Fundamental Journal of Mathematics and Mathematical Sciences p-ISSN: 2395-7573; e-ISSN: 2395-7581 Volume 15, Issue 1, 2021, Pages 1-8 This paper is available online at http://www.frdint.com/ Published online May 21, 2021

THE INTERPOLATIVE BERINDE WEAK MAPPING THEOREM IN CONTROLLED METRIC TYPE SPACES

CLEMENT BOATENG AMPADU

31 Carrolton Road Boston, MA 02132-6303 USA e-mail: drampadu@hotmail.com

Abstract

Motivated by [1], we prove the interpolative Berinde weak mapping theorem of [2] in the setting of controlled metric type spaces.

1. Introduction and Preliminaries

Definition 1.1 ([3]). Let *X* be a nonempty set and θ : $X \times X \mapsto [1, \infty)$. An extended *b*-metric is a function $d : X \times X \mapsto [0, \infty)$ such that for all $x, y, z \in X$:

- (a) $d(x, y) = 0$ iff $x = y$,
- (b) $d(x, y) = d(y, x)$,
- (c) $d(x, y) \leq \theta(x, y) [d(x, z) + d(z, y)].$

Keywords and phrases: fixed point, interpolative Berinde weak mapping, controlled metric type spaces.

2020 Mathematics Subject Classification: 47H10, 54H25.

Received October 8, 2020; Accepted March 9, 2021

© 2021 Fundamental Research and Development International

Moreover, we say (X, d) is an extended *b*-metric space.

Definition 1.2 ([1]). Let *X* be a nonempty set, and $\alpha : X \times X \mapsto [1, \infty)$. The function $d: X \times X \mapsto [0, \infty)$ is called a controlled metric type, if for all *x*, *y*, *z* ∈ *X* :

(a) $d(x, y) = 0$ iff $x = y$, (b) $d(x, y) = d(y, x)$, (c) $d(x, y) \leq \alpha(x, z)d(x, z) + \alpha(z, y)d(z, y)$.

Moreover, we say (X, d) is a controlled metric type space.

Example 1.3 ([1]). Take $X = \{0, 1, 2\}$. Consider the function *d* given as

$$
d(0, 0) = d(1, 1) = d(2, 2) = 0,
$$

\n
$$
d(0, 1) = d(1, 0) = 1,
$$

\n
$$
d(0, 2) = d(2, 0) = \frac{1}{2},
$$

\n
$$
d(1, 2) = d(2, 1) = \frac{2}{5}.
$$

Take α : $X \times X \mapsto [1, \infty)$ to be symmetric and defined as

$$
\alpha(0, 0) = \alpha(1, 1) = \alpha(2, 2) = \alpha(0, 2) = 1,
$$

$$
\alpha(1, 2) = \frac{5}{4}, \alpha(0, 1) = \frac{11}{10}.
$$

It follows that *d* is a controlled metric type space, but is not an extended *b*-metric space, since

$$
d(0, 1) = 1 > \frac{99}{100} = \alpha(0, 1) [d(0, 2) + d(2, 1)].
$$

Definition 1.4 ([1]). Let (X, d) be a controlled metric type space, and $\{x_n\}_{n\geq 0}$ be a sequence in *X*.

(a) We say that the sequence $\{x_n\}$ converges to some $x \in X$, if, for every $\epsilon > 0$, there exists $N = N(\epsilon) \in \mathbb{N}$ such that $d(x_n, x) < \epsilon$ for all $n \ge N$. In this case we write $\lim_{n \to \infty} x_n = x$.

(b) We say that the sequence $\{x_n\}$ is Cauchy, if for every $\epsilon > 0$, there exists $N = N(\epsilon) \in \mathbb{N}$ such that $d(x_m, x_n) < \epsilon$ for all $m, n \ge N$.

(c) The controlled metric type space (X, d) is called complete, if every Cauchy sequence is convergent.

Definition 1.5 ([1]). Let (X, d) be a controlled metric type space. Let $x \in X$ and $\epsilon > 0$.

(a) The open ball $B(x; \epsilon)$ is

$$
B(x; \epsilon) = \{ y \in X : d(x, y) < \epsilon \}.
$$

(b) The mapping $T: X \mapsto X$ is said to be continuous at $x \in X$, if for all $\epsilon > 0$, there exists $\delta > 0$ such that

$$
T(B(x,\,\delta))\subseteq B(Tx,\,\epsilon).
$$

Remark 1.6 ([1])**.** If *T* is continuous at *x* in the controlled metruc type space (X, d) , then $x_n \to x$ implies that $Tx_n \to Tx$ as $n \to \infty$.

2. Main Result

Theorem 2.1. *Let* (*X* , *d*) *be a complete controlled metric type space. Let* $T: X \mapsto X$ *be a mapping such that*

$$
d(Tx, Ty) \leq \lambda d(x, y)^{\frac{1}{2}} d(x, Tx)^{\frac{1}{2}}
$$

for all x, y \in *X, x, y* $\notin Fix(T) = \{x \in X : Tx = x\}$, $\lambda \in (0, 1)$. *For* $x_0 \in X$, take

 $x_n = T^n x_0$. Suppose that

$$
\sup_{m\geq 1}\lim_{i\to\infty}\frac{\alpha(x_{i+1},x_{i+2})}{\alpha(x_{i+1},x_m)}<\frac{1}{\lambda}.
$$

In addition, assume that for every $x \in X$ *, we have*

$$
\lim_{n \to \infty} \alpha(x_n, x) \text{ and } \lim_{n \to \infty} \alpha(x, x_n) \text{ exist and are finite.}
$$

Then the fixed point of T exist.

Proof. Consider the sequence $\{x_n = T^n x_0\}$, and observe we have the following

$$
d(x_n, x_{n+1}) = d(T^n x_0, T^{n+1} x_0)
$$

= $d(T(T^{n-1} x_0), T(T^n x_0))$
= $d(Tx_{n-1}, Tx_n)$
 $\leq \lambda d(x_{n-1}, x_n)^{\frac{1}{2}} d(x_{n-1}, Tx_{n-1})^{\frac{1}{2}}$
= $\lambda d(x_{n-1}, x_n)^{\frac{1}{2}} d(x_{n-1}, x_n)^{\frac{1}{2}}$
= $\lambda d(x_{n-1}, x_n)$.

Also

$$
d(x_{n+1}, x_{n+2}) = d(Tx_n, Tx_{n+1})
$$

\n
$$
\leq \lambda d(x_n, x_{n+1})^{\frac{1}{2}} d(x_n, Tx_n)^{\frac{1}{2}}
$$

\n
$$
= \lambda d(x_n, x_{n+1})^{\frac{1}{2}} d(x_n, x_{n+1})^{\frac{1}{2}}
$$

\n
$$
= \lambda d(x_n, x_{n+1})
$$

\n
$$
\leq \lambda^2 d(x_{n-1}, x_n).
$$

The two chain of inequalities immediately above implies $d(x_1, x_2) \leq \lambda d(x_0, x_1)$ and $d(x_2, x_3) \le \lambda^2 d(x_0, x_1)$. By induction we have

$$
d(x_n, x_{n+1}) \leq \lambda^n d(x_0, x_1)
$$

for all $N \in \mathbb{N}$. Now let $n, m \in \mathbb{N}$ with $n < m$, using the fact that $\alpha(x, y) \ge 1$, observe we have the following

$$
d(x_n, x_m) \leq \alpha(x_n, x_{n+1})d(x_n, x_{n+1}) + \alpha(x_{n+1}, x_m)d(x_{n+1}, x_m)
$$

\n
$$
\leq \alpha(x_n, x_{n+1})d(x_n, x_{n+1}) + \alpha(x_{n+1}, x_m)\alpha(x_{n+1}, x_{n+2})d(x_{n+1}, x_{n+2})
$$

\n
$$
+ \alpha(x_{n+1}, x_m)\alpha(x_{n+2}, x_m)d(x_{n+2}, x_m)
$$

\n
$$
\leq \alpha(x_n, x_{n+1})d(x_n, x_{n+1}) + \alpha(x_{n+1}, x_m)\alpha(x_{n+1}, x_{n+2})d(x_{n+1}, x_{n+2})
$$

\n
$$
+ \alpha(x_{n+1}, x_m)\alpha(x_{n+2}, x_m)\alpha(x_{n+2}, x_{n+3})d(x_{n+2}, x_{n+3})
$$

\n
$$
+ \alpha(x_{n-1}, x_m)\alpha(x_{n+2}, x_m)\alpha(x_{n+3}, x_m)d(x_{n+3}, x_m)
$$

\n
$$
\leq \dots
$$

$$
\leq \alpha(x_n, x_{n+1})d(x_n, x_{n+1}) + \sum_{i=n+1}^{m-2} \left(\prod_{j=n+1}^{i} \alpha(x_j, x_m) \right) \alpha(x_i, x_{i+1})d(x_i, x_{i+1})
$$

+
$$
\prod_{k=n+1}^{m-1} \alpha(x_k, x_m) d(x_{m-1}, x_m)
$$

$$
\leq \alpha(x_n, x_{n+1})\lambda^n d(x_0, x_1) + \sum_{i=n+1}^{m-2} \left(\prod_{j=n+1}^{i} \alpha(x_j, x_m) \right) \alpha(x_i, x_{i+1})\lambda^i d(x_0, x_1)
$$

+
$$
\prod_{k=n+1}^{m-1} \alpha(x_k, x_m) \lambda^{m-1} d(x_0, x_1)
$$

$$
\leq \alpha(x_n, x_{n+1})\lambda^n d(x_0, x_1) + \sum_{i=n+1}^{m-2} \left(\prod_{j=n+1}^{i} \alpha(x_j, x_m) \right) \alpha(x_i, x_{i+1})\lambda^i d(x_0, x_1)
$$

+
$$
\prod_{k=n+1}^{m-1} \alpha(x_k, x_m) \lambda^{m-1} \alpha(x_{m-1}, x_m) d(x_0, x_1)
$$

= $\alpha(x_n, x_{n+1}) \lambda^n d(x_0, x_1) + \sum_{i=n+1}^{m-1} \left(\prod_{j=n+1}^{i} \alpha(x_j, x_m) \right) \alpha(x_i, x_{i+1}) \lambda^i d(x_0, x_1)$
 $\leq \alpha(x_n, x_{n+1}) \lambda^n d(x_0, x_1) + \sum_{i=n+1}^{m-1} \left(\prod_{j=0}^{i} \alpha(x_j, x_m) \right) \alpha(x_i, x_{i+1}) \lambda^i d(x_0, x_1).$

Put

$$
S_p = \sum_{i=0}^p \left(\prod_{j=0}^i \alpha(x_j, x_m) \right) \alpha(x_i, x_{i+1}) k^i.
$$

It follows we have

$$
d(x_n, x_m) \le d(x_0, x_1) \left[k^n \alpha(x_n, x_{n+1}) + (S_{m-1} - S_n) \right].
$$

Since

$$
\sup_{m\geq 1}\lim_{i\to\infty}\frac{\alpha(x_{i+1},x_{i+2})}{\alpha(x_{i+1},x_m)}<\frac{1}{\lambda},
$$

then by the ratio test, $\lim_{n\to\infty} S_n$ exists, and hence the real sequence $\{S_n\}$ is Cauchy. Now taking limits in the inequality below

$$
d(x_n, x_m) \le d(x_0, x_1) \left[k^n \alpha(x_n, x_{n+1}) + (S_{m-1} - S_n) \right],
$$

we deduce that

$$
\lim_{n,m\to\infty} d(x_n, x_m) = 0.
$$

So $\{x_n\}$ is Cauchy in the controlled metric type space (X, d) . Since (X, d) is complete, $\{x_n\}$ converges to some $u \in X$. We show *u* is a fixed point of *T*. By

using the controlled triangle inequality, we deduce the following

$$
d(u, x_{n+1}) \le \alpha(u, x_n) d(u, x_n) + \alpha(x_n, x_{n+1}) d(x_n, x_{n+1}).
$$

Since $\sup_{m\geq 1} \lim_{i\to\infty} \frac{\alpha(x_{i+1}, x_{i+2})}{\alpha(x_{i+1}, x_m)} < \frac{1}{\lambda}, \lim_{n\to\infty} \alpha(x_n, x)$ x_{i+1} , x $\overline{x_{n+1}, x_m}$ $\leq \overline{\lambda}$, $\lim_{n \to \infty} \alpha(x_n)$ $\lim_{n\geq 1}$ $\lim_{i\to\infty}$ $\frac{\alpha(x_{i+1}, x_{i+2})}{\alpha(x_{i+1}, x_{i+1})} < \frac{1}{\lambda}$, $\lim_{n\to\infty}$ $\alpha(x_n, x_n)$, $\sup_{m\geq 1} \lim_{i\to\infty} \frac{\alpha(x_{i+1},\alpha)}{x_{i+1}}$ 1 $\lim_{i\to\infty} \frac{\alpha(x_{i+1},x_{i+2})}{\alpha(x_{i+1},x_m)} < \frac{1}{\lambda}, \lim_{n\to\infty} \alpha$ α $\frac{1}{x+1}, \frac{x}{m}$ $\left(\frac{x}{\lambda}, \frac{\min_{n \to \infty}}{\lambda}\right)$ $\lim_{n \to \infty} \frac{\alpha(x_{i+1}, x_{i+2})}{\alpha(x_{i+1}, x_i)} < \frac{1}{\lambda}, \lim_{n \to \infty} \alpha(x_n, x)$ and $\lim_{n \to \infty} \alpha(x, x_n)$

exist and are finite, and $\{x_n\}$ is Cauchy, we deduce the following

$$
\lim_{n\to\infty}d(u,\,x_{n+1})=0.
$$

Using the controlled triangle inequality again we deduce the following

$$
d(u, Tu) \le \alpha(u, x_{n+1})d(u, x_{n+1}) + \alpha(x_{n+1}, Tu)d(x_{n+1}, Tu)
$$

\n
$$
\le \alpha(u, x_{n+1})d(u, x_{n+1}) + \lambda\alpha(x_{n+1}, Tu)d(x_n, u)^{\frac{1}{2}}d(x_n, Tx_n)^{\frac{1}{2}}
$$

\n
$$
= \alpha(u, x_{n+1})d(u, x_{n+1}) + \lambda\alpha(x_{n+1}, Tu)d(x_n, u)^{\frac{1}{2}}d(x_n, x_{n+1})^{\frac{1}{2}}.
$$

Since $\lim_{n\to\infty} \alpha(x_n, x)$ and $\lim_{n\to\infty} \alpha(x, x_n)$ exist and are finite, and $\lim_{n\to\infty} d$ $(u, x_{n+1}) = 0$, if we take limits in the above inequality as $n \to \infty$, we deduce $d(u, Tu) = 0$, that is $u = Tu$, and the fixed point exists.

3. Open Problem

We begin with the following

Definition 3.1 ([1]). Let $T : X \mapsto X$. For some $x_0 \in X$, let $O(x_0) = \{x_0, x_0\}$ Tx_0, T^2x_0, \dots be the orbit of x_0 . A function $H: X \mapsto \mathbb{R}$ is said to be *T*-orbitally lower semi-continuous at $v \in X$, if for $\{x_n\} \subset O(x_0)$ such that $x_n \to v$, we have

$$
H(v) \le \lim_{n \to \infty} \inf H(x_n).
$$

As a consequence of Theorem 2.1, we have the following

Conjecture 3.2. Let (X, d) be a complete controlled metric type space. Let $T: X \mapsto X$ be a mapping such that

$$
d(Tz, T^2z) \leq \lambda d(z, Tz)^{\frac{1}{2}} d(z, Tz)^{\frac{1}{2}} = \lambda d(z, Tz)
$$

for all $z \in O(x_0)$, $z \notin Fix(T)$, $\lambda \in (0, 1)$. Take $x_n = T^n x_0$. Suppose that

$$
\sup_{m\geq 1}\lim_{i\to\infty}\frac{\alpha(x_{i+1},x_{i+2})}{\alpha(x_{i+1},x_m)}<\frac{1}{\lambda}.
$$

Then $x_n \to u \in X$ (as $n \to \infty$). Moreover, such *u* verifies $Tu = u$ iff the functional $x \to d(x, Tx)$ is *T*-orbitally lower semi-continuous at *u*.

References

- [1] Nabil Mlaiki, Hassen Aydi, Nizar Souayah and Thabet Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics 6 (2018), 194.
- [2] Clement Boateng Ampadu, Some fixed point theory results for the interpolative-Berinde weak operator, Earthline Journal of Mathematical Sciences 4(2) (2020), 253- 271.
- [3] T. Kamran, M. Samreen and Q. Ul Ain, A generalization of *b*-metric space and some fixed point theorems, Mathematics 5 (2017), 1-7.