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Abstract 

In this paper, we formulate and investigate the stability of the error system 

which guarantees the synchronization for a class of the stochastic Lotka-

Volterra system. Different from the existing models, an observer for the 

considered Lotka-Volterra system in this paper is modeled with age-

structured and without the restriction of local Lipschitz condition. Some 

synchronization criteria are derived and these criteria are convenient to be 
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used for concision. Finally, a numerical example is provided to illustrate 

the effectiveness of the method proposed in this paper. 

1. Introduction 

The nonlinear age-dependent Lotka-Volterra population dynamic can be written 

in the following form [1-3]: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) [ ]

( ) ( ) [ ]















=

β=

×=λ+µ−=
∂

∂
+

∂

∂

∫

∑
=

,,0in,0,

,,0in,,,,0

,,0,0in,,,,

0

1

2

1

Aapap

Tdataptamttp

TAQptpptapatf
a

p

t

p

ii

i

a

a
iii

n

j

ijijii
ii

(1.1) 

where ( )tapp ii ,=  is the density of ith population of age a at time ( ) =tpt j;  

( ) ( )∫ µ
A

j tadatap
0

,;,  denotes the average mortality of population; ( )tiβ  denotes 

the average fertility of ith population; ( )tami ,  is the ratio of females in ith 

population; ( )api0  is the initial age distribution of ith population; A is the life 

expectancy, .0 +∞<< A  Here, without loss of generality, we assume that the n 

populations have the same life expectancy. ( )ipatf ,,  denotes influence of external 

environment for population system, such as emigration and earthquake and so on. 

The effects of external environment has the deterministic and random parts which 

depend on at,  and .ip  

In the past decades, much progress on system (1.1) has been made. For example, 

authors in [1] proved the existence and uniqueness of positive solutions for a kind of 

Lotka-Volterra system by using sub-supersolution method. In view of [2, 3], we 

know that the system (1.1) has a unique nonnegative solution. 

In the present investigation, the random behavior of the birth-death process is 

carefully incorporated into the continuous-time age-structured population equations 

to obtain a system of stochastic differential equations that model age-structured 

population dynamics. This age-structured population model is of theoretical interest. 



SYNCHRONIZATION OF THE AGE-DEPENDENT … 

 

71 

However, an application of the stochastic age-structured model is to study how age-

structured influences estimated persistence time of a population where extinction is 

influenced by random fluctuations in the birth-death process. We also note that 

ecosystems in the real world are continuously distributes by unpredictable forces 

which can result in changes in the biological parameters such as survival rates. In 

ecology, we know that the practical question of interest is just whether or not an 

ecosystem can withstand those unpredictable disturbances which persist for a finite 

period of time. Therefore it is worth pointing out that parameter uncertainties, noises 

are ubiquitous in both nature and man-made systems, and the stochastic effects on 

population systems have drawn particular attention. Hence, the effects of the 

stochastic environmental noise considerations lead to stochastic age-structures 

population systems, which are more realistic. On the other hand, synchronization is a 

most identical phenomenon that can always be found among the population system, 

what’s more, studying the synchronicity of population plays an important role in the 

protection of endangered species, pest control and eliminating infectious diseases. 

Recently, synchronization is one of the most important and interesting problems in 

the analysis of stochastic age-structured population equations. To the best of our 

knowledge, synchronization has received little attention in the field of mathematical 

biology just about dynamical networks (see [4-11]). Therefore, the aim of this paper 

is to close this gap. In this article, we shall investigate the stochastic multi-species 

age-dependent Lotka-Volterra system, that is 
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 (1.2) 

This paper can be organized as follows. In Section 2, we introduce the model of 

Lotka-Volterra model with feedback controls and some definitions and lemmas to be 

used later are presented. In Section 3, the synchronization criteria are derived. In 

Section 4, an illustrative example is provided to show the result and give the map to 

illustrate. 
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2. Model Formulation and Preliminaries 

The system (1.2) can be described by the Itô equation 
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 (2.1) 

where ( ) ( )tdttppd iiit ω∂∂= ,  is a Brownian motion defined on 

( ( ) ) ( )tP itt ϕΩ ≥ ,,,, 0FF  denotes the corresponding noise intensities. 

In this paper, we give another species as follows: 
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for ....,,2,1 ni =  

Remark 1. ( )atpi ,  and ( )atsi ,  denote the density of two species population 

of age a at time t. We suppose they have no interaction relations, but they have the 

same community. 

The objective of this paper is to prove all of the species in the Lotka-Volterra 

systems (2.1) synchronize with target species (2.2) for all initial state, i.e., all of the 

states satisfy 

( ) ....,,2,10,lim niatei
t

=∀=
∞→
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In what follows, we will provide some assumptions and definitions. 

Definition 1. The zero solution of error system (2.3) is said to be 

(i) globally stable in probability, if for any ( ),1,0∈ε  there exists a class 

K function 2
r  such that for ( ) ,,0 n

i Rae ∈∀  every weak solution ( )atei ,  of 

system (2.3) satisfies 

{ ( ) ( ( ) )} niaerate ii
tt

ei ...,,2,1;1,0,sup 2

0

=ε−≥<
≥

P  

(ii) globally asymptotically stable in probability, if it is globally stable in 

probability and for ( ) ,,0 n
i Rae ∈∀  every weak solution ( )atei ,  of error system 

(2.3) satisfies 

{ ( ) } ....,,2,1,10,lim niatei
t

e
i ===

∞→
P  

3. Main Results 

In this section, the objective is under the conditions described above. Now we 

are in position to establish the following main results. 

Theorem 1. For an n-dimensional stochastic differential system 

 ( ) ( ) ( )tdvxtGdtxtF
a

x

t

x
,, +=

∂

∂
+

∂

∂
 (3.1) 

if the Borel measurable functions ( )xatF ,,  and ( )xatG ,,  are continuous on 

,0 nT
RRR ××≥  then for any initial distribution µ  on measurable space 

( ( ( ) )),, nn RR B  system (3.1) has a weak solution ( )atx ,  with initial distribution 

,µ  i.e., { ( ) } ( )BB µ=∈atxx ,0P  for any ( ).nRB B∈  

Proof. The proof is immediately follows from p. 167 of [12] and hence omitted. 

Theorem 2. For the error system (2.3), suppose that there exists a function 

( )+∈ RRCV n ,2  such that 

(i) ( ) ;0≤xVL  

(ii) not only for ( ) ,00 0=ie  but also for ( )0ie  having any other distribution, no 
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nonzero weak solution of system (2.3) completely belongs to { ( ) }0=∈ eVRs n
L  

a.s.. 

Then the zero solution of system (2.4) is globally asymptotically stable in 

probability. 

Proof. From Theorem 1, it follows that system (2.3) has a weak solution, 

denoted by ( ),, atei  for any deterministic initial condition. We first prove that every 

weak solution of system (2.3) is defined on [ ]∞+,0  a.s.. Otherwise, for a weak 

solution ( ),, atei  there holds, { } ,0>+∞<σ∞
ii ee

P  where ,lim i
rr

ei σ=σ +∞→∞  and 

ie
rσ  is stopping time defined as 

{ ( ) }.,0inf ratet i
e
r
i ≥≥=σ  

Then there exist constants 0>ε  and 0>ie
T  such that 

{ } .2ε>≤σ∞
iii eee

TP  

Furthermore, there exists a sufficiently large constant 0>N  such that 

 { } ., NrTP iii eee ≥∀ε≥≤σ∞  (3.2) 

By the continuity of weak solution, we have 
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By (ii) and Itô formula, we obtain 
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Combining (3.2), (3.3) and (3.4) yields that 
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which is clearly a contradiction. Hence { } ,0=+∞<σ∞
ii ee

P  and every weak 
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solution of system (2.3) is defined on [ )∞+,0  a.s.. 

Next, we prove that the zero solution of system (2.4) is globally stable in 

probability. In fact, in the case of ( ) ,0,0 ≠aei  for any ( ) 0,1,0 >∈ε r  and every 

weak solution ( )atei ,  of system (2.3), by (3.3) and (3.4), we obtain that, for all 

{ }
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( )

.
,0

2

2

r

aeie
r

e ii ≤+∞<σP  Thus, 
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( )

ε
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2
2 ,0 ae

r i  gives 

 { ( ) } .1,sup 2
0 ε−≥≤≥ rateit

eiP  (3.5) 

As for the case ( ) ,0,0 =aei  by (3.4), we have ( ( )) 02 =σ∧ ii e
ri

e
teE  for all .0≥t  

From ,0≥V  it follows ( ) 0,2 =σ∧ atE s
ri  for all 0≥t  a.s., that is, 

( ) 0, =σ∧ ate ie
ri  for all 0≥t  a.s.. Letting +∞→r  gives ( ) 0, ≡atei  a.s.. This 

implies that, in this case, (3.5) holds for any ( ).1,0∈ε  Hence, the zero solution of 

system (2.3) is globally stable in probability. 

In the remainder of the proof, we prove that every weak solution ( )atei ,  of the 

system (2.3) satisfies 

{ ( ) } ....,,2,1,10,lim niatei
t

e
i ===

∞→
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In fact, since ( ( )) ( ) 0,,
2 ≥= ateateV ii  and by (i), combine the continuity of 

weak solution and Lemma 2.4 in p. 163 of [13], for any ...,,2,1=r  

{ ( )} 0, ≥σ∧ t
e
ri ate i  is a nonnegative continuous supermartingale. That is, for any 

...,2,1=r  and ,0≥> si  

( ( ) ) ( ) .,s.a,,
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e
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which, together with +∞=σ∞→
ie

rrlim  a.s. and Fatou lemma in p. 22 of [15], 
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implies that, for any ,0≥> at  

( ( ) ) ( ( ) )iii e
s

e
ri

r

e
si ateEateE FF

22
,inflim, σ∧=

+∞→
 

( ( ) )ii e
s

e
ri

r

ateE F
2

,inflim σ∧≤
+∞→

 

( ) 2
,inflim ase ie

ri
r

σ∧≤
+∞→

 

( ) ..s.a2asei=  (3.6) 

Hence, { ( ) }2
, atei  is a nonnegative continuous supermaritingale. Furthermore, by 

Theorem 2.1 in p. 163 of [13], we see that ( ( ))ateVV it ,lim ∞→∞ =  exists and is 

finite a.s., and ( ) ( ( ))ateVEVE i
e

t
e ii ,lim ∞→∞ =  is finite and nonnegative. This, 

together with Corollary 4 in p. 100 of [16], implies that { ( ( ))} 0, ≥ti ateV  is 

uniformly integrable. 

Now we prove ( ) .0=∞VE ie
 For contradiction we suppose ( ) .0>∞VE ie

 

Choose an increasing time sequence { } N∈kkt  satisfying .lim +∞=+∞→ kk t  

Define 

( ) ( ) .,0,,,, N∈∀≥∀+= ktatteatX kiki  

By the continuity of weak solution, ( )atX k ,  is continuous for .N∈∀k  Moreover, 

it is clear that ( )atX k ,  satisfies the following equation 

( ) ( ) ( ( )) ( ( )) ( ) ,0,,,,0,
00
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t
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where ( ) ( ) ( )k
e

k
e

k twtswsw ii −+=  is a Brownian motion as well, and ( )atX k ,  

and ( )twk  are defined on the same probability space as that of the solution ( )., atei  

In terms of the supermartingale property, we know that 

( ( ( ))) ( ( ) ) ( ) .,0,,0,,
2

N∈∀≥∀≤+= ktaeatteEatXVE iki
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k
e ii  

From this, together with supermartingale inequality, we obtain that, for any 0≥T  
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and ,0>m  
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Then we have 
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By (3.7) and (3.8), we can prove that, for any 0≥T  and ,0>ε  there holds 
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By (3.9), (3.10) and Theorem 4.2 in p. 17 of [12], there exists a subsequence 

{ } N∈jk j
X  of { } ,N∈kkX  a probability space ( )P̂,ˆ,ˆ FΩ  and n-dimensional 

continuous processes ( ) N∈jee
jiki ,ˆˆ  defined on this probability space, such that 

jkie ,ˆ  converges to iê  as +∞→j  a.s., and 
jkie ,ˆ  and 

jkX  are equivalent in 

distribution, written as 

 .,ˆ , N
D

∈∀= jXe
jj kki  (3.11) 

From this and (3.7), and similar to the proof of Theorem 2.2 in p. 169 of [8], we 

derive that, for every ( )RRCh
n

b
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− L  is a martingale, where { 0infˆ ≥=σ tl  

( ) }.,ˆ latei ≥  Hence, by Proposition 2.1 on p. 169 of [12], ( )atei ,ˆ  is a weak 

solution of system (2.3) with ( )aei ,0ˆ  having certain distribution. 

Since ( ) ( ) ,,,,0 N∈= jateaX
jj kik  and { ( ( ))} 0, ≥ti ateV  is uniformly 

integrable, we have that ( ( )) N∈jk aXV
j

,0  is uniformly integrable. By (13), we get 

that { ( ( ))} N∈jki aeV
j

,0ˆ ,  is uniformly integrable as well. By Theorem 1.3 in p. 

16 of [16], we derive 
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( )atei ,ˆ  is a nonzero weak solution. 
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By (13), we get that { ( ( ))} N∈jjki ateV ,ˆ ,  is uniformly integrable as well. By 

Theorem 1.3 in p. 16 of [14] again, we have 
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Since 0≥∞V  a.s. and ( ) ,0=∞VE ie
 we have 0=∞V  a.s., that is, 

( ( )) a.s.,0,lim =
+∞→

ateV i
t

 

which, together with (i), implies that (3.6) holds. This completes the proof. 

Remark 2. Form Theorem 1, we can see all the species can synchronize each 

other if only the nonlinear function ( )( )ttxf ,  satisfied Lipschitz condition. Different 

from the results in [7-9], we only need to verify the inequality (3.1) according to the 

parameters of the system (2.1) and not to solve some complex linear or nonlinear 

matirx inequalities depended on some unknown variables. Which also shows that 
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synchronization is an essential phenomenon of the population system and only 

depends on its parameters. 

4. A Numerical Example 

Let us consider a stochastic age-structures population equation of the form 
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We give the pictures above with fixed step sizes .05.0,005.0 =∆=∆ at  The 

maximum value of the error is not greater than 0.005. 

 

 

Figure 1. Transient response of state variables ( ).,,,,, 321321 pppsss  
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Figure 2. Synchronization error ( ).,, 321 eeee =  

 

Figure 3. Transient response of state variables ( ) ( ),, 21 tsts ( ) ( ),, 13 tpts  

( ) ( )tptp 32 ,  at .1=a  

 

Figure 4. Synchronization error 
2
1

e  between the target state 1s  and the state .1p  
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Figure 5. Synchronization error 
2
2

e  between the target state 2s  and the state .2p  

 

Figure 6. Synchronization error 
2
3

e  between the target state 3s  and the state .3p  
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