \lambda_4, \xi}(x) = (1 + \xi) G_{\theta, \lambda_3, \lambda_4}(x) - \xi [G_{\theta, \lambda_3, \lambda_4}(x)]^2,
$$

where $x, \theta, \lambda_3, \lambda_4 > 0, -1 \leq \xi \leq 1$ and

$$
G_{\theta,\lambda_3,\lambda_4}(x) = \frac{1}{2} \left[1 + (1 - e^{-\theta x})^{\lambda_3} - (e^{-\theta x})^{\lambda_4} \right]
$$

and

$$
g_{\theta,\lambda_3,\lambda_4}(x) = \frac{1}{2} \theta e^{-\theta x} \left[\lambda_3 (1 - e^{-\theta x})^{\lambda_3 - 1} + \lambda_4 (e^{-\theta x})^{\lambda_4 - 1} \right]
$$

Remark 5.3. Henceforth a random variable *X* having the transmuted uniformexponential (generalized lambda) distribution will be denoted as *X* ~ $\mathit{TUEGL}(θ, λ_3, λ_4, ξ).$

Figure 3. The CDF of *TUEGL* (0.1134, 5.3192, 3.0133, −0.065271).

Figure 4. The PDF of *TUEGL* (0.1134, 5.3192, 3.0133, −0.065271).

6. Application to Wheaton River Data

6.1. The maximum likelihoood estimates in the TUEGL distribution

From Definition 5.2, the likelihood function in the TUEGL distribution is given by

$$
L = \prod_{i=1}^{n} \{g_{\theta, \lambda_3, \lambda_4}(x_i) [1 + \xi - 2\xi G_{\theta, \lambda_3, \lambda_4}(x_i)] \},
$$

where

$$
G_{\theta,\lambda_3,\lambda_4}(x_i) = \frac{1}{2} \left[1 + (1 - e^{-\theta x_i})^{\lambda_3} - (e^{-\theta x_i})^{\lambda_4} \right]
$$

and

$$
g_{\theta,\lambda_3,\lambda_4}(x_i) = \frac{1}{2} \theta e^{-\theta x_i} \left[\lambda_3 (1 - e^{-\theta x_i})^{\lambda_3 - 1} + \lambda_4 (e^{-\theta x_i})^{\lambda_4 - 1} \right].
$$

The estimates in the TUEGL distribution are obtained by solving the following system of equations for θ, λ_3 , λ_4 , ξ

$$
\frac{\partial \log[L]}{\partial \theta} = 0,
$$

$$
\frac{\partial \log[L]}{\partial \lambda_3} = 0,
$$

$$
\frac{\partial \log[L]}{\partial \lambda_4} = 0,
$$

$$
\frac{\partial \log[L]}{\partial \xi} = 0.
$$

6.2. Comparison with empirical distribution and histogram

By modifying the symbolic MLE procedure described in [7] and using Mathematica's *Find Root* procedure, we found upon taking x_i to be the Wheaton river data, Table 6 [1] and using appropriate initial conditions in *Find Root* that the MLE in the TUEGL distribution are given by

 $(\hat{\theta}, \hat{\lambda}_3, \hat{\lambda}_4, \hat{\xi}) = (0.1134, 5.3192, 3.0133, -0.065271).$

On the other hand the MLE for θ , λ_3 , λ_4 in the Uniform-Exponential (Generalized Lambda) family of distributions are recorded in Table 7 [1]. Thus we have the following

Figure 5. The CDF of *TUEGL* (0.1134, 5.3192, 3.0133, −0.065271) (green) and $F_{0.1134, 5.3192, 3.0133}(x)$ (red) fitted to the empirical distribution (black) of Table 6 [1].

Figure 6. The PDF of *TUEGL* (0.1134, 5.3192, 3.0133, −0.065271) (green) and $f_{0.1134, 5.3192, 3.0133}(x)$ (red) fitted to the histogram of Table 6 [1].

6.3. General observation

From the figures in the previous section, we see the *TUEGL* (0.1134, 5.3192, 3.0133, -0.065271). distribution is equivalent to the UEGL distribution with parameters

$$
(\hat{\theta}, \hat{\lambda}_3, \hat{\lambda}_4) = (0.1134, 5.3192, 3.0133).
$$

In particular, both distributions would be suitable for data that are right skewed with long tail.

7. Some Properties of TUEGL

7.1. The survival function

Theorem 7.1. *The survival function of the TUEGL*(θ , λ_3 , λ_4 , ξ) *is given by*

$$
S_{\theta,\lambda_3,\lambda_4,\xi}(x) = 1 - F_{\theta,\lambda_3,\lambda_4,\xi}(x),
$$

where

$$
F_{\theta, \lambda_3, \lambda_4, \xi}(x) = (1 + \xi) G_{\theta, \lambda_3, \lambda_4}(x) - \xi [G_{\theta, \lambda_3, \lambda_4}(x)]^2
$$

with $x, \theta, \lambda_3, \lambda_4 > 0, -1 \le \xi \le 1$ *and*

$$
G_{\theta,\lambda_3,\lambda_4}(x) = \frac{1}{2} \left[1 + (1 - e^{-\theta x})^{\lambda_3} - (e^{-\theta x})^{\lambda_4} \right]
$$

and

Figure 7. The survival function of *TUEGL* (0.1134, 5.3192, 3.0133, -0.065271).

7.2. The hazard rate function

Theorem 7.2. *The hazard rate function of the TUEGL*(θ , λ ₃, λ ₄, ξ) *is given by*

$$
H_{\theta,\lambda_3,\lambda_4,\xi}(x)=\frac{f_{\theta,\lambda_3,\lambda_4,\xi}(x)}{1-F_{\theta,\lambda_3,\lambda_4,\xi}(x)},
$$

where

$$
f_{\theta,\lambda_3,\lambda_4,\xi}(x) = g_{\theta,\lambda_3,\lambda_4}(x)[1 + \xi - 2\xi G_{\theta,\lambda_3,\lambda_4}(x)],
$$

$$
F_{\theta, \lambda_3, \lambda_4, \xi}(x) = (1 + \xi) G_{\theta, \lambda_3, \lambda_4}(x) - \xi [G_{\theta, \lambda_3, \lambda_4}(x)]^2
$$

with x , θ , λ_3 , $\lambda_4 > 0$, $-1 \le \xi \le 1$ *and*

$$
G_{\theta,\,\lambda_3,\,\lambda_4}(x) = \frac{1}{2} \Big[1 + (1 - e^{-\theta x})^{\lambda_3} - (e^{-\theta x})^{\lambda_4} \Big],
$$

and

Figure 8. The hazard rate function of *TUEGL* (0.1134, 5.3192, 3.0133, -0.065271 .

7.3. The *r***th moment of** $TUEGL(0, 2, 1, 0)$

Theorem 7.3. *The rth moment of TUEGL* $(\theta, 2, 1, 0)$ *is given by*

$$
\mu_r = 2^{-1-r}(-1+3\cdot 2^r)\theta^{-r}\Gamma(1+r),
$$

 $where \ \theta > 0, \ r = 1, 2, 3, \cdots, \ and \ \Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt.$ $\int_0^\infty t^{z-1} e^{-t} dt$

Proof. It is obtained by evaluating the following integral

$$
\mu_r = \int_0^\infty x^r \frac{1}{2} \theta e^{-2\theta x} (-2 + 3e^{\theta x}) dx.
$$

7.4. The moment generating function of $\text{TUEGL}(0, 2, 1, 0)$

Theorem 7.4. *Assuming* $X \sim \text{TUEGL}(0, 2, 1, 0)$, then the moment generating *function is given by*

$$
M_X(t) = \sum_{r=0}^{\infty} \frac{t^r}{r!} 2^{-1-r} (-1 + 3 \cdot 2^r) \theta^{-r} \Gamma(1+r),
$$

where $\theta > 0$, and $\Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt$. $\int_0^\infty t^{z-1} e^{-t} dt$

Proof. Given μ_r from Theorem 7.3, and the fact that $f_{\theta, 2, 1, 0}(x) = \frac{1}{2} \theta e^{-2\theta x}$ 1 $(-2 + 3e^{\theta x})$, we deduce the following

$$
M_X(t) = E[e^{tx}]
$$

= $\int_0^{\infty} e^{tx} f_{\theta, 2, 1, 0}(x) dx$
= $\int_0^{\infty} \left\{ 1 + tx + \frac{(tx)^2}{2!} + \cdots \right\} f_{\theta, 2, 1, 0}(x) dx$
= $\int_0^{\infty} \sum_{r=0}^{\infty} \frac{t^r}{r!} x^r f_{\theta, 2, 1, 0}(x) dx$
= $\sum_{r=0}^{\infty} \frac{t^r}{r!} \mu_r$

and the result follows.

7.5. Order statistics of the $TUEGL(θ, λ₃, λ₄, ξ)$ distribution

First we recall the following, for example, see [8]:

Definition 7.5. If $X_{(1)}$, $X_{(2)}$, \cdots , $X_{(n)}$ denotes the order statistics of a random sample $X_1, X_2, \cdots X_n$ from a continuous population with CDF $F_X(x)$ and PDF $f_X(x)$, then the PDF of $X_{(j)}$ is given by

$$
f_{X(j)}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) [F_X(x)]^{j-1} [1 - F_X(x)]^{n-j}.
$$

Thus from the above, it follows that we have the following:

Theorem 7.6. *The PDF of the jth order TUEGL random variable* $X_{(j)}$ *is given*

by

$$
k_{X_{(j)}}(x;\,\theta,\,\lambda_3,\,\lambda_4,\,\xi)
$$

$$
= \frac{n!}{(j-1)!(n-j)!} f_{\theta,\lambda_3,\lambda_4,\xi}(x) [F_{\theta,\lambda_3,\lambda_4,\xi}(x)]^{j-1} [1 - F_{\theta,\lambda_3,\lambda_4,\xi}(x)]^{n-j},
$$

where

$$
f_{\theta, \lambda_3, \lambda_4, \xi}(x) = g_{\theta, \lambda_3, \lambda_4}(x) [1 + \xi - 2\xi G_{\theta, \lambda_3, \lambda_4}(x)],
$$

$$
F_{\theta, \lambda_3, \lambda_4, \xi}(x) = (1 + \xi) G_{\theta, \lambda_3, \lambda_4}(x) - \xi [G_{\theta, \lambda_3, \lambda_4}(x)]^2,
$$

where $x, \theta, \lambda_3, \lambda_4 > 0, -1 \leq \xi \leq 1$ *and*

$$
G_{\theta,\,\lambda_3,\,\lambda_4}(x) = \frac{1}{2} \left[1 + (1 - e^{-\theta x})^{\lambda_3} - (e^{-\theta x})^{\lambda_4} \right]
$$

and

$$
g_{\theta,\lambda_3,\lambda_4}(x) = \frac{1}{2} \theta e^{-\theta x} \Big[\lambda_3 (1 - e^{-\theta x})^{\lambda_3 - 1} + \lambda_4 (e^{-\theta x})^{\lambda_4 - 1} \Big].
$$

From the above theorem we have the following:

Corollary 7.7. The PDF of the 1st order TUEGL random variable $X_{(1)}$ is given

by

$$
k_{X_{(1)}}(x; \theta, \lambda_3, \lambda_4, \xi) = n f_{\theta, \lambda_3, \lambda_4, \xi}(x) [1 - F_{\theta, \lambda_3, \lambda_4, \xi}(x)]^{n-1},
$$

where

$$
f_{\theta, \lambda_3, \lambda_4, \xi}(x) = g_{\theta, \lambda_3, \lambda_4}(x) [1 + \xi - 2\xi G_{\theta, \lambda_3, \lambda_4}(x)],
$$

$$
F_{\theta, \lambda_3, \lambda_4, \xi}(x) = (1 + \xi) G_{\theta, \lambda_3, \lambda_4}(x) - \xi [G_{\theta, \lambda_3, \lambda_4}(x)]^2,
$$

where $x, \theta, \lambda_3, \lambda_4 > 0, -1 \leq \xi \leq 1$ *and*

$$
G_{\theta, \lambda_3, \lambda_4}(x) = \frac{1}{2} \left[1 + (1 - e^{-\theta x})^{\lambda_3} - (e^{-\theta x})^{\lambda_4} \right]
$$

and

$$
g_{\theta,\lambda_3,\lambda_4}(x) = \frac{1}{2} \theta e^{-\theta x} \left[\lambda_3 (1 - e^{-\theta x})^{\lambda_3 - 1} + \lambda_4 (e^{-\theta x})^{\lambda_4 - 1} \right].
$$

Corollary 7.8. *The PDF of the nth order TUEGL random variable* $X_{(n)}$ *is*

given by

$$
k_{X(n)}(x; \theta, \lambda_3, \lambda_4, \xi) = nf_{\theta, \lambda_3, \lambda_4, \xi}(x)[F_{\theta, \lambda_3, \lambda_4, \xi}(x)]^{n-1},
$$

where

$$
f_{\theta, \lambda_3, \lambda_4, \xi}(x) = g_{\theta, \lambda_3, \lambda_4}(x) [1 + \xi - 2\xi G_{\theta, \lambda_3, \lambda_4}(x)],
$$

$$
F_{\theta, \lambda_3, \lambda_4, \xi}(x) = (1 + \xi) G_{\theta, \lambda_3, \lambda_4}(x) - \xi [G_{\theta, \lambda_3, \lambda_4}(x)]^2,
$$

where $x, \theta, \lambda_3, \lambda_4 > 0, -1 \leq \xi \leq 1$ *and*

$$
G_{\theta,\lambda_3,\lambda_4}(x) = \frac{1}{2} \left[1 + (1 - e^{-\theta x})^{\lambda_3} - (e^{-\theta x})^{\lambda_4} \right]
$$

and

$$
g_{\theta,\lambda_3,\lambda_4}(x) = \frac{1}{2} \theta e^{-\theta x} \Big[\lambda_3 (1 - e^{-\theta x})^{\lambda_3 - 1} + \lambda_4 (e^{-\theta x})^{\lambda_4 - 1} \Big].
$$

7.6. Random number generation from $\text{TUEGL}(0, 2, 1, 0)$

Theorem 7.9. Random numbers from $\text{TUEGL}(0, 2, 1, 0)$ can be obtained from

$$
\frac{Log\left[\frac{-3+\sqrt{1+8u}}{4(-1+u)}\right]}{\theta},
$$

where $\theta > 0$ *and* $u \sim U(0, 1)$.

Proof. It follows from solving the following equation for *y*, where $u \sim U(0, 1)$

$$
\frac{1}{2}(1-e^{-\theta y}+(1-e^{-\theta y})^2)=u.
$$

References

- [1] Mahmoud Aldeni, Carl Lee and Felix Famoye, Families of distributions arising from the quantile of generalized lambda distribution, J. Stat. Distrib. App. 4 (2017), 25.
- [2] Wikipedia contributors, Uniform distribution (continuous), Wikipedia, The Free Encyclopedia, 13 Oct. 2017, Web 12 Jan. 2018.
- [3] Wikipedia contributors, Exponential distribution, Wikipedia, The Free Encyclopedia, 8 Jan. 2018, Web 12 Jan. 2018.
- [4] J. S. Ramberg and B. W. Schmeiser, An approximate method for generating asymmetric random variables, Communications of the ACM 17(2) (1974), 78-82.
- [5] J. W. Tukey, The practical relationship between the common transformations of percentages of counts and of amounts, Technical Report 36, Princeton University, Statistical Techniques Research Group, 1960.
- [6] Enahoro A. Owoloko, Pelumi E. Oguntunde and Adebowale O. Adejumo,

Performance rating of the transmuted exponential distribution: an analytical approach, Springer Plus 4 (2015), 818.

- [7] Colin Rose and Murray D. Smith, Symbolic maximum likelihood estimation with mathematica, The Statistician 49(2) (2000), 229-240.
- [8] Gokarna R. Aryal and Chris P. Tsokos, Transmuted Weibull distribution: a generalization of the Weibull probability distribution, Euro. J. Pure Appl. Math. 4(2) (2011), 89-102.