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Abstract 

Some new exact solutions of the SU(2) Yang-Mills gauge field equations 

are obtained by solving their ansatz reduced scalar field equations, 

using similarity group transformations. The solutions are classified and 

briefly discussed. 

1. Introduction 

The basis of symmetry principle in Physics is that, some properties 

remain invariant under certain transformations. Gauge theories [1] are 

characterized by their invariance under a group (gauge group) that 

defines the symmetry transformations and gauge theories are classified 

into Abelian and non-Abelian types. The simplest gauge group is U(1) and 

that corresponding gauge theories are called Abelian gauge theories. If 

higher symmetry groups such as SU(2), SU(3), etc. are involved then that 
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becomes non-Abelian. Yang and Mills [1], [2] (YM) generalized the 

principle of gauge invariance to the case where invariance is associated 

with a non-Abelian internal symmetry group SU(2), that are of great 

interest in contemporary field theory and Particle Physics, especially in 

the context of unified model of fundamental interactions. Even then YM 

field equations have not been solved in a general settings. In this study, 

we are reporting particular solutions of YM field equations that are 

reduced by ansatz. 

The basic dynamical variables of SU(2) YM theory are the vector 

potential aAµ  carrying, space time index µ  and internal symmetry index 

a, which ranges over 1, 2 and 3. The YM fields νµF  are related to the 

potential aAµ  by 

 ,cbabcaaa AAeAAF ννννν µµµ +∂−∂= �  (1.01) 

where e is the coupling constant. The equation of motion is 

 .0=µ
µ

νFD  (1.02) 

A YM theory with a local gauge symmetry breaking potential is 

characterized by the Lagrangian 

 ( ).
4

1

4

1 222 AAFFL a
a µ+λ−−= µ

µ
ν

ν  (1.03) 

The first non-Abelian YM solution was found by Wu and Yang [3] which 

is point like where the gauge potential behaves like 
r

1
 everywhere, 

describe a point-like, non-Abelian magnetic monopole attached to a 

string. 

The SU(2) gauge theory with Higgs triplet is defined by the 

Lagrangian 

 ( ) ,
2

1

2

1

2

1

4

1 22 aaaaaaaaFFL φφλ−φφµ+∏∏−−= µ
µ

µ
µ

ν
ν  (1.04) 
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where 

 .cbabcaa Ae φ+φ∂=∏ µµµ �  (1.05) 

The equation of motion is 

 ,0=
φ∂

φ∂
−∏+∏∂ µ

µ
µ V

Ae cbabca
u �  (1.06) 

and 

 ( ) ( ) .
4

1

2

1 22 aaaaV φφλ+φφµ−=φ  (1.07) 

Wu and Yang [4] developed an ansatz in which fields are assumed to be 

spherically symmetric. Then Wu-Yang-‘tHooft-Julia-Zee ansatz [4] 

further modified the equation of motion to a special case, that becomes 

( ,)1 22

2

2

2

2
2 KHKK

t

K

r

K
r +−=









∂

∂
−

∂

∂
 (1.08) 

( ).2 2223
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e
HK
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H

r

H
r −

λ
+=









∂

∂
−

∂

∂
 (1.09) 

Prasad and Sommerfield [5] further simplified by assuming 0=λ  and 

reported its static version and a finite energy static point monopole 

solution, for which, time dependent solutions reported by this author [6] 

by similarity group transformations. 

By means of a specific ansatz [7], [8], [9], the YM potential aAµ  can be 

reduced and the equation of motion of pure YM theory to scalar 4φ  

equation of motion. In Minkowski space, it is of the form 

,0 φ

φ∂
±= aa i

eA  (1.10) 

.0 φφ∂δ±φφ∂= ainian
a
ieA �  (1.11) 
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While in Eucledian space the above ansatz is 

,0 φ

φ∂
= aaeA m  (1.12) 

.φφ∂δ±φφ∂= oainian
a
ieA �  (1.13) 

In both cases the equation of motion of pure SU(2) YM theory becomes 

scalar massless 4φ  equation 

 ,3λφ−=φ�  (1.14) 

where λ  is an integration constant. 

The self duality-condition 

 ,a
n

a
n BE ±=  (1.15) 

implies 

 ,0=φφ�  (1.16) 

then both a
n

a
n ΒE and  are proportional to naδ  and the Lagrangian is 

 ( ) .
2

3 32 φφ





−±= �eDL  (1.17) 

In this study, we report new solutions of Equations (1.12) and (1.14) by 

using similarity group transformations. 

The self duality condition implies the energy-momentum tensor 

.0=θµν  Then the formula for the topological charge of a non-singular 

solution is [10] 

 ( ).
16

1 22

2
φφ∂Ω






 π±= µµ

∞→∫ �xxdq
x

 (1.18) 

If ( )α→φ 2/ xc  as, ,2 ∞→x  then topological charge is .α±=q  Then φ  

has only two values, .21,1=α  For 1=α  is the instanton solution and 
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21=α  is called meron solution with λ  arbitrary. 

Witten [11] introduced the following ansatz, for the Euclidean gauge 

potential: 

,00 A
r

x
eW oa =−  (1.19) 

( ) ,
1

1 122

0
22

φ







−δ++φ+=−

rr

xx

r

xx

r

x
eW ia

ai
in

ian
a

i
�  (1.20) 

where ( ) ( ) ( ) ( )rxrxrxArxA ,and,,,,, 02010100 φφ  are functions of =r  

( ) 212
3

2
2

2
1 xxx ++  and .0x  This ansatz is symmetric about the time axis 

in .4E  In three dimensional space this corresponds to symmetry under 

spatial rotation. Then equations of motions are 

( ) ,22
baab DFr φφ=∂ νµνµ �  (1.21) 

( ).1 2
2

2
1

2 φ−φ−φ=φµµ aaDDr  (1.22) 

Meron solution corresponds to ,0,0 1 =φ=µA  then Witten’s ansatz 

reduced equation of motion is 

 ( ) ( ).1 2
2221100

2 φ−φ=φ∂∂+∂∂r  (1.23) 

This is the equation of motion of 4φ  theory in two-space-time dimension 

with curved metric .2
µνµν δ= rg  In this study, we report new exact 

solutions of (1.23) by similarity group transformation. 

Manton [12] reported that if 0=∂ µµA  is satisfied then any solutions 

obtained from Witten’s ansatz is gauge equivalent to 4φ  solution 

independently from assumptions such as self duality. 
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2. Similarity Group Transformations of 

Differential Equations 

We shall give essential details of the Lie continuous point group 

similarity transformation method to reduce the number of independent 

variables of a partial differential equation (PDE) so obtaining respective 

ordinary differential equation (ODE) [13]. Let the given PDE in two 

independent variables x and t and one dependent variable u be 

 ( ) ,0...,,,,,,, =xxttxt uuuuutxP  (2.1) 

where K,, xt uu  are partial derivatives of dependent variables ( )txu ,  

with respect to the independent variable t and ,x  respectively. 

When we apply a family of one parameter infinitesimal continuous 

point group transformations 

( ) ( ),,, 2�� OutxXxx ++=  (2.2) 

( ) ( ),,, 2�� OutxTtt ++=  (2.3) 

( ) ( ),,, 2�� OutxUuu ++=  (2.4) 

we get the infinitesimals of the variables tu,  and x  as ,,, XTU  

respectively and �  is an infinitesimal parameter. The derivatives of u  are 

also transformed as 

[ ] ( ),2�� OUuu xxx ++=  (2.5) 

[ ] ( ),2�� OUuu xxxxxx ++=  (2.6) 

[ ] ( ),2�� OUuu tttttt ++=  (2.7) 

where [ ] [ ] [ ]ttxxx UUU ,,  are the infinitesimals of the derivatives ,, xxx uu  

,ttu  respectively. These are called first and second extensions and that 

are given by [13] 
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[ ] ( ) ,2
txxtxxuxxuxx uuTuTuXuXUUU −−−−+=  (2.8) 

[ ] ( ) ( ) ,22 32
xuuxxuuuxxxxuxxxx uXuXUuXUUU −−+−+=  

( ) txuutxxutxxxxxuxxxu uuTuuTuTuuXuXU 2232 −−−−−+  

,22 xxtutxxuxtx uuTuuTuT −−−  (2.9) 

[ ] [ ] [ ] 222 tuuuuxttttttutttt uTUuXuTUUU −+−−+=  

[ ] ,222 23
xtttttuxtuutuutxtu uXuTUuuXuTuuX −−+−−−  

.33 txtuxttutttu uuXuuXuuT −−−  (2.10) 

The invariant requirements of given PDE (2.1) under the set of above 

transformations lead to the invariant surface conditions 

[ ] [ ] [ ] .0=
∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂

xx
xx

tt
tt

x
x u

F
U

u

F
U

u

F
U

u

F
U

x

F
X

t

F
T  (2.11) 

On solving above invariant surface condition (2.11), the infinitesimals 

UTX ,,  can be uniquely obtained, that give the similarity group under 

which the given PDE (2.1) is invariant. This gives 

 .0=−+
dU

du

dx

du
X

dt

du
T  (2.12) 

The solution of (2.12) are obtained by Langrange’s condition 

 .
U

du

X

dx

T

dt
==  (2.13) 

This yields 

( )21,, cctxx =  

and 

( ),,, 21 cctuu =  (2.14) 
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where 1c  and 2c  are arbitrary integration constants and the constant 1c  

plays the role of an independent variable called the similarity variable η  

and 2c  that of a dependent variable called the similarity solution ( ),ηu  

such that exact solution of given PDE becomes 

( ) ( )., η= utxu  (2.15) 

On substituting (2.15) in given PDE (2.1), it is reduced to an ordinary 

differential equation with η  as independent variable and ( )ηu  as 

dependent variable. 

3. Exact Solutions of Witten’s Ansatz 

Reduced Equation 

By Witten’s ansatz, the equation of motion of YM theory becomes 

(1.23), for simplicity, we replace 2φ  by ,u  gives 

 ( ) .32 uuuur rrtt −=+  (3.1) 

So the PDE (3.1) can be written as 

 ( ) .0,,,, =rrtt uuurtF  (3.2) 

Then the invariant surface condition (2.12) becomes 

 [ ] [ ] .0=
∂

∂
+

∂

∂
+

∂

∂
+

∂

∂

rr
rr

tt
tt u

F
U

u

F
U

u

F
U

r

F
R  (3.3) 

On substituting the expansions for [ ]ttU  and [ ]rrU  as second extensions 

(2.9) and (2.10) in the following equation: 

 ( ) [ ] [ ] ( ) ,0132 222 =−++++ UuUrUruurR rrttrrtt  (3.4) 

we get 

( ) { [ ] [ ] 22 222 ttuuurttttttuttrrtt uTUuRuTUUruurR −+−−++  
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[ ] ttturttttturtuutuutrtu uuTuRuTUuuRuTuuR 3222 23 −−−+−−−  

} { ( ) rrrrurrtrturttu uRUUruuRuuR −++−− 23 2  

( ) ( ) trrrrrurrruruurruuu uTuuRuRUuRuRU −−−+−−+ 322 32  

}rrtutrrurtrtruutrru uuTuuTuTuuTuuT 222 2 −−−−−  

( ) .013 2 =−+ Uu  (3.5) 

On solving for ,,, UTR  by equating coefficients of derivatives of ( ),, tru  

we get many constrained equations, out of which the essentials are the 

following: 

( ) ( ) ,013 22 =−++ UuUUr rrtt  

( )

( )

.0,0,0

,0,022,022

,0,022,02

,0,022,02

,02,02,02

2

2

=−===

=−=−=−

=−+=−+=−

==−+=−+

=====−−

RrTXTT

RrRrTRTR

RrTTRUrrRTU

UTUrrRRUR

UUURUTTU

tuuuu

rrtrutu

rrttrutuuu

turrrutt

truruuurrtttu

 

(3.6) 

On solving the above constrained Equation (3.6), we get 

,2 rrtR κ+λ=  

( ) ,22 σ+κ++λ= ttrT  

,0=U  (3.7) 

where σκλ ,,  are integration constants, for which we get three Lie group 

generators [13] 
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( ) ,2 22
1 t

tr
r

rtG
∂

∂
++

∂

∂
=  

,2 t
t

r
rG

∂

∂
+

∂

∂
=  

,3 t
G

∂

∂
=  (3.8) 

and they satisfy the following Lie algebra: 

 [ ] [ ] [ ] .2,,,,, 213332121 GGGGGGGGG =−=−=  (3.9) 

Substitute (3.7) in the Lagrange’s condition (2.13) 

 .
U

du

T

dt

R

dr
==  (3.10) 

From first two, we get the similarity variable χ  as integration constant 

( ) 0,
4 2

2
22 ≠λ









λ

κ
+

λ

κ
++=χ

t
rtr  (3.11) 

and the similarity solution as 

( ) .
4

where,
2

2

λ

κ
=σχ= uu  (3.12) 

Substitute (3.12) in (3.1) that reduces to an ordinary differential equation 

 ,3

2

2
2 uu

d

ud
−=

χ
χ  (3.13) 

where ( ).χ= uu  For ( ),exp z=χ  (3.13) becomes 

 ( ).where3

2

2

zuuuu
dz

du

dz

ud
=−=−  (3.14) 

All the solutions of (3.13) and (3.14) are exact solutions of the Witten’s 

ansatz reduced PDE (3.1), through the similarity variable χ  of Equation 
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(3.11). 

Since ,0=U  in the set of infinitesimals (3.7), the exact form of the 

right hand side of Equation (3.1) is not depending in the above similarity 

reduction to ODE. 

We found 

 ( )
31

31

1 αχ±

αχ±
=χu  (3.15) 

as an exact solution of the following modified form of (3.13) and (3.14) as 

( ),
9

2 3

2

2
2 uu

d

ud
−

−
=

χ
χ  (3.16) 

and 

( ),
9

2 3

2

2

uu
dz

du

dz

ud
−

−
=−  (3.17) 

respectively. 

The α  is a nonzero arbitrary integration constant. Hence 

 ( ) ,
1

,
31

31

αχ±

αχ±
=tru  (3.18) 

where χ  given by Equation (3.11) is an exact solution of the following 

modified Witten’s ansatz reduced equation: 

 ( ) ( ).
9

2 32 uuuur rrtt −
−

=+  (3.19) 

If we put 0=κ  in the similarity variable (3.11), we get another exact 

solution of Equations (3.16), (3.17) and so of (3.19) where new similarity 

variable is ,1χ  

 
( )

,
221

rt

r

+
=χ  (3.20) 
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and 

 ( ) .
1 31

1

31
1

1
αχ±

αχ±
=χu  (3.21) 

4. Similarity Transformatin of Klein-Gordon Equation 

Here we apply the similarity method to find exact solutions of the 

Klein-Gordon equations 

 ( ),φ=φ g�  (4.1) 

where ( )φg  can be zero, .orand, 153 +λφλφλφ− n  

For simplicity, we replace φ  by u and apply the similarity method for 

two independent variables X  and t, then extent to ( )13 +  dimensions. So 

(4.1) becomes 

 ( ).uguu xxtt =+  (4.2) 

So general form of (4.1) is 

 ( ) .0,,,, =txuuuF ttxx  (4.3) 

The invariant surface condition (2.11) gives 

 [ ] [ ]
( )

.02 =
∂

∂
+

∂

∂
+

∂

∂

u

ug
U

u

F
U

u

F
U

tt
tt

xx
xx  (4.4) 

On substituting the expansions of [ ] [ ],, ttxx UU  we get the constrained 

equations as 

,0,0

.0,02,02

,0,0,0

=−=−

===+−=−−

======+

tuxutx

uxxttttuttxuxx

utuxttxu

XTXT

XXTTUXUX

UTTXXUU

 

(4.5) 
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On solving above set of constraints, we get [14, 15] 

,ω+= ctX  

,k+= cxT  

.0=U  (4.6) 

The Lagrange’s condition (2.13) is 

 
( ) ( )

.
0

du

ct

dx

cx

dt
=

+ω
=

+k
 (4.7) 

This gives the similarity variable η  as an integration constant, when 

solve first two factors of (4.7), as we get 

 ( ) ( ) ,
22

22
22


















 ω−
+ω−+−=η

c
txtx

c k
k  (4.8) 

where ωand,, kc  are arbitrary constants and .0≠c  

Then the similarity solution of the PDE (4.2) is 

 ( ) ( )., η= utxu  (4.9) 

On substituting (4.9) in the given PDE (4.2) through the similarity 

variable (4.8), we get 

 
( ) ( )

( ).
2

2

ug
d

du

d

ud
−=

η

η
+

η

η
η  (4.10) 

Any solution of (4.10) is also exact solution of (4.2) through the similarity 

variable (4.8). 

Case 1. 

When ( ) ,0=ug  then Klein-Gordon (KG) equation is 

 .0=− xxtt uu  (4.11) 

From (4.10) we get an exact solution of (4.11) as 
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 ( ) ( ) .
22

ln,
22

22

















 ω−
+ω−+−=

c
txtx

c
txu

k
k  (4.12) 

Case 2. 

When ( ) ,3uug λ−=  then we have the massless 4λφ  equation 

 .
2

5
where3 c

uuu xxtt
−

=λλ−=−  (4.13) 

For (4.13), we get an exact new solution 

 ( ) ( ) ( ) .
22

,

2122
22

−


















 ω−
+ω−+−=

c
txtx

c
txu

k
k  (4.14) 

Case 3. 

When ( ) ,
2

5 5u
c

ug
−

=  then the KG equation is 

 ,
2

5 5u
c

uu xxtt
−

=−  (4.15) 

and its exact solution becomes 

 ( ) ( ) ( ) .
22

,
22

22

















 ω−
+ω−+−=

c
txtx

c
txu

k
k  (4.16) 

Case 4. 

In general when ( ) ,1+= nuug  for any positive integer n the KG 

equation is 

 ,1+= n
xxtt uuu  (4.17) 

and its exact solution is 

 ( ) ., 1 ntxu −η=  (4.18) 

Obviously, above similarity variable η  fails to produce the exact solution 
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when ( ) uug =  as n becomes zero. 

Case 5. 

All of the above exact solutions of KG equations can be extended to 

( )13 +  dimensions with the following modified similarity variable as ,1η  

( ) ( ) ( ) ( )[ ]tztytxtzyx
c

332211
2222

1 2
ω−+ω−+ω−+−++=η kkk  

( ) ( )
,

2

2
3

2
2

2
1

2
321











 ++−ω+ω+ω
+

c

kkk
 (4.19) 

that satisfies the KG equation 

 ( ) ( ),φ=φ f�  (4.20) 

where ( )1ηφ=φ  and ( )φf  takes the values, .,,0 53 λφ−λφ−  

From the infinitesimals (4.6), we have three Lie group generators 

[13], [14], [15], ,iX  ,3,2,1=i  corresponding to three constants and, ωc  

,k  

,1 x
t

t
xX

∂

∂
+

∂

∂
=  

,2 x
X

∂

∂
=  

.3 t
X

∂

∂
=  (4.21) 

They obey the Lie algebra 

[ ] ,, 321 XXX −=  

[ ] ,, 212 XXX =  

[ ] .0, 32 =XX  (4.22) 

These three Lie group generators produce three different types of exact 
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solutions to KG-family of Equations (4.20) [15]. The generator 1X  

represents hyperbolic rotation invariant solutions with respect to the 

infinitesimals 

,ctX =  

,cxT =  

.0=U  (4.23) 

And respective similarity variable η  is 

 ( ).
2

22 tx
c

r −=η  (4.24) 

Then similarity reduced ODE corresponds to KG Equation (4.1) is 

 ( )uf
d

df

d

fd

rr

r =
η

+
η

η
2

2

 (4.25) 

for which all the above solutions are valid with .0,0 =ω=k  That is very 

rarely mentioned in other studies. 

For the generator ,2X  we get translation invariant solutions of KG 

equations corresponding to the infinitesimals 

,k=T  

,ω=X  

.0=U  (4.26) 

For which the similarity variable is ,Tη  

 ( ).txT ω−=η k  (4.27) 

That class represents the all travelling wave type of solutions. When we 

take the full similarity variable (4.8) or (4.19), we get third class of 

solutions mentioned in above study. This method of splitting of similarity 
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variables for various types of solutions, this author reported in the 

context of exact solutions of SU(2) Yang Mills-Higgs monopole solutions 

[6] and in the case of variable coefficient KdV equations [16]. 

5. Discussion 

It is found that similarity Lie point group transformation method is a 

powerful tool for solving nonlinear PDE by converting to ODE. But 

method works only when given PDE is invariant under some similarity 

group of transformation, that need not happen always. One meron 

solution of the YM theory was first reported by de Alfaro et al. [17] and 

that was developed from the 4φ  ansatz, it is 

.1 2xλ=φ  (5.1) 

They also constructed the two meron solution as 

[( ) ( ) ( ) ].222
bxaxba −−λ−=φ  (5.2) 

Clearly solution (5.1) is a special case of (5.2) when →λ∞→→ ,,0 ba  

∞  and λ2b  is finite [10]. Our exact solutions of massless 4φ  equation 

 ( ) ( ) ( ) ,
22

,

2122
22

−








 ω−
+ω−+−=φ

c
txtx

c
tx

k
k  (5.3) 

is very much similar to above solution (5.1) when hyperbolic rotation 

invariance alone is considered when .0=ω=k  

Our solution (5.3) 

 ( ) ( ) .as,
212 ∞→→ xxctxu  (5.4) 

Implies represents a meron with topological charge ,2
1=q  [10]. 

In addition to two types of exact solutions (3.11) and (3.16) there 

exists a possibility of another type of exact solution using the similarity 
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variable 

 ,







α+
=τ

t

r
 (5.5) 

which corresponds to the infinitesimals of (3.7) 

,rR k=  

,
4 2

2

λ
+=

k
ktT  

2

2

4
,0

λ
=σ=

k
U  (5.6) 

for which Witten’s ansatz reduced Equation (3.1) becomes following form: 

 ( ) ,2 33

2

2
24 uu

d

du

d

ud
−=

τ
σ+

τ
τ+τ  (5.7) 

where ( ) ττ= anduu  is (5.5). This is found to be very difficult to solve. 

Witten’s ansatz reduced equation in terms of variable z is (3.14), its 

solution can be written as 

 ( ) ,

3

1
exp1

3

1
exp







α+







α±

=

z

z

zu  (5.8) 

where ( ).ln χ=z  This may be more easy to extend for multi meron 

solutions and it is under investigation. 

Three types of solutions we suggested for KG family of equations, are 

very rarely mentioned in other studies. This may be due to the difficulties 

to solve their similarity reduced equations, compared to the translation 

invariant case and it is associated to travelling wave solutions of soliton 

types and so that type is getting more attentions. 
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