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Abstract 

Assuming the existence of an inertial frame, S, in which light 

propagates isotropically with a uniform speed, it is shown how 

measurements of time intervals between the epochs of transmission and 

reception of light signals by a single uniformly moving clock can be used 

to measure the velocity of the clock in S. Methods to synchronise two or 

more such moving clocks both with and without the observation of light 

signals are described. It is also shown that the Galilean definition of 

velocity and relativistic time dilation are incompatible with the Einstein 

postulate, and the prediction of Maxwell’s electromagnetic theory of 

light, that the speed of light is the same in all inertial frames. Flaws in 

Einstein’s arguments claiming consistency of predictions of the space-

time Lorentz transformations with light speed frame independence are 

pointed out. The ‘Conventionality of Clock Synchronisation’ concept and 

Poincaré’s related assertion of the impossibility of internal detection of 
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uniform translational motion are shown to be untenable. A consistent 

description of all known optical phenomena is given by identifying light 

with massless particles obeying the laws of relativistic kinematics - the 

‘light quanta’, now called photons, discovered by Einstein in 1905. 

1. Introduction 

The space-time Lorentz Transformations (LT) were originally 

obtained by Lorentz [1], Larmor [2, 3] and Poincaré [4] as those that left 

the form of Maxwell’s electromagnetic field equations invariant when 

transformed from a frame in which a putative ‘luminiferous aether’ was 

at rest, into any frame (an ‘inertial’ frame) moving uniformly with respect 

to the aether frame. The same demonstration is found in Einstein’s 

original special relativity paper [5] except that the aether frame is 

replaced by a frame where, by hypothesis, light propagates with uniform 

speed c, independent of the velocity of its source - Einstein’s ‘stationary’ 

frame. 

Since Maxwell’s equations in free space lead to the prediction of 

‘electromagnetic waves’ moving at a definite speed c, it is concluded that, 

on identifying light with these electromagnetic waves, that the speed of 

light must be the same in the aether frame, in Einstein’s stationary frame 

and in an arbitrary inertial frame. This prediction from classical 

electromagnetic theory of the constancy of the speed of light was 

promoted by Einstein to a postulate (the second postulate of the special 

theory of relativity) and employed in Ref. [5] to derive, from first 

principles, the LT. 

Perhaps surprisingly it will be demonstrated in the present paper 

that such frame-independence of the speed of light is incompatible with 

constraints of space-time geometry in Einstein’s stationary frame and the 

existence of the experimentally-verified time dilation (TD) effect for a 

moving clock, as derived by Einstein from the LT, in Ref. [5]. 

In Ref. [5] a method was proposed to synchronise two spatially-
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separated clocks A and B, by exchange of light signals between them. If 

the clocks are at rest in a frame in which the speed of light is isotropic, 

one method to carry out the procedure suggested by Einstein is as follows. 

Initially both clocks are stopped and their epochs1 set to zero. When the 

light signal is transmitted from A, this clock is started. When the signal 

arrives at B, where it is promptly reflected back towards A, clock B is 

started. The signal arrives back at A at epoch .At  Since the clock B will 

be slow relative to A by the time interval for the light to pass from A to B 

(or from B to A), which is ,2At  clock B is synchronized with A by adding 

2At  to its epoch. If it is indeed true that the speed of light is the same in 

all inertial frames, (as suggested by the application of the LT to Maxwell’s 

Equations) this procedure would be a valid one in all inertial frames - and 

not subject to any kind of ambiguity. On the other hand if the to-be-

synchronised clocks were at rest in a frame in which light speed is 

anisotropic (Einstein himself considers just such a case in the section of 

Ref. [5] following the one in which his light signal synchronisation 

procedure is described; this will be discussed in Section 8 below) then 

allowance would have to be made for the anisotropy in order to use 

exchange of light signals to synchronise the clocks. Just this point was 

made by Poincaré [6]: 

But this method of operation (Einstein’s procedure) assumes that light 

takes the same time to travel from A to B and to return from B to A. This is 

true if the observers are motionless, but no longer true if they are involved 

in a common transposition, because in this case A, for instance will be 

meeting the light that comes from B while B is retreating from the light 

that comes from A. 

In order to correctly synchronise the clocks therefore, proper account 

                                                           

1An ‘epoch’, t, is the number registered by a clock at any instant. Time intervals are defined 

as the difference between two epochs: ., 1212 ttttt >−≡∆  
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must be taken of the light speed anisotropy. Just this is what will be done 

in the calculations presented below in the present paper. Instead of 

adding 2At  to the epoch of clock B it will be necessary to add Atε  where 

10 <ε<  and the value of ε  is calculated from the known light speed 

anisotropy in the proper frame of the clocks A and B. In spite of this quite 

evident generalisation of his light signal exchange synchronisation 

procedure Einstein makes in Ref. [5] the following assertion before 

describing the procedure: 

We have not defined a ‘‘common time’’ for A and B, for the latter 

cannot be defined at all unless we establish by definition that the ‘‘time’’ 

required by light to travel from A to B equals the ‘‘time’’ it requires to 

travel from B to A. (Einstein’s emphasis) 

Just the contrary of this assertion will be demonstrated by the 

calculations presented below in the present paper. 

Following Reichenbach [7], many authors, particularly of 

philosophical literature, have argued that the parameter ε  introduced 

above to correct for the effect of light speed anisotropy has no physical 

significance, being of a purely ‘conventional’ nature. This claim will be 

examined in Section 8 below in the light of the calculations presented in 

the previous sections. 

Another issue addressed in the present paper is Poincaré’s 

formulation of the special relativity principle as a statement (a 

generalisation of ‘Galileo’s ship’ [8]) of the impossibility by means of any 

‘internal’ measurements whatever to detect uniform translational motion 

[9]: 

The principle of relativity according to which the laws of physical 

phenomena should be the same whether for an observer fixed, or for an 

observer carried along in a uniform movement of translation; so that we 

have not and could not have any means of discovering whether or not we 
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are carried along in such motion. 

Counter examples to this statement of the special relativity principle 

are given by the calculations presented in Sections 3, 4 and 6 below. 

This paper is organised as follows: In the next section, time intervals 

for exchange of light signals between two clocks at rest in an arbitrary 

inertial frame are derived. The calculation is based on three postulates 

that are also given in Ref. [5]. In the following Sections 3 and 4, the 

results obtained in Section 2 are used, firstly, to determine the relative 

motion of the inertial frames S and ,S′  given isotropy of light speed in the 

frame S, and, secondly, to synchronise two spatially-separated clocks at 

rest in the frame .S′  This is done at order cv  in Section 3 and exactly (to 

all orders in )cv  in Section 4. In Section 5 various methods of 

synchronising, without the use of light signals, spatially-separated clocks 

at rest in an arbitrary inertial frame are described. Section 6 describes a 

method to detect the motion of an inertial frame by observation of time 

intervals recorded by clocks moving in a known manner relative to the 

frame, as well as another method to synchronise clocks at rest in the 

frame. In Section 7, the general problem of the existence of preferred 

frames for particular physical phenomena such as particle propagation or 

observations of clocks, is considered, with particular reference to 

experiments carried out in the vicinity of the Earth. In Section 8, the 

discrepancies between the results obtained in the present paper and 

standard special relativity theory are discussed. Particular emphasis is 

placed on comparison with Ref. [5] where identical initial postulates to 

those employed in the present paper lead to very different predictions. 

Section 9 gives conclusions. The Appendix describes a method to measure 

the parameters D and θ  specifying the separation and orientation, in the 

frame S, of the to-be-synchronised clocks in uniform motion in this frame. 
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2. Exchange of Light Signals between Moving Clocks 

The calculations of the present section are based on three postulates: 

(i) The existence of an inertial frame S in which light propagates 

isotropically in free space with speed c. 

(ii) The Galilean definition of uniform velocity in the frame S: 

.
timeelapsed

object of ntdisplaceme
velocity

t

s

∆
≡≡  

The time interval t∆  is recorded by a clock at rest in S registering an 

epoch t. 

(iii) The validity of the interval Lorentz transformations: 

( ) ,0=∆−∆γ=′∆ tvxx  (2.1) 

,0=∆=′∆ yy  (2.2) 

,0=∆=′∆ zz  (2.3) 

,
2







 ∆
−∆γ=′∆

c

xv
tt  (2.4) 

where ( ) ,11 2
cv−≡γ  relating the time interval t∆  to that t′∆  

recorded by a clock at rest in the frame S′  that moves with speed v along 

the common xx ′,  coordinate axis of the frames. Intervals along the world 

line of any clock at rest in S′  respect the conditions 0=′∆=′∆=′∆ zyx  

in S′  and 0, =∆=∆∆=∆ zytvx  in S. Postulates (i) and (ii) were 

explicitly given in Einstein’s seminal special relativity paper [5] where 

the space-time LT (2.1)-(2.4) were also derived. 

As shown in Figure 1, two clocks, 0C′  and 1C′  at rest in the frame ,S′  

are separated by a distance D in the frame S and the line segment 10 CC ′′  
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is at an angle θ  relative to the x-axis in the same frame. When the clock 

,C0′  placed at the origin of coordinates in the frame ,S′  is aligned with 

the origin O of the frame S, a light signal is transmitted from 0C′  and 

arrives at 1C′  after the time interval +∆t  in the frame S. The path length  

 

 

Figure 1. Space time geometry in the frame S where light propagates 

isotropically with speed c. The clocks 0C′  and 1C′  are at rest in the 

frame S′  that moves with speed v relative to S. A light signal 

transmitted from the clock 0C′  is received by the clock 1C′  after the 

time interval ,+∆t  during which period the clock 0C′  moves a distance 

.+∆tv  See text for discussion. 
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of the signal in the frame S is, by postulates (i) and (ii), ,++ ∆= tcs  while 

the definition of the frame S′  and postulate (ii) require that the 

displacement 0CO ′  of 0C′  in Figure 1 during the time interval +∆t  is 

.+∆tv  The Theorem of Pythagoras applied to the triangle NCO 1′  in Figure 

1 gives: 

 [ ],cossin1 222 θβ+θβ−γ=∆= ++ Dtcs  (2.5) 

where .cv≡β  The corresponding time interval, ,−∆t  of a signal 

transmitted by 1C′  and received by 0C′  is given by setting β−→β  in Eq. 

(2.3): 

 [ ].cossin1 222 θβ−θβ−γ=∆= −− Dtcs  (2.6) 

The time interval for a signal transmitted from 0C′  to 1C′  and promptly 

reflected back to ,,C 0100 t∆′  is, from (2.5) and (2.6): 

 .sin1
2 22

2

010 θβ−
γ

=∆+∆=∆ −+ c

D
ttt  (2.7) 

Also 

 .010101 tttt ∆=∆+∆=∆ +−  (2.8) 

Only motion in the frame S has been considered in deriving Eqs. (2.5)-

(2.8) and all time intervals are those recorded by a single clock at rest in 

the frame S. To find the corresponding time intervals in the frame ,S′  

i.e., those actually recorded by the clocks 0C′  and ,C1′  during the passage 

of the light signal shown in Figure 1 postulate (iii) is used. Substituting 

the interval world line equation tvx ∆=∆  given by (2.1) into (2.4) so as to 

eliminate ,x∆  it is found that: 

 .
γ

∆
=′∆

t
t  (2.9) 
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Since this time dilation relation contains no spatial coordinates, it is 

applicable to any clock at rest in ,S′  independently of its spatial position. 

It then follows from (2.9) on introducing the epochs ( ) ( )tttt 21 , ′′  recorded 

by 10 C,C ′′  respectively, at epoch t that: 

 ( ) ( ) ( ) ( )
γ

−
≡

γ

∆
=′−′≡′∆=′−′≡′∆ 0

02220111
ttt

tttttttttt  (2.10) 

so that if 0C′  and 1C′  are synchronised at :0tt =  ( ) ( ) ( ),00201 tttttt ′=′=′  

they remain so at all later times for any value of t: ( ) ( ) ( ).21 tttttt ′=′=′  

There is no ‘relativity of simultaneity’ effect for spatially-separated clocks 

as in conventional special relativity theory. For further discussion of the 

spurious nature of ‘relativity of simultaneity’ and the correlated ‘length 

contraction’ effect see Refs. [10-12]. 

The time intervals recorded by the clocks 0C′  and 1C′  are therefore, on 

combining (2.5), (2.6) and (2.9): 

( ) [ ],cossin1, 22 θβ±θβ−
γ

=θβ′∆ ± c

D
t  (2.11) 

.sin1
2 22

101010 θβ−
γ

=′∆=′∆
c

D
tt  (2.12) 

In the following two sections, it is shown how observations of the time 

intervals given by Eqs. (2.11) and (2.12) can be used, firstly to determine 

the parameters θβ,  defining the motion of 0C′  and 1C′  in the frame S, 

and secondly to synchronise these clocks by exchange of light signals. 

Since only measurements internal to the system of moving clocks are 

considered, use of (2.11) and (2.12) enables the motion of the frame S′  

relative to S to be detected by such purely ‘internal’ measurements. This 

is in contradiction with the widely-used definition (following Poincaré 

[9]), mentioned above, of the special relativity principle, as the assertion 

of the impossibility of such a detection. 
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3. Light-Signal-Exchange Clock Synchronisation 

at Order cv  

Retaining only order cv  terms in Eqs. (2.11) and (2.12), they simplify 

to: 

( ) [ ],cos1, θβ±=θβ′∆ ± c

D
t  (3.1) 

.
2

101010 c

D
tt =′∆=′∆  (3.2) 

At this order of approximation a single ‘echo delay’ measurement of 010t′∆  

or 101t′∆  enables measurement of the speed of light in free space, c, 

without any considerations of clock synchronisation: 

 .
22

101010 t

D

t

D
c

′∆
=

′∆
=  (3.3) 

Three distinct series of operations are required to determine β  and θ  

from observations of ( )., θβ′∆ ±t  It is assumed at the outset that the values 

of c - possibly measured by use of Eq. (3.3) - and the separation, D, of the 

clocks in the frame S are known. A space-time experiment to measure the 

parameters θ,v  and D, using an array of synchronised clocks at rest in 

the frame S, is described in the Appendix. The operations are: 

Ia: Stop 0C′  and 1C′  and set the epoch of 0C′  to 0t′  and that of 1C′  to 

.0 cDt +′  

Ib: Start 0C′  and send a light signal to .C1′  

Ic: Start 1C′  on receipt of the light signal. 

If ,0=β  this procedure synchronises 0C′  and .C1′  Since the signal 

from 0C′  actually arrives at 1C′  at 0C′  epoch: 
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( ) ( ) cDttt θβ++′=θ′∆+′ + cos100  

it follows that step Ic actually results in setting 1C′  slow by the time 

interval ( ) cD θβ cos  relative to .C0′  

IIa:  The line joining the two clocks is rotated anticlockwise through 

2π  radians in the xy  plane of Figure 1. During this procedure, 0C′  and 

1C′  may have different velocities in the frame S, so that there will be 

different time dilation effects that will change the relative 

synchronisation of the clocks. Since however all such effects are at least of 

order ( ) ,2
cv  they may be neglected at the level of approximation of the 

present calculation. 

IIb: Send a signal from 1C′  to 0C′  at known 1C′  epoch ( )A
t1′  (i.e., at 

0C′  epoch ( ) ( ) ).cos1 cDt
A θβ+′  

IIc: The signal arrives at 0C′  at 0C′  epoch2: 

( ) ( ) ( ) ( )2cos10 π+θ′∆+θβ+′=′ −tcDtt
AA

 

( ) ( )[ ].sincos11 θ+θβ++′=
c

D
t

A  

IIIa: The line joining the two clocks is rotated clockwise through π  

radians in the xy  plane of Figure 1 (i.e., clockwise by 2π  radians relative 

to their original orientation). 

IIIb: Send a signal from 1C′  to 0C′  at known 1C′  epoch ( ) ,1
C

t′  i.e., at 

0C′  epoch ( ) ( ) .cos1 cDt
C θβ+′  

                                                           

2The epoch labels A(C) denote, respectively, anti-clockwise (clockwise) rotations by 2π  in 

the xy plane of the line joining the two clocks. 
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IIIc: The signal arrives at 0C′  at 0C′  epoch: 

( ) ( ) ( ) ( )2cos10 π−θ′∆+θβ+′=′ −tcDtt
CC

 

( ) ( )[ ].sincos11 θ−θβ++′=
c

D
t

C  

With the definitions: 

( ) ( ) ( ) [ ],sincos100 θ+θ
β

=−′−′≡′∆
c

D
cDttt

AAA
 (3.4) 

( ) ( ) ( ) [ ],sincos100 θ−θ
β

=−′−′≡′∆
c

D
cDttt

CCC
 (3.5) 

the parameters β  and θ  are given, in terms of time intervals measured 

uniquely by the clock ,C0′  as: 

[( ) ] [( ) ] ,
2

2
0

2
0

CA
tt

D

c
′∆+′∆=β  (3.6) 

( ) ( )

( ) ( )
.arctan

00

00













′∆+′∆

′∆−′∆
=θ

CA

CA

tt

tt
 (3.7) 

Finally, to synchronise the clocks, both 0C′  and 1C′  are stopped and the 

epoch of 0C′  set to 0t′  and that of 1C′  to: 

( ) ( ) .sin12 001 cDtttt θβ++′=π−θ′∆+′=′ +  

Clock 0C′  is started, and simultaneously a signal is sent to .C1′  When 1C′  

is started on receipt of the signal, the clocks 0C′  and 1C′  are synchronised 

up to corrections of order .2β  

4. Exact Light-signal-echo Synchronisation of three Clocks 

in the Same Inertial Frame 

In this case, three clocks at rest in the frame :S′  10 C,C ′′  and 2C′  are 
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considered, disposed in the xy  plane in the frame S, as shown in Figure 

2. The echo time-delays of signals sent from 0C′  to 1C′  or 2C′  and 

promptly reflected back, are given by Eq. (2.8) as: 

( ) ( ) ,sin1
2 22

010 θβ−
γ

=θ′∆+θ′∆=′∆ −+ c

D
ttt  (4.1) 

( ) ( )) .cos1
2

22 22
020 θβ−

γ
=π+θ′∆+π+θ′∆=′∆ −+ c

D
ttt  (4.2) 

Squaring and adding (4.1) and (4.2) gives: 

 ( ) ( ) .
1

22
2

22
2

020
2

010
β−

β−






=′∆+′∆

c

D
tt  (4.3) 

Solving (4.3) for β  gives: 

 ,
1
2

−α

−α
=β  (4.4) 

where 

 [( ) ( ) ].
2

2
020

2
010

2
tt

D

c
′∆+′∆






≡α  (4.5) 

Taking the ratio of (4.1) to (4.2) gives: 

 .
cos1

cos1
22

222

020

010

θβ−

θβ+β−
=

′∆

′∆
≡

t

t
R  (4.6) 

Solving (4.6) for θ  gives: 

 .
1

11
arccos

2

22

+

β+−

β
=θ

R

R
 (4.7) 

Once the values of β  and θ  have been determined from (4.4) and (4.7), 

respectively, the clocks 10 C,C ′′  and 2C′  may be synchronised by a 

procedure similar to that used for the clocks 0C′  and 1C′  in the previous 
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section: 

(i) All three clocks are stopped and their epochs set to the values: 

( ) ( ),2,:C,:C,:C 020100 π+θβ′∆+′′θβ′∆+′′′′ ++ ttttt  

where ( )θβ′∆ + ,t  and ( )2, π+θβ′∆ +t  are given by Eqs. (2.5) and (2.10). 

(ii) Light signals are sent to 1C′  and 2C′  from 0C′  at the instant that 

the latter clock is started. 

(iii) 1C′  and 2C′  are started on receipt of the light signals from .C0′  

(iv) 10 C,C ′′  and 2C′  are now synchronised. 

 

 

Figure 2. Geometrical configuration of three clocks 10 C,C ′′  and 2C′  at 

rest in the frame ,S′  that moves with speed v relative to S. See text for 

discussion. 
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In the case that the angle θ  in Figure 2 can be varied in a controlled 

manner a simpler strategy can be used to find, by measurements internal 

to the frame ,S′  the magnitude and direction of the speed of S′  relative 

to S: 

(i) The angle θ  is varied until .020010 tt ′=′∆  

(ii) Since inspection of (4.1) and (4.2) shows that now ,4π−=θ  the 

direction of the relative motion is the bisector of the angle .CCC 201 ′′′  

(iii) By aligning the path 10CC ′′  with the direction of the relative 

velocity (i.e., setting 0=θ  in Figure 2) the speed of light is given 

(exactly3 ) by Eq. (4.2) as 

 
( )0
2

020 =θ′
=

t

D
c  (4.8) 

and the (exact) magnitude of the relative velocity by (4.1) and (4.2) as: 

 
( )
( )

.
0
0

,
1

020

010
2

=θ′

=θ′
=γ

γ

−γ
=

t

t
cv  (4.9) 

The formula (4.8) corresponds to the familiar ‘transverse photon clock’ 

geometry as discussed, for example, in the Feynman Lectures on Physics 

[13]. 

5. Synchronisation of Clocks without Light Signals 

At the outset, two types of synchronisation procedures may be 

distinguished: intra-frame synchronisation in which the clocks-to-be-

synchronised are at rest in the same reference frame and inter-frame 

synchronisation in which the clocks are in different inertial frames. 

                                                           

3That is, correctly to all orders in .cv  
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A conceptually simple type of intra-frame synchronisation, applicable 

within any inertial frame, is one in which the light signal of the Einstein 

procedure is replaced by a ‘messenger object’ (MO) programmed to move 

in a known manner within the frame. In the ‘messenger-exchange’ 

procedure, strictly analogous to the Einstein light signal procedure, the 

MO moves away from clock A at A epoch ,1
At  being first accelerated, then 

decelerated so as to arrive at rest at clock B. The clock B which has 

previously been set to the epoch At1  is started by the arrival of MO. After 

an arbitrary time interval, BT  as recorded by B. the MO moves back in a 

symmetrical (time reversed) manner to clock A, arriving there at A epoch 

.2
At  On advancing the epoch recorded by B by the time interval: 

 
2

12
BAA

B Ttt
t

−−
=∆  (5.1) 

the clocks A and B are synchronised. 

In the even simpler ‘dual-messenger’ intra-frame procedure two MOs 

are placed midway between (or, more generally, at any point on a line 

perpendicular to the line joining the two clocks, and passing through the 

mid-point of the latter line) the two clocks-to-be-synchronised, A and B. 

The clocks are stopped and set to any desired epoch: .ttt BA ==  The 

two adjacent MOs simultaneously initiate identical acceleration/ 

deceleration programs one towards A, the other towards B. The clocks A 

and B, started by the arrivals of the respective MOs are then 

synchronised. Worldline diagrams of the ‘messenger-exchange’ and ‘dual-

messenger’ procedures can be found in Figures 1 and 2, repectively, of 

Ref. [14]. 

Synchronised clocks at rest in the frame ,S′  as considered in Section 

2 can be alternatively obtained by symmetrical transport of clocks 

initially at rest in the frame S and synchronised there by any convenient 
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method (for example, Einstein light signal synchronisation). This method 

exploits the spatial-position-independence of the time dilation relation 

(2.9). In the simplest application of this method two clocks A and B are 

placed together at some point in the frame S and synchronised so that 

.ttt BA ==  At some arbitrary later instant both clocks are accelerated 

and decelerated in an arbitrary, though identical, manner in any 

direction, so they are both finally at rest in the frame S at points 

equidistant from their original position. Since the proper time evolution 

of the clocks, given by integration of the time dilation relation (2.7) is the 

same, they remain synchronised throughout this clock transport. This 

synchronisation is maintained when they are finally accelerated in an 

arbitrary, but identical, manner, into the frame .S′  Notice that the clock 

transport method is valid for an arbitrary acceleration/deceleration 

program provided that it is applied in an identical manner to both clocks. 

This is to be contrasted with the ‘slow clock transport’ method considered 

by Bridgman [15] and Mansouri and Sexl [16]. 

A method to synchronise four clocks, two in each of two inertial 

frames by ‘length transport’ has been described in Ref. [17]. This method 

therefore combines intra-frame and inter-frame synchronisations in a 

single procedure. Its application to two clocks at rest in the frame A:S  

and B, and two clocks at rest in the frame A:S ′′  and ,B′  can be 

understood by reference to Figure 1. Initially, all four clocks are stopped 

and set to the same epoch. The clocks A and B are then placed in the 

position of 0C′  and 1C′  in Figure 1; the clocks A′  and B′  just above them, 

but with the same x-coordinates. A′  and B′  are then moved the same 

distance in the negative x-direction till they are adjacent to two other 

clocks 0A  and ,B0  at rest in S, that have previously been synchronised 

by any convenient procedure. At a pre-determined instant, controlled by 

the epoch of 0A  and ,B0  A′  and B′  are accelerated, in an identical 

manner, in the positive x-direction up to speed v in the frame S. When A′  
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is later aligned with A and, simultaneously, B′  is aligned with B, all four 

clocks are started. At this instant all four clocks register the same epoch. 

At later times A and B as well as A′  and B′  remain synchronised, but 

because of the time dilation effect the clocks at rest in S (A and B) are no 

longer synchronised with those at rest in S′  (A′  and ).B′  

A variation of this method where four synchronised clocks at known 

positions in the frame S are used to measure the essential S-frame 

parameters Dv,  and θ  of the space-time experiments discussed in 

Section 2 above, is described in the Appendix. 

6. Internal Detection of Uniform Translational Motion 

by Clock Transport 

The time dilation relation (2.9) which is an immediate consequence of 

postulate (iii) (The Lorentz transformation of space and time intervals 

between the frames S and )S′  gives the possibility, actually realised in 

the Hafele-Keating (HK) experiment [18, 19] performed in 1971, to detect 

the uniform motion of an inertial frame by observation of time intervals 

recorded by a clock moving, in a known manner, relative to the inertial 

frame. Since only time intervals recorded by a single clock are considered 

in this analysis, all considerations of clock synchronisation are irrelevant. 

Referring to Figure 2, a single clock, ,C ′′  is moved with constant 

speed v′  in the frame S′  between 0C′  and 1C′  or 0C′  and .C2′  Only the 

clock C ′′  is observed, the others are used only as spatial markers. 

Denoting by ( )+  the outward displacement from 0C′  and by ( )−  the 

return displacement, in the analysis at order ( ) ,2
cv  considered here, it is 

sufficient to use Galilean transformations to determine the velocity of the 

clock C ′′  in the frame S. In an obvious notation, it is found that: 
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( ) [ ( ) ] ,cos2 2
1

22
1 θ′+′+=+ vvvvv  (6.1) 

( ) [ ( ) ] ,cos2 2
1

22
1 θ′−′+=− vvvvv  (6.2) 

( ) [ ( ) ] ,sin2 2
1

22
2 θ′−′+=+ vvvvv  (6.3) 

( ) [ ( ) ] .sin2 2
1

22
2 θ′+′+=− vvvvv  (6.4) 

Denoting the transit times in the frame S,S ′  of each passage of the clock 

C ′′  by ,, tt ′∆∆  respectively, and the time intervals recorded by C ′′  during 

the passages as: ( ) ( ) ( )+′′∆−′′∆+′′∆ 211 ,, ttt  and ( ),2 −′′∆t  the time dilation 

relation (2.9) gives the relations: 

[ ] [ ( )] ( ) [ ( )] ( ),1111 −′′∆−γ=+′′∆+γ=′∆γ=∆ tvtvtvt  

[ ( )] ( ) ( )][ ( ),2222 −′′∆−γ=+′′∆+γ= tvtv  (6.5) 

where [ ] ( ) .11 2
cvv −≡γ  On retaining only order ( )2cv  terms if follows 

from (6.1) to (6.5) that 

( ) ( ) ( )4
2111 Ocos

2
β+θ′

∆
−=−′′∆−+′′∆≡′′∆ vv

c

t
ttt  (6.6) 

( ) ( ) ( ).Osin
2 4

2222 β+θ′
∆

=−′′∆−+′′∆≡′′∆ vv
c

t
ttt  (6.7) 

Since [ ] [ ( )],21~ 22 cvttvt +′∆−′∆γ=∆  (6.6) and (6.7) simplify, further, at 

order ( ) ,2
cv  to 

θ′







′
−=θ′

′∆
−−′′∆ cos

2
cos

2~
221 vv

v

D

c
vv

c

t
t  

( ),O
cos2 4
2

β+
θ

−=
c

Dv
 (6.8) 
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( ).O
sin2 4
22 β+

θ
=′′∆

c

Dv
t  (6.9) 

It is interesting to note that at order ( ) ,2
cv  1t ′′∆  and ,2t ′′∆  although 

sensitive to v and θ  (and so to the motion of S′  relative to S) are 

independent of the value of the velocity .v′  

Solving (6.8) and (6.9) for θ  and v gives: 

( ) ( )
( ) ( )

,arctanarctan
21

22

1

2






+′′∆−−′′∆

−′′∆−+′′∆
=





′′∆

′′∆
−=θ

tt

tt

t

t
 (6.10) 

[( ) ( ) ]2
1

2
2

2
1

2

2
tt

D

c
v ′′∆+′′∆=  (6.11) 

formulas with a similar structure to (3.7) and (3.6), respectively, in a 

space-time experiment with a similar geometry involving the exchange of 

light signals. 

In the case that the values of vv ′,  and θ  are known, the relation 

(6.5) can be used to synchronise, for example, the clock 0C′  and the moved 

clock .C ′′  In order to do this 0C′  and C ′′  are set to the same epoch at the 

beginning of the outward displacement of C ′′  between 0C′  and .C1′  The 

clock C ′′  is synchronised with ,C0′  by adding to its epoch, at any instant 

after it has been displaced to the position of ,C1′  where it is brought to 

rest in the frame ,S′  the quantity t′δ  where: 

( )
( )







′∆

+′′∆
−′∆=+′′∆−′∆≡′δ

t

t
tttt 1

1 1  

[ ]
[ ( )]





+γ

γ
−

′
=

1
1

v

v

v

D
 

[ ] ( ).Ocos2
2

4β+θ+′
′

= vv
vD

 (6.12) 
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This method of synchronising clocks in an inertial frame with known 

motion was suggested by Ives [20] with a view to performing a 

measurement of the one-way speed of light. 

7. Physical Preferred Frames 

The simplest example of a preferred frame for isotropic light 

propagation with a fixed velocity is provided by the local inertial frame, at 

any point in the universe remote from the gravitational fields of discrete 

objects, within which the frequency distribution of the locally measured 

Cosmic Microwave Background (CMB) is observed to be isotropic. This 

frame is experimentally determined by use of a direction-sensitive 

microwave detector to measure the spectrum of the CMB. The measured 

direction-dependent Doppler shift (‘Dipole Term’) defines a boost into a 

definite frame where the frequency anisotropy vanishes. According to the 

COBE experiment [22] the Solar system is moving with a velocity of 369 

skm  relative to the frame in which the CMB is isotropic. If a transmitter 

of electromagnetic signals of known frequency is placed at rest in this 

inertial frame, measurement of the observed Doppler shift of this signal 

determines the velocity of any receiver relative to the preferred frame 

tagged by the transmitter. 

Of more practical importance are the preferred frames associated 

with the gravitational fields around massive astronomical bodies such as 

the Earth or the Sun. As remarked by Su [23, 24] these gravitational 

fields constitute effective ‘local aethers’ where the speed of light is less 

than, but close to, its speed in free space. For the case of the Earth it is a 

prediction of the Schwarzschild metric equation [25, 26] of general 

relativity that the ECI (Earth-Centered Inertial) frame [27] is a preferred 

one of this type. The ECI frame is an inertial frame instantaneously co-

moving with the centroid of the Earth, with coordinate axes pointing in 

fixed directions relative to the Celestial Sphere. Since it is the ‘fixed stars’ 
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that serve as the reference for rotational motion, this can be considered as 

a practical application of Mach’s Principle. The SCI (Sun-Centered 

Inertial) frame is defined in a similar manner. In the operation of the 

Global Positioning System (GPS) microwave signals transmitted by 

Earth-satellites are assumed to have a uniform speed c in the ECI frame 

[27]. 

For a light signal moving parallel to the surface of the Earth at low 

altitude, ,h  ( ERh <<  where ER  is the radius of the Earth, assumed 

spherical) the velocity is given by the Schwarzschild metric equation: 

 ( ) ( )
( )

,
2

10
2

22
2

2
2

c

dR
dt

c
d EE φ

−






 φ
+=τ=  (7.1) 

where EEE RGM−=φ  is the gravitational potential at the surface of 

the Earth. To first order in ,Eφ  the light signal speed in the ECI frame is: 

 .1
2

c
cdt

d
Rc E

EE 






 φ
+=

φ
≡  (7.2) 

The known values of the mass, ,EM  and radius of the Earth give; 

102 1094.6 −×−=φ cE  so that 

.1094.6 10−×−=
−

=
∆

c

cc

c

c EE  

For practical applications of the GPS [27] any reduction of the speed of 

light signals in the vicinity of the Earth due to the effect of the 

gravitational field of the latter is negligible. On the surface of the Earth 

then, the preferred frame S considered in the calculations of Sections 2-6 

above can, to a very good approximation, be identified with the ECI 

frame, while the instantaneous co-moving inertial frame of a point at rest 

on the surface of the rotating Earth may be identified with the frame .S′  

It is interesting to note that the isotropic propagation of light, at fixed 
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speed c, assumed to exist in the frame S in postulate (i) is actually a 

necessary consequence of relativistic kinematics and the massless (or 

almost massless) nature of photons [28]. Consider any process in the 

frame S (i.e., for experiments performed on the surface of the Earth, the 

ECI frame) in which particles are produced. Independently of the details 

of the production mechanism, the velocity, v, of any particle is related to 

its Newtonian mass, m, relativistic energy, E, and relativistic momentum 

p
r

 by the formula: 

 

[ ]
,

2
1

2242

22

cpcm

pc

E

pc
v

+

==  (7.3) 

where .pp
r

≡  This predicts that for any particle respecting the condition 

mcp >>  then cv −~  and for a strictly massless particle .cv =  Since 

(7.3) depends only on p and not p
r

 there can be no ‘intrinsic’ anisotropy in 

the velocity distribution of the produced particle. Indeed, the angular 

distribution of the velocity is controlled by the physics of the production 

process, not by any anisotropy of the space-time metric. 

For example, to correctly describe the propagation of neutrinos 

produced in laboratory experiments on the surface of the Earth, the 

kinematics of the production process should be calculated, not in the 

Earth-fixed laboratory frame, but in the ECI frame. The time of flight of 

neutrinos, produced with speed c−~  according to Eq. (7.3) in the ECI 

frame, between Earth-fixed sources and detectors must then take into 

account the motion of these due to the Earth’s rotation [30]. In a similar 

manner the microwave signals of the GPS have a speed close to c only in 

the ECI frame, not in the proper frame of a receiver at a fixed position on 

the surface of the Earth. This ‘Sagnac effect’ is taken into account in the 

GPS software [27]. After correcting for the Sagnac effect a limit on the 

speed anisotropy of microwave signals of 9105 −×<δ cc  has been 



J. H. FIELD 

 

158 

obtained [31]. 

Proper time intervals τd  of a clock in the vicinity of the Earth, where 

space-time curvature is dominated by the Earth’s gravitational field, are 

described by the Schwarzschild metric equation, which is the solution of 

Einstein’s field equations of general relativity for a non-rotating, 

spherically symmetrical source [25, 26]: 

 
( )

( )
,

2
1

12
1

2
1

22

2

2

22
dTvv

c

v

cc

r
d

rE

rE





































++
φ

+

−
φ

+=τ φθ  (7.4) 

where ( ) rGMr EE −≡φ  is the gravitational potential at distance r from 

the center of the Earth (assumed to be spherical) and EM  is the mass of 

the Earth. The origin of the spherical polar coordinates ( )φθ,,r  is at the 

centre of the Earth and the ‘coordinate time interval’, ,dT  is that which 

would be recorded by a hypothetical clock, a rest in the ECI frame, 

sufficiently far from the Earth that .0~−φE  For a clock moving parallel to 

the surface of the Earth with velocity ,22
φθ += vvv  then 0=rv  and 

(7.4) simplifies to: 

 
( )

,
2

1
2
1

2
2

dT
c

R
d EE









β−

φ
+=τ  (7.5) 

where cv≡β  and ER  is the radius of the Earth. Denoting the proper 

frame of the moving clock by S′  and the ECI frame, where ,0=β  by S 

gives the metric interval equations: 

In the frame 
( )

,
2

1:S
2
1

2
2

dT
c

R
tdd EE









β−

φ
+=′=τ′  (7.6) 



SYNCHRONISATION OF MOVING CLOCKS AND INTERNAL … 

 

159 

In the frame 
( )

.
2

1:S
2
1

2
dT

c

R
dtd EE








 φ
+==τ  (7.7) 

Retaining only order 2β  terms on taking the ratio of (7.7) to (7.6) it is 

found that 

( )
( )2

2

2
O
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1 β+′



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











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


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( )
.O

2
1

2

22













 φβ
+′







 β
+=

c

R
td EE  (7.8) 

Since (7.8) gives the same order 2β  approximation as the time dilation 

relation (2.7), it is clear that, at this level of approximation, and for 

experiments performed on the surface of the Earth, the frame S 

introduced in Section 2 may be identified with the preferred ECI frame. 

That the ECI frame is then a preferred one, not only for the isotropic 

propagation of light at speed close to c, but also for the calculation of time 

dilation, becomes evident on considering different values of the velocity v 

in the interval Lorentz transformation equations (2.1) and (2.2). For 

example, 0>= +vv  (frame )+′S  and 0<−= −vv  (frame )−′S  give, from 

(2.9), the time dilation relations: 

 ( ) ( ) .−−++ ′∆γ=′∆γ=∆ tvtvt  (7.9) 

If ,vvv =−= −+  it follows from (7.8) that −+ ′∆=′∆ tt  so that although the 

clocks at rest in +′S  and −′S  have a relative velocity of v2  in the frame S, 

there is no time dilation effect for these two clocks [21]. The time dilation 

effect therefore does not depend only on the relative velocity of the clocks, 

as might be concluded from a naive inspection of Eq. (2.9). The second 
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member of Eq. (7.9) can be considered as the basis for the calculation of 

special relativistic contributions to the time intervals recorded by the 

clocks of the Hafele-Keating experiment [32, 33, 18, 19, 12] and is verified 

by the good agreement between prediction and observation found in this 

experiment [19]. 

8. Discussion 

The much discussed concept of ‘Conventionality of Clock 

Synchronisation’ [34], originally developed from a philosophical 

standpoint by Reichenbach [7] and Grünbaum [35] was based on three 

independent arguments: 

(1) A misinterpretation of the result of the Michelson-Morley 

experiment (MME) [36]. 

(2) Application of ‘Lorentz-Fitzgerald Contraction’ or ‘relativistic 

length contraction’ to the analysis of the MME. 

(3) The assumption that clock synchronisation is possible only by 

exchange of light signals. 

It was assumed, in the original analysis of the MME, that the 

putative ‘aether frame’ is identified with the SCI, instead of the ECI, as 

predicted by general relativity, and discussed in the previous section. In 

this case, the speed of the ‘aether wind’, to which it was assumed the 

MME would be sensitive, is identified with the speed of rotation of the 

Earth in its orbit around the Sun skm30~: −  instead of the speed of 

rotation of the surface of the Earth about its polar axis: sm300~−  - an 

‘aether wind’ a factor of 210−  weaker and a phase shift in the MME a 

factor 410−  times smaller. As pointed out by Su [23, 24] neither the 

original MME, nor any of its successors, was sufficiently sensitive to 

observe the rotation of the Earth in these order 2β  experiments. In 
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contrast, using the order β  Sagnac effect, rotational motion of an 

interferometer relative to the ECI frame was measured in 1913 [37] and 

the rotation of the Earth relative to the ECI frame was measured by 

Michelson and Gale in 1925 [38]. As discussed in the previous section, the 

gravitational field of the Earth constitutes an ‘effective aether’ which 

renders the ECI frame a preferred one for propagation of light at speeds 

close to c in the region of the Earth. The existence of a similar, but 

different, ‘effective aether’ constituted by the gravitational field of the 

Sun in the SCI frame, was demonstrated by the Shapiro radar-echo-delay 

experiments [39] , where microwave signals were reflected back to the 

Earth from the inner planets Venus and Mercury. 

In the analysis presented in Section 2 above, the distance D 

separating the to-be-synchronised clocks is defined in the frame S, not in 

the proper frame, ,S′  of the clocks. 

The measurement of this separation, using synchronised clocks at 

known positions in the frame S is described in the Appendix. If instead, D 

is identified with the clock separation in the frame S′  and ‘length 

contraction’ parallel to the x-axis is assumed to occur in the frame S, then 

the distance from 0C′  to N in Figure 1 becomes .cos γθD  Application of 

the Theorem of Pythagoras to the triangle NCO 0′  then gives, instead of 

Eqs. (2.8) and (2.9): 

( ) [ ] ( )[ ],coscoscos1, γθ→θθβ±=θβ′∆ ± DD
c

D
t  (8.1) 

( )[ ].coscos
2

101010 γθ→θ=′∆=′∆ DD
c

D
tt  (8.2) 

The null result of the MME was incorrectly interpreted as evidence for 

the correctness of Eq. (8.2) and, consequently, of the existence of 

relativistic ‘length contraction’. 

Another prediction of (8.2) (due to the independence of the right side 
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on v and )θ  is the velocity-independence of the two-way speed of light. 

So, in agreement with Poincaré’s statement of the special relativity 

principle, observation of 010t′∆  or 101t′∆  gives no information on the 

relative velocity of the frames S and .S′  A corollary, which is the basis for 

the ‘Conventionality of Clock Synchronisation’ concept is that, if light 

signal exchange is the only way to synchronise spatially-separated clocks 

(i.e., the argument (3) above) it is impossible to measure the one way 

speed of light. This is because this measurement requires clocks to be 

synchronised, but clocks can only be synchronised if the one way speed of 

light is already known. However, regardless of whether length 

contraction exists or not, if the distance D is defined and measured in the 

frame S, which is the case for the calculation of Section 2 above, 010t′∆  

and 101t′∆  are given by Eq. (2.12) and are sensitive to the relative velocity 

of the frames S and ,S′  violating Poincaré’s statement [9] of the special 

relativity principle. This is a necessary consequence solely of the 

postulates (i) and (ii) of Section 2 above and so holds both for Galilean 

relativity ( )tt ′∆=∆  and special relativity ( ).tt ′∆γ=∆  Also, as described 

in Sections 5 and 6, many methods of clock synchronisation not requiring 

exchange of light signals exist. If any of these methods is used, there is no 

logical difficulty preventing the measurement of the one-way speed of 

light. 

Since all space-time geometrical calculations in the present paper 

have been performed in the frame S where, by hypothesis, light is 

propagated isotropically with speed c, no consideration of the velocity of 

light in the proper frame S′  of the moving clocks has been made. 

Einstein’s formulation of special relativity theory is based, as well as on 

the special relativity postulate - that the laws of physics are the same in 

all inertial frames - on the second postulate that the speed of light is the 

same in all inertial frames. However, as will now be demonstrated, 

Einstein’s second postulate cannot be true if the postulates (i), (ii) and (iii) 
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introduced in Section 2 hold. Indeed, correct calculations presented in the 

original special relativity paper [5] show, when combined, that the 

postulate of the frame-independence of the speed of light is untenable. 

In Section 2 of Ref. [5] with the title ‘On the Relation of Lengths and 

Times’ Einstein performed the calculation of Section 2 above for the 

special case .0=θ  Einstein also gave explicitly the postulates (i) and (ii) 

above as the basis for the calculation. The result obtained (in the notation 

of the present paper) was: 

 
vc

D
t

m
=∆ ±  (8.3) 

as obtained by setting 0=θ  in Eqs. (2.5) and (2.6). 

In Section 3 of Ref. [5], the Lorentz transformation equations, 

equivalent to postulate (iii) above, were derived and in the following 

section, the time dilation relation, Eq. (2.9) in the notation of the present 

paper, was derived. If D′  is the separation of the clocks in the frame ,S′  

then the postulate (ii), if also applied in the frame ,S′  together with the 

time dilation relation (2.9), give for the velocity of light in this frame: 

( ) cvc
D

D

t

D

D

D

t

D
c ≠

′γ
=

∆

′γ
=

′∆

′
=′

±±
± m  

( ).O 2β+= vc m  (8.4) 

So regardless of whether ‘length contraction’ exists ( )DD γ=′  or not 

( ),DD =′  it is impossible that the speed of light, defined according to the 

postulate (ii) in the frame ,S′  can be c. 

Just after the derivation of the Lorentz transformation in Ref. [5] an 

argument based on a thought experiment involving light waves was given 

that claimed to show that the Lorentz transformation predicted the 

frame-independence of the speed of light. It was concluded that: ‘This 
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shows that our two fundamental principles are compatible’. It is also 

stated in a footnote to the English translation of Ref. [5] that assuming 

the speed of light is the same in all inertial frames is sufficient to derive 

the LT - a simple calculation to be found in many text books and 

pedagogical papers. 

Actually Einstein’s ‘light wave’ calculation is marred by a trivial 

mathematical error - use of the same mathematical symbol to represent 

quantities that have completely different physical meanings. The 

parameters β  and γ  may be eliminated for the interval LT (2.1)-(2.4) to 

obtain the invariant interval relation: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .2222222222
tczyxtczyx ′∆−′∆+′∆+′∆=∆−∆+∆+∆  (8.5) 

In the notation of Ref [5], this is written: 

 .2222222222 τ−ζ+η+ξ=−++ ctczyx  (8.6) 

In Ref. [5], the right and left members of (8.6) were spuriously identified 

with spherical ‘light waves’ in the frames S and ,S′  respectively: 

,022222 =−++ tczyx  (8.7) 

.022222 =−ζ+η+ξ tc  (8.8) 

With this identification, then assuming (8.7) holds (i.e., a spherical light 

wave moving with speed c in the frame S) and applying the relation (8.6), 

derived from the LT, then (8.8) is derived, showing that a spherical light 

wave moving with speed c also exists in the frame S′  - consistent with the 

second postulate. However, this is a physically meaningless calculation 

since the coordinate intervals in (2.1)-(2.4) and in Einstein’s equation 

(8.6) are those on the world line of an object at rest in the frame ,S′  not of 

a light signal or a photon, as is assumed to be the case in Eq. (8.7). 

Indeed, since the world line equation in vtx =:S  was assumed in Ref. 
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[5] in order to derive the time dilation relation it follows from the space 

LT (2.1) that .0=ξ  Since also (see (2.2) and (2.3)) ,02222 =ζ+η=+ zy  

(8.6) simplifies to 

 
22222 τ−=− ctcx  (8.9) 

equivalent to the time dilation relation: .γτ=t  Clearly the two members 

of (8.6) can never vanish if 0>τ  as is assumed to be the case in the ‘light 

wave’ equations (8.7) and (8.8). Einstein’s claimed derivation of the 

second postulate from the LT - or the possibility to derive the LT by 

assuming that the second postulate holds - is then invalidated by a trivial 

mathematical error. This is the use of the same symbols to denote 

different physical quantities, in one case intervals on the world line of a 

ponderable object at rest in the frame ,S′  as in Eq. (8.6), in the other, 

intervals on the world line of a light signal propagating with speed c in 

frame S, as in Eq (8.7). 

The equality of the speed of light in the frames S and S′  is also a 

consequence of Einstein’s velocity composition formula derived in Section 

5 of Ref. [5]. However, the derivation of this formula is also invalidated by 

a similar mathematical error to the one concerning ‘light waves’ in the 

frames S and S′  just discussed. Retaining the notation of the present 

paper, Einstein’s velocity transformation formula is derived by taking the 

ratio of the interval LT equations (2.1) and (2.4) to give: 

 .
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−

−
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∆−∆
=

′∆

′∆
 (8.10) 

Einstein then defines two velocities txw ′∆′∆≡′  and vtxw ≠∆∆≡  in 

order to obtain from (8.10) the velocity transformation formula: 
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 .
1

2c

vw

vw
w

−

−
=′  (8.11) 

Setting cw =  in this equation gives ccw =′=′ +  in accordance with the 

second postulate. However, since, in fact, ,vtx =∆∆  as correctly 

assumed by Einstein in order to derive the TD relation (2.9) above, the 

right side of (8.10) is actually 

 .0

1
2

2
=

−

−
=′

c

v

vv
w  (8.12) 

Then .0 cwtx ≠=′≡′∆′∆  

The relation 

 t
c

vw
t ∆








−γ=′∆

2
1  (8.13) 

which is assumed to hold in order to derive (8.11) is in contradiction with 

the time dilation relation γ∆=′∆ tt  if .vw ≠  Indeed Eq. (8.13) is 

logically absurd since it predicts that the time interval, ,t′∆  recorded by a 

clock at rest in S′  depends, for a given value of ,t∆  on the speed of motion 

w of an arbitrary object in the frame !S  When vtxw =∆∆=  (the 

interval world line, in the frame S, of an arbitrary object at rest in the 

frame ),S′  then (8.13) correctly yields the time dilation relation (2.9). 

The correct value of +′c  is given by (8.4) with DD ′=  [10, 11, 12]. The 

interval LT equations (2.1) and (2.4) are only valid for intervals on the 

world line of a ponderable object at rest in the frame ,S′  not as assumed 

by Einstein, for an object with an arbitrary velocity w′  in the frame .S′  

Again, the same mathematical symbol is used to denote two physically 

distinct quantities. 
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The space-time LT were originally derived as the transformations 

that render the form of Maxwell’s equations of classical electromagnetism 

the same in every inertial frame. Maxwell’s application [40] of these 

equations in ‘free space’ to demonstrate the existence of ‘electromagnetic 

waves’ with a certain speed c then necessarily implies that such waves 

must have this speed in all inertial frames. On the other hand if light 

does propagate as a ‘signal’ (of unspecified nature) with fixed speed c in 

any particular frame of reference, the space-time geometrical calculation 

of Section 2 above, performed in this frame, shows that it is impossible 

that the signal has the same speed in any other inertial frame. This was 

clearly shown (but not remarked upon) by Einstein in Ref. [5] where Eq. 

(8.3) was given. This equation together with the time dilation relation 

(2.9) (also derived in Ref. [5]) necessarily leads, with the Galilean 

definition of velocity of postulate (ii) (as assumed in Ref. [5]) also in the 

frame ,S′  to Eq. (8.4), which negates the second postulate of special 

relativity. 

If light is identified with ‘electromagnetic waves in free space’ there is 

then a clear antinomy between the predictions of, on the one hand, space-

time geometry and the interval LT and, on the other, the second 

postulate. A possible way to resolve this antinomy at the time of this 

writing (the beginning of the 21st Century) may be to finally recognize 

that light actually consists not of the ‘electromagnetic waves’ predicted by 

Maxwell in 1865 but more likely of massless particles: ‘light quanta’ or 

photons for the discovery of which in 1905 Einstein was awarded the 1921 

Nobel Prize for Physics. The word ‘consists’ above is used in the 

ontological sense - the answer to the question: ‘What is light?’- not as the 

specification of some attribute. This is not to say that the ‘electromagnetic 

wave’ concept is without any physical significance whatever. Indeed 

phenomena involving very large numbers of real photons interacting with 

very large numbers of electrons are very conveniently described as the 

effect of phenomenological ‘electromagnetic waves’, obtained as the 
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solution of Maxwell’s equations with sources, according to certain 

boundary conditions. Examples are radio antennas, wave guides or the 

accelerating cavities of particle accelerators. However, the Feynman 

diagrams of quantum electrodynamics do not allow the production of 

photons without sources, completely forbidding any identification of 

Maxwell’s ‘free space’ electromagnetic waves with photons. Indeed 

retaining them and their associated electromagnetic fields after 

abandoning the aether, as suggested by Einstein in Ref. [5], was 

tantamount to banishing the ocean but still retaining the waves on the 

shore. 

An analogy can be made between phenomenological electromagnetic 

fields and photons, and an army and the individual soldiers of which it is 

composed. It is convenient to describe the movements of different 

regiments making up the army: infantry, cavalry, artillery, etc. (c.f., 

electric fields, magnetic fields) but the army always is a certain number of 

soldiers - actual members of the species homo sapiens - and their 

equipment (c.f., numbers of real or virtual photons). 

As described in detail elsewhere [41], the physical significance of 

electromagnetic fields in the limit of low photon density becomes identical 

to that of the quantum wave function, or probability amplitude, for 

experiments in which single photons are observed. Further critical 

discussion of the concept of ‘wave particle duality’ and the connection 

between quantum mechanics and classical wave theories of light or 

massive particles is found in Ref. [42]. 

Pais has discussed [43] the extreme reluctance of the physics 

community to accept the light quantum concept - that light actually 

consists of particles - between its discovery by Einstein in 1905 [44] and 

its confirmation by Compton in 1923 [45]. Even stranger, perhaps, is 

Einstein’s own reluctance to see the connection between his own light 

quantum concept, relativistic mechanics, and the speed of light. Indeed 
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the remark in Ref. [5] that: 

‘It is remarkable that the energy and the frequency of a light complex 

vary with the state of motion of the observer in the same manner.’ 

is a necessary consequence of the Planck-Einstein relation ν= hE  

for an individual light quantum given earlier by Einstein in 1905 in Ref. 

[44]. Also the constancy of the speed of light in some inertial frame of 

reference4 necessarily follows from relativistic kinematics - Eq. (7.3) 

above - in the case that light consists of massless particles. This assertion 

[28] could have been made at any time after Planck wrote down the 

formulas for relativistic energy ( )2mcE γ=  and momentum ( )mvp γ=  

in 1906 [46, 48]. 

As discussed in Section 7 above, the ‘free space’ within which special 

relativity is supposed to be valid is not an obvious feature of the known 

universe. Far from gravitating matter, in interstellar or intergalactic 

space, a natural reference frame is provided by the isotropy frame of the 

CMB. Near to gravitating matter, e.g., in the Solar system near to the 

Sun, or near to the surface of a planet, a preferred frame for light 

propagation with a speed close to c, is provided by general relativity. For 

a spherical gravitating body this is the frame in which space-time 

curvature is described by the Schwarzschild metric - the ECI frame for 

the Earth and the SCI frame for the Sun. As demonstrated by the Hafele-

Keating experiment [47], the same preferred frame controls the relative 

rates of clocks in motion near to the gravitating body. These rates are 

correctly given at order ( )2cv  by the special relativistic time dilation 

effect using the preferred inertial frame to specify the clock velocities (Eq. 

(7.8) above). 

The above considerations show that it was not the arguments given in 

                                                           

4The frame in which it is chosen to calculate the energy and momentum of the created 
photon according to the laws of relativistic kinematics. 
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Einstein’s 1905 light quantum paper that were ‘heuristic’ but rather those 

concerning the LT in the special relativity paper. Maxwell’s prediction of 

‘electromagnetic waves’ in free space can similarly be considered as the 

heuristic discovery that light consists of massless particles. The existence 

of light quanta (photons) of energy νh  and momentum chν  is verified 

by their essential role in the most successful and precise theory in the 

history of physics - quantum electrodynamics. Einstein gave a 

mathematically flawed derivation of the LT by assuming that the speed of 

light is the same in all inertial frames but then proceeded to derive from 

it both the experimentally confirmed time dilation effect and the 

equivalence of mass and energy, a completely novel concept with 

enormous practical consequences [48]. 

Maxwell used fields in ‘free space’ (sourceless fields that do not exist 

in quantum electrodynamics) to predict ‘electromagnetic waves’ -

identified as light - as a disturbance of a putative luminiferous aether 

(now known to effectively exist, with predicted properties, as a 

consequence of general relativity) with fixed speed c. The almost constant 

value of the speed of light, in certain preferred frames of reference, is now 

understood most simply as a consequence of relativistic kinematics (Eq. 

(7.8) above) and the fact that light consists of massless (or very light) 

particles. 

In summary, Einstein’s light quantum paper was, to the best of our 

current knowledge not at all ‘heuristic’ but a major experimentally 

verified discovery about the nature of the real world. It contained the 

seed from which grew the splendid plant of quantum electrodynamics [49, 

50] and other analogous modern particle physics theories. Einstein’s 

‘special relativity theory’ and Maxwell’s prediction of ‘electromagnetic 

waves’ in free space were mathematically and/or conceptually flawed but 

nevertheless gave some important predictions that were in accord with 

experiment - predictions that were therefore obtained in a heuristic 
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manner. The enormous practical ramifications of Maxwell’s classical 

electromagnetism and Einstein’s special relativity were not in any way 

affected by the flawed manner in which these theories were discovered. 

9. Summary and Conclusions 

Assuming that a reference frame, S, exists in which light propagates 

isotropically with uniform speed, as well as the validity of the time 

dilation relation (2.9) (which is an immediate consequence of the interval 

LT (2.1)-(2.4)), measurements of time intervals between light signals 

recorded by the single clock 0C′  at rest in an arbitrary inertial frame S′  

are sufficient to determine the parameters cv=β  and θ  specifying the 

relative motion of the frames S and .S′  This is done up to corrections of 

order cv  by use of Eqs. (3.6) and (3.7) or exactly (to all orders in )cv  by 

use of Eqs. (4.6) and (4.7). This knowledge of the motion of the frame S′  

relative to S enables two (or three) clocks at rest in S′  to be synchronised 

by exchange of light signals using the procedures described in Section 3 

(or Section 4). 

These determinations of the relative motion of two inertial frames are 

counter examples to Poincaré’s statement of the special relativity 

principle as the impossibility, by internal measurements, to detect 

uniform translational motion. Another counter example is provided by 

observation of time intervals recorded by clocks moving with a uniform 

velocity relative to the frame ,S′  as described in Section 6. This method of 

internal detection of relative motion has been verified by the Hafele-

Keating experiment. 

Actual examples of reference frames where light propagates, to a very 

good approximation, uniformly and isotropically are the local reference 

frame, at any point in the Universe, distant from discrete gravitating 

objects, where the observed frequency of the CMB is isotropic, or the ECI 
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and SCI frames in the proximity of the Earth and Sun respectively, as 

discussed in Section 7. The approximate isotropy and uniformity of light 

propagation in these preferred frames is a consequence of general 

relativity and of relativistic kinematics (Eq. (7.3)) if light is assumed to 

consist of massless (or very light) particles. 

The concept of ‘Conventionality of Clock Synchronisation’ and its 

corollory, Poincaré’s formulation of the special relativity principle as a 

statement of the impossibility of internal detection of uniform 

translational motion, stems from misinterpretation of the results of the 

MME and its successors. It was assumed that the aether frame in the 

vicinity of the Earth is the SCI frame, not as predicted by general 

relativity, and confirmed by observation of the Sagnac effect, the ECI 

frame. Because the magnitude of the ‘aether wind’ associated with the 

ECI frame is a factor 210−  weaker than for the SCI frame no MM-type 

experiment was sufficiently sensitive to observe it. Wrongly interpreting 

the negative result of the MME as evidence for length contraction, it was 

concluded (from Eq. ((8.2)) that the two-way speed of light is the same in 

all inertial frames. On further assuming that clock synchronisation is 

possible only by exchange of light signals, as suggested by Einstein, it 

follows that no measurement of the one-way speed of light is possible. 

Since then no physical significance could be assigned to one-way light 

speed, the concept of ‘Conventionality of Clock Synchronisation’, 

analogous to ‘gauge freedom’ in classical electromagnetism was 

introduced. 

Actually the MME does not give evidence for the existence of length 

contraction and, as described in Sections 5 and 6, many methods of clock 

synchronisation, not relying on light signal exchange, exist. If any one of 

these is used there is no problem to measure the one-way speed of light. 

Furthermore, if the clock separation is defined and measured in the 

frame S, the two-way speed of light (see Eqs. (2.7) and (2.12)) is not the 
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same in the frames S and .S′  In summary the ‘Conventionality of Clock 

Synchronisation’ concept is invalid, being based on misinterpreted 

experimental data and the false theoretical premise of frame 

independence of the two-way speed of light. 

In the calculations presented in Sections 2, 3 and 4, only space-time 

geometry in the frame S was considered, i.e., the Galilean definition of 

velocity of postulate (ii). There was no mention of the speed of light in the 

frame .S′  However, using the postulate (ii) also to define the velocity of a 

light signal in the frame ,S′  it follows that, at order ,cv  for a light signal 

moving parallel to the x-axis, the speed of light in the frame S′  is vc ±  

(Eq. (8.4)), not c, as tacitly postulated by Einstein in Ref. [5], in spite of 

giving explicitly, in the same paper, Eq. (8.3) which contradicts this 

postulate. Indeed as pointed out elsewhere [51], light speed c in the frame 

S’ is also incompatible with the existence of the Sagnac effect. Thus if 

Galilean space-time geometry5 holds for velocity measurements in both S 

and S′  and the time dilation effect of special relativity occurs (as is 

confirmed by experiment [52]), the special relativistic concept most at 

odds with common sense - the frame independence of the speed of light - 

is untenable. How mathematical errors in Einstein’s original special 

relativity paper [5] obscured this antinomy between the second postulate 

and Einstein’s Eq. (8.3) above is explained in Section 8. 

The motivation for Einstein’s second postulate was most likely the 

invariance of Maxwell’s equations under the LT and Maxwell’s 

identification of light with ‘electro-magnetic waves’, derived from free 

space Maxwell’s equations, which in virtue of the frame-invariance of 

these equations, must have the same speed in all inertial frames. 

However, according to the argument just given, this is impossible. 

Such ‘free space’ electromagnetic waves also cannot be identified with the 

                                                           

5i.e., that time and space intervals are related as in postulate (ii) of Section 2. 
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photons of quantum electrodynamics which of necessity have a source in 

order to exist and, if they participate in an observed physical process, 

must also have a sink, i.e., must be both created and destroyed. 

These antinomies are simply resolved if it is finally recognised that 

light really does consist of particles - the light quanta, for the discovery of 

which, Einstein was awarded the Nobel Prize - not (Maxwell’s fame 

notwithstanding) electromagnetic waves in free space. 

In Maxwell’s theory such waves were considered to be disturbances 

of, i.e., attributes of, some luminiferous aether in just the way that ocean 

waves are attributes of the ocean and sound waves attributes of the air. 

The essential particulate ontolgy of any valid description of light is then 

completely missing. 

From this modern perspective, Maxwell’s prediction of 

‘electromagnetic waves’ with the same speed as light, would be considered 

as a valid heuristic motivation for Hertz’ experiments in which low 

energy photons were first discovered6. 

Similarly in Einstein’s first special relativity paper, an incorrect 

derivation of the LT, based on the second postulate, was given, but the LT 

was then used to correctly derive time dilation and the equivalence of 

mass and energy [48]. The role of the second postulate, like Maxwell’s 

‘electromagnetic waves’, was again a heuristic one. In contrast, in spite of 

its title, Einstein’s recognition that light does consist of particles [44] is, 

by itself, a major advance in the understanding of nature, not a heuristic 

one: a false argument or postulate that still leads to a prediction that does 

correctly describe some aspect of the real world. Maxwell’s derivation of 

the existence of electromagnetic waves as a consequence of his 

electromagnetic field equations and Einstein’s postulate concerning the 

                                                           

6Hertz actually showed that the one-way speed of ‘electromagnetic waves’ created by an 
antenna was, at large distances from the source, equal to the speed of light [53, 54]. 
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constancy of the speed of light, were both heuristic in this sense. 

Appendix 

 

Figure 3. Scheme of an experiment to determine the parameters θ,v  

and D, by measuring the epochs of spatial coincidences of the clock 1C′  

with the clocks +F  and ,B+  and of the clock 0C′  with the clocks −F  

and .B−  The synchronised clocks +−+ B,F,F  and −B  are at rest in the 

frame ,S  0C′  and 1C′  at rest in the frame .S′  See text for discussion. 

An experimental set-up to measure the geometrical parameters θ,D  

and the common velocity, v, in the frame S of the clocks 0C′  and 1C′  

discussed in Section 2 is shown schematically in Figure 3. Synchronised 

clocks +−+ B,F,F  and −B 7 are at rest in S at the corners of a rectangle of 

known dimensions. Lines joining +F  to +B  and −F  to −B  are parallel to 

                                                           

7F stands for ‘front’ and B for ‘back’ as viewed from the moving clocks 0C′  and .C1′  
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the x-axis and the direction of motion of 0C′  and .C1′  The epochs of the 

clocks at rest in S are recorded when the x-coordinates of 1C′  and +F  or 

,B+  or 0C′  and −F  or −B  are the same. Denoting the epochs of these 

spatial coincidences as: ( ) )( ( )−++ FtBtFt ,,  and ( )−Bt  the space-time 

geometry of Figure 3 gives the relations: 

( ) ( ) ,
v

L
FtBt x=− ++  (A.1) 

( ) ( ) ,
cos

v

DL
FtBt x θ−

=− −+  (A.2) 

( ) ( ) .
v

L
FtBt x=− −−  (A.3) 

The velocity v is determined by (A.1) and (A.2) as: 

 
( ) ( ) ( ) ( )

.
11

2 


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
−

+
−

=
−−++ FtBtFtBt

L
v x

 (A.4) 

The geometry of Figure 3 gives: 

 yLD =θsin  (A.5) 

while transposing (A.2) gives: 

 [ ( ) ( )].cos −+ −−=θ FtBtvLD x  (A.6) 

The parameters θ  and D are then determined by (A.5) and (A.6) to be: 

( ) ( )][
,arctan 





−−

=θ
−+ FtBtvL

Ly

x

 (A.7) 

[ ( [ ( ) ( )]) ]2
1

22
−+ −−+= FtBtvLLD xy  (A.8) 

where v is given by Eq. (A.4). 
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