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Abstract 

The electromagnetic potential iA  is a quadrivector in Minkowski 

spacetime kx  and its gradient [ ]i
ka  is a tensor of rank two whose 

elements are the sixteen partial derivatives .ki xA ∂∂  We study in this 

article the properties of a family of tensors resulting from [ ].i
ka  We 

first introduce the covariant tensor [ ].kia  Four initial tensors are 

obtained by separating [ ]i
ka  on the one hand, and [ ]kia  on the other 

hand into their symmetric and antisymmetric parts. These are 

([ ] [ ] [ ] [ ]).,,, kiki
i

k
i

k FSfs  As the lowering-raising index operations and 

symmetrization-antisymmetrization operations do not commute, these 

four tensors are different and each describes different physical 

phenomena: [ ]kiF  is the well-known electromagnetic tensor, [ ]kiS  

contains the source terms, [ ]i
ks  introduces the electromagnetic 
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particles and [ ]i
kf  is the origin of the electrostatic field. The article is 

divided into two main parts. In the first, we study [ ]i
ks  and [ ]i

kf  

which show that there is a particular coordinate system where the 

scalar potential obeys the Hemholtz equation. The solutions allow to 

describe the “electromagnetic particles”, characterized by three 

quantum numbers ,n  l  and .m  The condition of existence of these 

particles is related to a property of the electron described in Wheeler-

Feynman’s absorber theory. We give the potentials corresponding to the 

first five solutions. We associate a Lagrangian density L  to the 

determinant of [ ]i
ka  which is an invariant of this tensor in an 

operation of symmetry of the Poincaré group. Potential energy and 

electric charge distributions are included in the tensors properties. In 

the second part, we first check that [ ]kiF  is the usual electromagnetic 

tensor whose components are the electric and magnetic fields. We prove 

that Maxwell’s equations are obtained by applying the principle of least 

action to the 4-potential endowed with .L  The source terms (ρ  and )j
r

 

are expressed in terms of the components of [ ].kiS  The results 

obtained are covariant. The formulation of the potential and its 

derivatives being independent of scale, they unify the human and the 

electron scales, giving a new way to understand elementary particles. 

1. Introduction 

The notion of potential has been introduced by the French 

mathematician and physicist Simeon-Denis Poisson in the year 1813 

when he was studying a modification to Laplace’s equation [1]. It was 

then understood and extended [2] as a 4-vector iA  in Minkowski’s 

spacetime .kx  Its time-component is the scalar potential ,cφ  and the 

spatial part ( )zyx AAAA ,,=
r

 is the vector potential. Spacetime being 

also 4-dimensional, there are 16 partial derivatives kii
k xAa ∂∂=  which 

form the gradient tensor [ ].i
ka  The aim of this article is to describe some 

mathematical properties which can be deduced from [ ]i
ka  and to 
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interpret them in the context of electromagnetism and elementary 

particles. 

We will show that [ ]i
ka  is the source of four different tensors: one of 

them is the Faraday tensor [ ],kiF  or the electromagnetic tensor, which 

was described by Hermann Minkowski as early as 1909 [3]. This tensor is 

usually deduced from Maxwell’s equations and classical textbooks in 

electromagnetism [4, 5, 6] describe [ ]kiF  as an object which neatly groups 

the components of the electric and magnetic fields. An essential 

application of [ ]kiF  is to show that a pure electric field in a standing 

system of coordinates gives a magnetic field in a moving system through 

a Lorentz transformation. 

[ ]kiF  is only one member of a family of tensors which are obtained 

from [ ]i
ka  at each event M  in spacetime. The members of this family 

are generated through the use of two operations which do not commute: 

(1) The raising-lowering ( )r.l.  index operation which is done with the 

metric tensor and 

(2) The antisymmetric-symmetric ( )a.s.  splitting which makes use of 

the transpose of the tensors. 

Four different tensors are thus obtained. One of them is [ ],kiF  it 

results from the lowering index operation acting on [ ]i
ka  followed by the 

a.s. operation where it corresponds to the antisymmetric part. 

This preliminary remark has led us to study the properties of each of 

these tensors and to develop a general theory where the sole assumption 

is that of a 4-potential iA  in a flat spacetime. A characteristic of these 

tensors is that their formulation is scale-independent. They should 

thus be perfect tools to unify phenomena at ordinary and microscopic 

scales. 
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Indeed, many unsolved problems in modern physics are due to the 

difficulties associated with scaling. One of the most important is the 

structure of a “point-like” particle. In string models, such an idealized 

particle is represented by a one dimensional object called a string. 

However, despite the abundance of developments in these models the 

solution remains questionable [7, 8]. We show in this article that the 

potential theory offers a new way to solve it and especially a method to 

unify macroscopic and microscopic scales. 

The first authors to use tensor techniques to study the properties of 

an elementary particle, the electron, were Max Born and Leopold Infeld 

in the year 1934 [9]. However, their attempt was not successful because 

their tensor was phenomenological: the antisymmetric part was indeed 

[ ]kiF  but the symmetric part was chosen to be the metric tensor and both 

parts of the tensor were of a different nature. The tensors we use in this 

article were obtained from [ ]i
ka  and [ ]kia  and both parts are 

combinations of partial derivatives. 

The non-commutativity mentioned above leads to divide the theory 

into two parts: 

The first part is based on the study of the symmetric ([ ])i
ks  and 

antisymmetric ([ ])i
kf  parts of [ ].i

ka  We show that a proper time exists 

in which the scalar potential obeys a Helmholtz equation whose solutions 

describe “electromagnetic particles”. Splitting [ ]i
ka  into its symmetric 

and antisymmetric parts induced us to associate the former to the 

description of the mass and the latter to the field which could explain the 

particle-field duality. 

The second part is based on the study of the symmetric ([ ])kiS  and 

antisymmetric ([ ])kiF  parts of [ ].kia  There is absolutely no reason to 

reduce [ ]kia  to its antisymmetric part [ ]:kiF  we will show that both 
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parts contribute to Maxwell equations. If [ ]kiS  is forgotten, which is the 

case in classical electromagnetism, it becomes necessary to replace it with 

phenomenological quantities. These are charges and currents: we 

demonstrate that they can be expressed in terms of the elements of [ ].kiS  

A key point of the theory is the association of a Lagrangian density 

with [ ].i
ka  This density is a local scalar invariant of the tensor and plays 

a central role: it allows the description of the structure, or the geometrical 

distribution of energy in the particle where it is used to compute the 

canonical momenta. In the second part, it is used to deduce Maxwell’s 

equations from [ ]kia  through the least action principle. 

The second section of this paper describes the few basic assumptions 

and the notations. 

The third section develops the properties of the electromagnetic 

particles. Solutions of the Helmholtz equation in the proper time of [ ]i
ka  

describe these particles which are classified by three quantum numbers 

,n  ,l  .m  We studied the spatial distribution of energy and the electric 

charge of these solutions. Here an interesting result occurs: while the 

distribution of field and mass energies are different, their sum, when 

integrated over spacetime, vanishes. A second important result concerns 

the electric charge: it is found that it can be different from zero for the 

even and odd solutions ,1=n  0== ml  only, which confers the status 

of electron and positron to these solutions. Finally, we obtained the 

tensors of a spinning particle. 

In the fourth section, we computed the electromagnetic inductions 

which are the derivatives of the Lagrangian with respect to the fields. 

The second set of Maxwell’s equations is obtained from Euler-Lagrange 

equations. A new result is the expression of the sources (charge ρ  and 

current j
r

 densities) in terms of the elements of [ ].kiS  
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Associated with this subject is the question of the preeminence of 

potentials and fields which arises in standard textbooks on classical 

electromagnetism: In ref. [4], electric and magnetic fields are deduced 

from a 4-potential. In refs. [5, 6], the 4-potential is deduced from the 

fields. In classical theory, fields are more fundamental than the potential 

because they are observable quantities and the 4-potential is a Deus ex 

machina which can be seen only through its gradient [ ].i
ka  In quantum 

theory, it is the potential that is more fundamental as illustrated by the 

Aharonov-Bohm effect [10, 11]. Recently, two articles [12, 13] have been 

published where the authors develop Richard Feynman’s idea of 

introducing potentials before fields [14]. The theory which is presented 

here brings the proof that the potential is also more fundamental than 

the fields in classical electromagnetism. 

 

Figure 1. Schematics of the three frames of coordinates in the geometrical space. M  is 

the point of observation. Tensors leading to Maxwell’s equations are expressed in the 

laboratory frame. Electromagnetic particles tensors are first described at M  in spherical 

coordinates ,r  ,θ  ϕ  with M  fixed with respect to the origin .Op  A particle spinning 

around the Z  axis is described by the tensors obtained from a local Lorentz transformation 

at .M  Note that M  close to pO  allows the description of the structure of the particle. 

The long range behavior of the particle is obtained when M  is far from .Op  
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2. Foundations and Notations 

The theory that we are developing is nothing but the study of the 

properties of the electromagnetic potential and its derivatives in different 

frames of observation. It is based on few ingredients: 

1- One considers a point M  (an “event”) in a continuous and flat 

Minkowski’s spacetime where the observer is located. Given a coordinates 

frame with an origin ,O  M  is defined by the vector .OM  

The natural coordinates [17] will be used to describe the 

electromagnetic particles in Section 3. They happen to be the proper time 

and the geometrical spherical system at .M  On the other hand, 

Maxwell’s equations are covariant and can be computed in any coordinate 

system. 

We will thus have two independent Cartesian coordinate systems 

with two different origins, the first is the laboratory frame with origin .O  

Let us name the second the particle frame with pO  as an origin. The 

external and internal coordinates of M  are noted, respectively, as =kx  

( )zyxct ,,,  and ( )ZYXcTX k ,,,=  in Cartesian coordinates. Here, t  or 

T  stands for the time, ( )zyx ,,  or ( )ZYX ,,  for the geometrical 

coordinates and c  is the speed of light. We will also use a spherical 

system of coordinates at .M  Figure 1 shows the three coordinate frames 

which will be used. The two systems of coordinates ( )zyx ,,  or ( )ZYX ,,  

are the analog to those of a moving body, where the internal degrees of 

freedom allow the description of its shape, its rotations (Euler’s angles) 

and its deformations and where the independent external coordinates are 

used to describe the motion of the center of gravity. 

2- A four-potential ( )zyxi AAAcA ,,,φ=  is associated with each 

point .M  cφ  is the scalar potential and ( )zyx AAA ,,  are the three 
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contravariant components of the vector potential in the direct space. This 

is the standard notation in classical electromagnetism. We will make use 

of the direct and the inverse spaces where the potential is defined, 

respectively, by its contravariant and covariant components. Convention 

( )1,1,1,1 −−−=η diag  is taken for the metric tensor .η  Covariant 

components of the potential in the reciprocal space are: =iA  

( )zyx AAAc ,,,φ ( ).,,, zyx AAAc −−−φ=  We divide the potential 

into two parts: the first is coherent and will describe an isolated particle 

while the second is incoherent and describes the space in which it is 

embedded. This second part originates from the fundamental noise. The 

following study will essentially be concerned by the isolated particle. 

3- The 16 partial derivatives ki xA ∂∂  of the potential are the 

components of the gradient tensor [ ].i
ka  They are obtained from the total 

derivative of each component iA  at .M  The extended form of [ ]i
ka  in a 

Cartesian frame is: 

 [ ]
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We have adopted the conventional notation: 

( )
( )

,, tc

c
c t ∂

φ∂
≡φ        ( )

( )
..., x

c
c x ∂

φ∂
≡φ  

,, tc

A
A

x
x
t ∂

∂
≡        ..., x

A
A

x
x
x ∂

∂
≡  

k  and ,i  respectively, indicate the line and the column index for a reason 

which will appear in eq. (109). The above derivatives become more 
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complicated in curvilinear coordinates where they include Christoffel’s 

coefficients [16]. 

The theory is essentially local: a particle will be described by vector 

and tensor fields. Global properties are obtained after integrations over 

spacetime. 

4- The fourth ingredient is the set of constraints that are imposed by 

nature: 

a) Coordinate transformations form the Poincaré group: they include 

translations with respect to time and space, rotations, and Lorentz 

transformations (or boosts). Tensors are characterized by invariants in 

such transformations. Our attention should thus be fixed on these 

invariants. 

b) The evolution of a system is subject to the principle of least action 

which is expressed by the Euler-Lagrange equations. 

c) The principle of relativity couples time and the geometrical 

coordinates of M  in two frames in relative motion. 

5- Finally, transformations of vectors or tensors have to obey 

mathematical rules. A fundamental concept is the splitting of a tensor 

into its antisymmetric (or skew-symmetric) and symmetric parts (a.s. 

operation). This operation does not commute with other manipulations 

such as the raising or lowering index operations (r.l. operations) 

performed with the metric tensor. This non-commutativity is illustrated 

in Appendix A. This simple law is at the origin of the splitting of 

electromagnetism into two parts where the first gives the description of 

electromagnetic particles (Section 3) and the second describes how 

Maxwell’s equations can be deduced from the gradient tensor (Section 4). 
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Table 1. Synopsis of the different electromagnetic tensors. Tensors in the upper part are 

obtained from the gradient i
ka  of the 4-potential iA  at point .M  i

ka  is split into its 

symmetric and antisymmetric parts i
ks  and i

kf  in the coordinate frame where M  is at 

rest with respect to the origin (a.s. splitting). iA  and kia  in the lower part are obtained 

from the lowering index operation acting on iA  or .ika  Then kia  is split into its 

symmetric part kiS  and its antisymmetric part kiF  which is the usual electromagnetic 

tensor. The non-commutativity of the r.l. and a.s. operations is fundamental. 

,iA  [ ]i
ka  a.s. splitting:         [ ] [ ] [ ]i

k
i

k
i

k fsa +=  

lowering i   

,iA  [ ]kia  a.s. splitting:    [ ] [ ] [ ]kikiki FSa +=  

Table (1) shows the different tensors ,kia  ,kiS  ,kiF  ,i
ka  ,i

ks  i
kf  

which will be described as we progress. One has to distinguish between 

those tensors which are defined in the pure direct space ( )i
k

i
k

i
k fsa ,,  

where contravariant components iA  and kx  only are involved and 

( )kikiki FSa ,,  where the geometrical coordinates can depend on time 

and where we need covariant components .iA  One should note that: 

1- covariant or contravariant tensors keep their symmetry or 

antisymmetry properties in a coordinate transformation which is not the 

case of a mixed tensor [15]. 

2- the determinant of mixed tensors remain invariant in a coordinate 

transformation which is not the case of a co or contravariant tensor. 

3 Tensors of Electromagnetic Particles 

The main part of this section deals with tensors written in the pure 

direct space where the geometrical coordinates do not depend on time 

(the observation point M  is fixed with respect to the origin of 
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coordinates). We first show that the natural coordinates of the tensor 

[ ]i
ka  are introduced by a Helmholtz equation whose solutions describe 

the electromagnetic particles. We first derive this equation, then 

illustrate some of its solutions and the associated tensors. Some local and 

global properties are given. The case of a spinning particle is finally 

studied. 

The point M  in Figure 1 is motionless with respect to the origin 

.Op  We will first write the derivatives in the local Cartesian frame 

( ):,,, ZYXT  .kii
k XAa ∂∂=  

We use the transpose [ ]k
ia  of [ ]i

ka  to split [ ]i
ka  into its symmetric 

([ ])i
ks  and antisymmetric ([ ])i

kf  parts: 

 [ ] [ ] [ ]i
k

i
k

i
k fsa +=  (2) 

with elements: 

( ),
2
1 ikkii

k XAXAs ∂∂+∂∂=  (3) 

( ).
2
1 ikkii

k XAXAf ∂∂−∂∂=  (4) 

The pair of tensors [ ]i
ks  and [ ]i

kf  will be a good candidate to explain 

the matter-field duality: [ ]i
kf  describes the field properties and [ ]i

ks  

contains matter waves. [ ]i
ks  will be referred to as the matter tensor and 

[ ]i
kf  as the field tensor. Note that [ ]i

kf  is not the usual electromagnetic 

field tensor (compare with eq. (97)). 

3.1. Helmholtz equation 

A Helmholtz equation for the scalar potential is demonstrated in the 

following way: 
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1- Being symmetric, [ ]i
ks  can be diagonalized provided its 

determinant does not vanish. The consequence is that a time coordinate 

t  exists in which transformed terms .01
4

1
3

1
2

4
1

3
1

2
1 ====== ssssss  

We referred to t  the proper time of the tensor. In the proper time system, 

we use the barred symbols ,tc  ,X  ,Y  Z  and ( ).,,, ZYXi AAAcA φ=  

The ordinary derivatives of a Cartesian system are replaced in a general 

system by absolute derivatives including Christoffel coefficients [16]. One 

obtains the equations: 

 ( ) ( ) ( ) 0,,,,,, =φ+=φ+=φ+ Zt
Z

Yt
Y

Xt
X cAcAcA  (5a) 

or      ( ) .0=
∂

∂
+φ

tc

A
cgrad  (5b) 

Here a symbol like ( ) Xc ,φ  generally stands for the absolute derivative 

of ( )cφ  with respect to .X  The second formulation (5b) is tensorial. Eq. 

(5b) means that in the proper time, the temporal derivative i
t

A,  is 

compensated by the spatial derivative of ( )cφ  in the direction .i  

[ ]i
ks  and [ ]i

kf  are written in the proper time frame: 

[ ] ([ ] [ ]) =+= k
i

i
k

i
k aas

2
1
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t
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 (6) 

and 
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[ ] ([ ] [ ]) =−= k
i

i
k

i
k aaf

2
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AAAAc
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 (7) 

One should note that, in the proper time, when geometrical 

coordinates are independent of time (the point M  is at rest with respect 

to the origin ),O  one has: ( ) 0=∂∂ ctx j  for 4,3,2=j  and ( ) 1=∂∂ ctct
j

 

for .1=j  It follows that the potential ( )321 ,,, AAAcAi φ=  becomes 

transformed into (( ) )321 ,,, AAAcAi φ=  in a geometrical 

transformation in the proper time. In the same way, one finds that the 

elements of the first line of the transformed tensor remain 

( )( ).0,0,0,1 cA
i φ=  

2- Now we will use the invariants of [ ]i
ks  in a time translation. There 

are four scalar invariants that are the coefficients of the characteristic 

polynomial. The most well-known are the trace and the determinant. We 

use the property of the trace of [ ]i
ks  to be invariant in a time translation 

to obtain: 

( )
0=















∂

∂
+

∂

∂
+

∂

∂
+

∂

φ∂

∂

∂

Z

A

Y

A

X

A

tc

c

tc

ZYX

 (8a) 

or      
( )

.0
22

2
=

∂

∂
+

∂

φ∂

tc

A
div

tc

c
 (8b) 

Note that the trace of [ ]i
ks  is the term that appears in Lorenz’s gauge. 
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Equations (5b) and (8b) are combined to give: 

 
( )

( ) ,0
22

2
=φ∆−

∂

φ∂
c

tc

c
 (9) 

where the symbol ∆  stands for the Laplacian. 

In the following, we will be interested in permanent oscillatory 

potentials which are proportional to ( ).cos χ+ωt  

 ( )




ω±

ω±
=χ+ω∝φ

.solutionsoddsin

,solutionsevencos
cos

t

t
tc  (10) 

0=χ  or π  and 2π±=χ  correspond, respectively, to solutions which 

are even or odd in time. These potentials obey a Helmholtz-type equation: 

 ( ) ( ) ,0
2

2
=φ∆+φ

ω
spatialspatial cc

c
 (11) 

where ( )spatialcφ  represents the spatial part of ( ).cφ  This equation is a 

tensor equation that remains the same in any system of spatial 

coordinates. 

One sees that eq. (9) is invariant under space and time reversal, i.e., 

invariant when the sign of time t  is changed. One should thus consider 

the solutions obtained with :~
tt −=  

 ( )




ω±

ω±
=χ+ω∝φ

.~sin

,~cos~cos
t

t
tc  (12) 

The even and odd solutions: ( )tc ω∝φ cos  and ( )tc ω∝φ sin  will be 

used in the following. The ±  signs do not play any role in the 

development of the theory. However one sees that the even solutions only 

remain invariant in time reversal. This property will be used to study the 

electric charge of the particles (Section 3.3.4). 
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3.2. Electromagnetic particles 

Solutions of eq. (11) will describe spatial distributions of the scalar 

potential cφ  in geometrical space. The components of the vector 

potential can be determined from cφ  thanks to eq. (5b). The knowledge 

of the components of the four-potential for each solution will lead to the 

corresponding tensor of derivatives. A particle will be described by a 

potential and its derivatives at each event M  in spacetime (i.e., by vector 

and tensor fields). These solutions are studied in this section. 

Helmholtz equation can be written in the spherical reference frame 

attached to M  with the proper time t  and the geometrical coordinates 

( )ϕθ,,r  such that: 

 ,cossin ϕθ= rX       ,sinsin ϕθ= rY       .cos θ= rZ  (13) 

The advantage of the ( )ϕθ,,r  system is that it makes use of the spherical 

or cylindrical symmetry of the solutions that we are going to use. The set 

,tc  ,r  ,θ  ϕ  is the natural set of coordinates of the particles [17]. 

We introduce the normalized distance to the origin pO  of the 

coordinates: .x crω=  (Note the typography which is different from that 

of the coordinate ).x  This distance will thus be measured in units of the 

reference length .ωc  

Eq. (11) has been studied extensively in the context of the hydrogen 

atom where some of its solutions describe the electronic orbitals [18]. 

Solutions of eq. (11) can be split into normal and coupled modes: 

1- Coupled angular-radial modes describe simultaneous vibrations on 

the three coordinates. They are obtained from the ansatz: ( ) =φ spatialc  

( ) ( ) ( )ϕΦθΘrR  where ( ),rR  ( ),θΘ  and ( )ϕΦ  are functions of ,r  ,θ  and 
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,ϕ  respectively. One thus obtains the coupled angular-radial modes in 

terms of spherical Bessel functions of order :l  ( )xlJ  and spherical 

harmonics: ( ):, ϕθm
Yl  

 ( ) ( ) ( )




ω

ω
ϕθ±=φθφ

.sin

,cos
,x,,x,

t

t
YJ

m
m lll A  (14) 

The two even and odd solutions are explicitly written. Quantities A  and 

ω  are the constants of integration and are not determined at this stage. 

Amplitude A  has the dimension [ ] 122 QTML −−=A  in the standard 

nomenclature. 

( )xlJ  is a solution to the radial equation: 

 ( ) .1
x

x
x

x 22 R
R

R +=







∂

∂

∂

∂
+ ll  (15) 

The ( )ϕθ,m
Yl  describe the solutions of the angular part of eq. (11). 

2- Normal modes describe independent vibrations on one of the three 

coordinates. They are obtained from the ansatz: ( ) ( ) ( )θΘ+=φ rRc spatial  

( ).ϕΦ+  There is an important difference between the equations which 

describe normal and coupled modes of an oscillator. Typically an oscillator 

receives a sustaining energy from the outside and looses energy from, for 

instance, mechanical friction or electromagnetic radiation. Equilibrium is 

attained when both energies compensate each other. Normal and coupled 

modes need a source term (a seed) to develop. This source is generally a 

noise (again mechanical vibrations or electromagnetic waves), it starts 

the oscillation whose amplitude increases until the equilibrium state. In 

the case of coupled modes, the source originates from the coupling term 

and the noise does not need to be explicitly written: the source term for 

the radial oscillation is ( ) R1+ll  in eq. (15). The source term must also 
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appear in the equation of a normal mode where it originates from the 

noise in which the particle is embedded. We consider that this noise is a 

homogeneous background (independent of the point of observation ).M  It 

is also isotropic and acts as a source for spherical potentials only. We thus 

replace ( ) R1+ll  in eq. (15) by the source term cst R  where cst  is a 

proportionality constant: 

 .
x

x
x

x 22 Rcst
R

R =







∂

∂

∂

∂
+  (16) 

Physically acceptable spatial solutions are the spherical Bessel functions 

nJ  which are obtained when the constant is ( ).1+= nncst  

Grouping coupled and normal modes together shows that the 

potential which describes a solution finally depends on three quantum 

numbers ,n  ,l  :m  ( ).,, mncc lφ=φ  Its general expression is: 

 ( ) ( ) ( )




ω

ω
ϕθ±=φθφ

.sin

,cos
,x,,x

t

t
YJc

m
n lA  (17) 

Explicit values of the first spherical harmonics are: 

,
4
10

0 π
=Y           ,cos

4
30

1 θ
π

=Y  

,cossin
4
31

1 ϕθ
π

−=Y           .sinsin
4
31

1 ϕθ
π

=−
Y  (18) 

The first spherical Bessel functions are: 

( ) ,
x

xsin
x00 == JJ  (19a) 

( ) .
x

xcos

x

xsin
x

211 −== JJ  (19b) 

Equation (5b) allows the computation of the components of the vector 

potential in the proper time frame from the scalar potential. 
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These solutions obey the physical boundary conditions: they become 

asymptotically null far from the origin and they are either finite or null at 

the origin. Each solution describes an “electromagnetic particle” (e.m. 

particle). 

The general expression of the gradient tensor in the spherical system 

of coordinates associated with point M  is: 

[ ]
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 (20) 

This tensor does not include the noise and will characterize the particle 

only. Its symmetric part (the mass part) is: 
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 (21) 

The antisymmetric part (the field part) is: 
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(22) 

In the proper time, one has: 
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 (23) 

The components of the field are defined by the relations: r
B  
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2
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r
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r
t
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The antisymmetric part writes in the proper time: 
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 (26) 

Note that these components are different from the components of the 

electromagnetic field which are obtained in eq. (96) in the next section 

from the tensor kia  which makes use of both the direct and dual spaces. 

The difference arises from the fact that the field is defined here from the 

components of the mixed tensor [ ]i
kf  while they are defined from the 

covariant tensor [ ]kiF  in ordinary electromagnetism. 

Explicit formulas for the potential components, their derivatives and 

the corresponding tensors are given in Appendix B for the first 5 even 

and odd solutions corresponding to 0=== mn l  (solutions ),g  ,1=n  

0== ml  (solutions )e  and ,1=n  ,1=l  1,0 ±=m  (solutions ,0q  ,1q  

).1−q  

3.3. Particles properties 

Some properties resulting from the tensorial description of the 

particles are listed in this section. These properties will be illustrated 

with the use of the spherical “g” or “e” solution ( )0,1,0 === mn l  

where the potentials are written with the +  sign in eq. (10): 





ω

ω

π
=φ

,sin

,cos

4
1

tJ

tJ
c A  





ω′

ω′−

π
=

.solutionsoddcos

,solutionsevensin

4
1

tJ

tJ
Ar

A  (27) 

As before J  stands for 0J  (solutions )g  or 1J  (solutions ).e  

Gradient tensors are obtained from the partial derivatives of the 
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potential with respect to time ( )tc∂∂  or space ( ).x∂∂ω=∂∂ cr  We will 

essentially use the tensor which writes for the even e  solution 

:cos tc ω∝φ  
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π
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c
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4
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J
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 (28) 

It writes for the odd solution: 
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c
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J
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J
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 (29) 

The gradient tensor for the reversed-time odd solution is obtained from 

the odd solution .sin tc ω∝φ  We name this solution *e  or *g  following 

the value of .J  One reverses the time ,tt −→  time derivatives are taken 

with respect to t−  and one obtains ,sin tc ω−∝φ  .cos tAr ω∝  This 

tensor writes: 
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 (30) 

The symmetric part is diagonal, the antisymmetric part contains the 

field. Particle properties will be described with tensor (28). Tensor (30) 

will also be used to describe the electric charge. 

3.3.1. Waves 

Each element of the tensor (28) is a system of stationary waves. Their 

amplitudes vary radially and are maximum in the vicinity of the center. 

For the moment, one can recognize several kinds of waves: 

1- The field is defined in eq. (24) and is expressed by the formula: 

 ( ) ( ),cos
4

1
, tJ

c
Acc r

tr
r ω−′

ω

π
==φ−=

A
E  (31) 

where ( ) 2
0 xxsinxxcos −=′=′ JJ  for solution g  and =′=′ 1JJ  

32 xxsin2xxcos2xxsin −+  for solution .e  

r
E  is a longitudinally polarized standing wave. When x  becomes 

large, the long range field (for the even e  solution) is proportional to: 

 ( ( ) ( )).sinsinx21xxsincos~ crtcrttr −ω−+ω=ωE  (32) 

This expression displays a travelling advanced wave ( )crt +ωsin  and a 

retarded wave ( )crt −ωsin  which corresponds to those described in 

Wheeler-Feynman’s absorber theory [21]. Thus, we have adopted their 
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interpretation based on causality: the outgoing wave is emitted by the 

particle and is absorbed by the surrounding medium which also acts as 

the emitter of a wave that is absorbed by the particle. Equilibrium is 

obtained when both incoming and outgoing waves have the same energy. 

This is the condition for the stability of the particle and the existence of 

permanent solutions. It follows that the amplitude A  is fixed by this 

condition which is certainly scale-dependent. 

2- The second kind of waves appears in :i
ks  these are 1

1s  and .2
2s  

They can be interpreted as “matter waves” and should correspond to de 

Broglie’s pilot wave [22]. Moreover, they could be the origin of 

gravitation. The physical interpretations of 1
1s  and 2

2s  are different: 

- 1
1s  originates from the time derivative of the scalar potential .cφ  

The standing wave is scalar. 

- 2
2s  originates from the radial derivative of the radial potential .rA  

The standing wave is radially polarized. 

In the following, we will find other kinds of waves (e.g., induction 

waves) emitted by the particle. 

3.3.2. Energy 

General formulas. The Hamiltonian density describes the local 

density of energy at point .M  We have to find the Lagrangian which is 

linked to the Hamiltonian through a Legendre transform. An integration 

over spacetime will give the total energy of the particle. 

We have two hints to find the Lagrangian associated with an 

electromagnetic particle: 

- The first hint is the invariance of a Lagrangian in a coordinate 

change. Among the four invariants of [ ],i
ka  one is proportional to the 

Lagrangian density .L  
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- The second hint is that the global Lagrangian of a particle should be 

finite. In other words, the Hamiltonian density ,H  when integrated over 

the whole volume, should converge, giving the total energy of the particle. 

This integral is: 

 ( ) Hϕθθωω≡ ∫∫∫∫∫
ππ∞π
dddrrtdc

2

00

2

0

2

0
sin  (33) 

in the spherical system of coordinates. The first summation will give the 

mean value over a period of time. These conditions are met by the 

determinant of [ ]i
ka  only and we are led to the equation: 

 ,i
kaCL =  (34) 

where the double bar is the symbol for the determinant. The 

proportionality constant C  is a physical quantity that has the dimensions 

[ ] .QTLM 4223 −−=C  

The Hamiltonian is given by the Legendre transform: 

 .L
L

L
L

H −




























∂

∂
=−

∂

∂
= ∑ i

k

i
ki

kik

i
k

a
aTrace

a
a  (35) 

This equation uses the canonical momentum i
ki

k a∂∂=′ LL  associated 

with .i
ka  This term appears in the Euler-Lagrange equations (65). 

Since L  is the determinant of [ ],i
ka  one sees that i

k
L′  is the minor 

relative to the element i
ka  (with the sign ( ) )ki+− 1  and that 

LL =∂∂∑ i
kk

i
k aa  (development of the determinant with respect to the 

elements of line ).k  The simple equation follows: 

 .3LH =  (36) 

Integration over spacetime with the 4-volume element dv  gives a 
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quantity which is proportional to the total energy of the particle: 

 .∫∫ =∝ dvadvW
i

ktotal L  (37) 

Each term of this integral can be split into a product of 4 integrals of the 

form 
+∞

∞−
=∂∂∫

immib

a
AdxxA  or .

2

0

πiA  As the potential is periodic and 

vanishes at infinity, one finds that the total energy of an 

electromagnetic particle is identically zero. 

Now we divide [ ]i
ka  into its symmetric part (elements [ ])i

ks  and 

antisymmetric part (elements [ ]).i
kf  In the same way the momentum 

tensor can be split into its symmetric and antisymmetric parts: 

 .
i

k
i

k
i

k fsa ∂

∂
+

∂

∂
=

∂

∂ LLL
 (38) 

We will use the notation: 

 
k
isi

ks
L

L
′=

∂

∂
      and      .k

ifi
kf

L
L

′=
∂

∂
 (39) 

Eq. (35) gives: 

 (( )) ,LLLH −






 ′+′+=
Tk

if

Tk
is

i
k

i
k fsTrace  (40) 

where the exponent T  stands for the transpose of the matrix. 

As the trace of the product of a symmetric and an antisymmetric 

tensor nullifies, it remains: 

 .LLLH −






 ′+






 ′=
Tk

if
i

k

Tk
is

i
k fTracesTrace  (41) 

The energy density H  can thus be split into two parts: fs HHH +=  



G. M. STÉPHAN 

 

102 

with: 

 s

Tk
is

i
ks sTrace LLH −







 ′=  (42) 

and 

 .f

Tk

if
i

kf fTrace LLH −






 ′=  (43) 

We have introduced the mass Lagrangian: i
ks s=L  and the field 

Lagrangian: .i
k

i
ksf sa −=−= LLL  

As the total energy nullifies, the integrals over spacetime of sH  and 

fH  (eq. (33)) are equal and opposite in sign. 

Application to solution .e  Distribution of energies is illustrated 

now in the case of solutions e  and .g  The Lagrangian density which 

corresponds to solution e  is the determinant of (28): 
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The first term in the sum is the mass (or the potential energy) term: 
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It corresponds to the determinant of the symmetric part of [ ].i
ka  

The second term is the field term: 
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It is the difference between L  and .sL  
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The total energy density is: 

 .3 LCLC
L

C =−
∂

∂
= ∑ i

kik

i
kt

a
aW  (47) 

The mass energy density is: 

 .3 ssi
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sW LCLC
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∂

∂
= ∑  (48) 

In the following, the factor 3 will be included in .C  

The integrated value of L  over a period ωπ= 2T  is (first integral in 

eq. (33)): 
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The total energy included in the volume element limited by two 

concentric spheres separated by xd  is: 

 x.x4 2
4

4
dW

c
H tt

ω
π= C  (49) 

The corresponding mass energy is: 

 x.x4 2
4

4
dW

c
H ss

ω
π= C  (50) 

A factor π4  originates from the volume integration over the angles 

( ).sin
2

00
ϕθθ ∫∫

ππ
dd  A factor 33 ωc  originates from the relation 

.xω= cr  Graphical illustrations of the radial distributions of ,tH  sH  

and the difference st HH −  for particle g  and particle e  are given in 

Figures 2 and 3. Formulas leading to Figure 3 are similar to those of 

Figure 2 if we replace 1J  by .0J  



G. M. STÉPHAN 

 

104 

The total energy W  of the particle is the integral over x  when x  

varies from zero to infinity. It is proportional to: 

xx
xx

3 2
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∫ JJ
JJ
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The integral vanishes because 1J  vanishes when 0x →  [23] and 

.x ∞→  

This result illustrates the general rule demonstrated before that the 

total field and mass energies which are, respectively, associated with the 

antisymmetric and symmetric parts of the tensor, are equal and opposite. 

It is a wonder that mathematics can build a world from zero total energy, 

the negative part of which being the mass, and the positive part the field 

energy. 

 

 

Figure 2. Radial distribution of energies for particle .e  (a): tH  (total). 

(b): sH  (mass). (c): st HH −  (field). 
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Figure 3. Radial distribution of energies for particle .g  (a): tH  (total). 

(b): sH  (mass). (c): st HH −  (field). 

3.3.3. Far field tensors 

The potential and its derivatives contain terms in ,x1  ,x1 2  ,x1 3  

etc... Far from the origin ,Op  only terms in x1  survive. This is the far 

field region where the potentials and the derivatives are limited to these 

terms. The asymptotic behavior of even spherical Bessel functions ( ),x0J  

( ),x2J  ( ) ...,x4J  when x  is large is .xxsin~ ±∞
nJ  For odd functions it 

is .xosx~ cJn ±∞  The sign of successive functions is alternated. While 

mn ,, lΦ  and rA  are functions in ,x1  θA  and ϕA  behave like .x1 2  If 

we keep the x1  terms only, our fundamental tensor becomes: 

 [ ]

( )

( )
.

0000

0000

00
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,,

,,













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






φ

φ

=∞

r
rr

r
tt

i
k

Ac

Ac

a  (52) 

We will use this expression later. 

Asymptotic values of the potentials in the far field are for the even 

solutions: 
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( ) tYc m
nmn ωϕθΦ cos,

x
xsin

~,, ll A  

( ) ( )( ),sinsin
x2

1
~ krtkrtY m

n −ω++ωlA  (53) 

tYA m
n

r
mn ω− sin

x
xcos

~,, ll A  

( ) ( )( ),sinsin
x2

1
~ krtkrtY m

n −ω−+ωlA  (54) 

,0~θA  

.0~ϕA  

It follows that the field far from the particle is purely radial for any 

electromagnetic particles. The field becomes a superposition of an 

incoming and an outcoming spherical waves. As indicated above, this 

finding fits the conclusions published in [21]. 

3.3.4. Electric charge 

This section describes the method to find the electric charge Q  

associated with an e.m. particle. The strategy is to use the fundamental 

equation which relates the induction D  and the charge density ρ  at a 

point :M  ρ=Ddiv  and to integrate over the spacetime volume. For this 

purpose we will consider the even and the odd time-reversed spherical 

solutions, then we will find the relation between the field and the 

induction in the far field and finally we will integrate the charge density 

to obtain the total charge of the particle. We will find that this charge has 

a different sign for the two solutions which are considered. 

Charge density for the even and the odd time-reversed 

spherical solutions. In spherical coordinates the divergence is given by 

the formula: 
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 .
sin

cos
sin

2 θ
ϕθ

θ

θ
+

ϕ∂θ

∂
+

θ∂

∂
++

∂

∂
= D

rr

D

r

D

r

D

r

D
Ddiv

rr

 (55) 

The induction is given by: 

 .,, 







=

ϕθ
E

L

E

L

E

L

r
D  (56) 

Let us apply these equations to the even spherical solutions (e  and )g  

(case 1): 

 ,cos
4

1
tJ

c
c ω

ω

π
=φ

A
         tJ

c
Ar ω′

ω

π
−= sin

4

1 A
 (57) 

and to the time-reversed odd solutions ( )tt −→  ( *e  and )*g  (case 2): 

 ,sin
4

1
tJ

c
c ω

ω

π
−=φ

A
        .cos

4

1
tJ

c
Ar ω′

ω

π
=

A
 (58) 

The Lagrangian, the field, the induction and the charge density are 

given by: 

(case 1): 

,sincossin
4

1 22
2

4
4

2

24



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
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x
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J
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A
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,cos
4

1
tJr ω′ω

π
−= AE  (59b) 
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4

1 2
2
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r ωω
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∂
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( )
3

2 4

1





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 ω
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ω
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div r
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D  
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






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 ′
+

′
−

′′′
ωω×

x

J

x

J

x

JJ
tt  (59d) 
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(case 2): 

,cossincos
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1
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 ω
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ω
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AC
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Long range behavior of the field and the induction: role of the 

noise. As a particle manifests itself at large distances by terms in ,1 x  

the potential, the field or the energy stored in an element dv  around a 

point M  are very small in this region as compared to the incoherent sum 

of the corresponding quantities originating from the multitude of 

particles of the universe (we presume here that any existing particle can 

be described in the context of potential theory). One can thus characterize 

this region (the “vacuum”) by a noise tensor whose components i
kn  are 

incoherent and with a modulus large as compared to those originating 

from a single test-particle. We write the local tensor as a sum of this noise 

tensor and the test-particle tensor (eq. 52). The far field Lagrangian 

density ffL  is proportional to the determinant: 

 .ff
i

k
i

kff an += CL  (61) 

In the case of spherical solutions, the local induction due to the field 

( ) r
r
t

r cAc ,φ−==E  (see definition (24)) of the test particle is the 

derivative of ffL  with respect to .r
E  Here we should write the field with 
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the x1  terms only as the above expression stands for the long range. In 

order to keep this fact in mind we will write the field as .r
ffE  This field 

writes for the even e  solution: 

 .
x

xsin
cos

4

1
t

c
r
ff ω

ω

π
=

A
E  (62) 

Developing the determinant (61), performing the derivation with respect 

to r
ffE  and keeping the term proportional to the field only, give the far 

field radial induction: 

 ( ) .2 4
4

3
3

4
3

3
4

2 r
ffff nnnncD EC −= −  (63) 

This equation expresses the vacuum permittivity 0ε  in terms of the noise 

tensor components: 

 r
ffffD E0ε=       with:      ( ).2 4

4
3
3

4
3

3
4

2
0 nnnnc −=ε −

C  (64) 

Note that the dimensions of 0ε  are: 4221 LQTM −−  while the usual 

vacuum permittivity has the dimensions .LQTM 3221
0

−−=ε  This is 

because the dimensions of L  are that of a density of energy in four 

dimensional space. 

General relation between the gradient tensor and the charge 

density. Let us now compute the induction created by the test-particle 

only at point .M  For this purpose, we will use Euler-Lagrange equations: 

 .0
,

=
∂

∂
−















∂

∂

∂

∂∑
k

ii
k

k AAx

LL
 (65) 

The term iA∂∂L  nullifies because L  does not depend on iA  explicitly. 

The remaining terms represent a 4-divergence. For the component 
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:0 cA φ=  

 ( ) ,00 =′
k

div L  (66) 

where ( )0
k
L′  is the 4-vector: 
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∂
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
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tc
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LLLL
L  (67) 

In the proper frame, components of the field cE  are: ( ( ) ,rc ∂φ∂−  

( ) ( ) ( ) ( ) ).sin, ϕ∂θφ∂−θ∂φ∂− rcrc  One can thus write ( )0
k
L′  under the 

form ( ( ) ):...etc,, r
r
t

r cAD φ∂∂−=∂∂= LL  

 ( )
( )

,,,,0












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
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
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
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∂

∂
=′ ϕθ DcDcDc

tc

c
r

k

L
L  (68) 

where ,rD  ,θD  ϕD  are the components of the induction D  in the 

geometrical space. 

The simple equation follows: 

 
( )

.Ddivc

tc

ctc
=



























∂

φ∂
∂

∂

∂

∂ L
 (69) 

One sees that the term 
( )









∂

φ∂
∂∂

tc

c
L  is simply the minor relative to 

( )
tc

c

∂

φ∂
 in the determinant i

ka  times the constant C  (eq. 34). This 

minor is the determinant which groups the spatial derivatives in .i
ka  
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One gets: 
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∂

∂
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where: 
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 (71) 

is the minor relative to ( ) .,
1

1 tca φ=  

When applied to solutions g  or ,e  we have: 

 .sin
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1
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c
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One obtains: 

1
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When applied to solutions *g  or *,e  we have: 
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and: 
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These expressions are the same as those obtained for the density of 

charge eqs. (59d) and (60d) before. 

Total charge. In order to find the total charge of the particle we 

compute now the integral of Ddiv  in eqs. (73) and (75) with the volume 

element ϕθθ dddrr sin2   and over the geometrical volume V  defined by 

the intervals [ ],,0 Rr =  [ ],,0 π=θ  [ ]π=ϕ 2,0  ( ).with crx ω=  This 

volume integral is exactly computed: 
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The term ( )
3
x X

J
=

′  is negligible in the far field and eqs. (73) and (75) give: 
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 (77) 

In spacetime standard electrostatics, the field does not oscillate in time, 

and the factor tωsin  or tωcos  does not appear in Gauss law expressed 

in its integral form: 

 ( )


−

′ωπε==Φ ∫ ,1

,1
42

0 JRdStc
r

S
E AE  (78) 

where EΦ  is the flux of the electric field across the Gauss surface S  

which is a sphere with a radius .R  dS  is the surface element and ( )tc
r
E  

is the time component of the electric field: 

( )


−
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Jtc
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The total charge eQ  for the even solution is obtained after an integration 

over a time-length ωπ c2  of ( )dvDdiv∫V  in the upper line of eq. (77) 

divided by :cos tω  

 ( ).2
3 3

0x

3

=
′

π
= J

c
Qe

AC
 (79) 

The total charge oQ  for the time-reversed odd solution is obtained after 

an integration over a period of inversed time-length ωπ− c2  of 

( )dvDdiv∫V  in the lower line of eq. (77) divided by :sin tω  

 ( ).2
3 3
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3

=
′

π
−= J

c
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AC
 (80) 

Now one sees that solution g  is not charged because ( ) 03
0x0 =′

=
J  while 

solutions e  and *e  have the charge: 

 
c

Q
18

3
ACπ

±=  (81) 

because ( ) ( )33
0x1 31=′

=
J  [23]. 

This quantity depends upon the amplitude A  but Q  is not an 

invariant of the tensor in spacetime and should be computed again for 

spinning particles. 

A similar calculation can be done for cylindrically symmetric solutions 

.iq  

For solution ,0q  the determinant (71) becomes: 
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Integrations over the angle θ  which appear in the calculation of the 

electric charge Q  lead to the integrals: 

 0sincossincos 3

0

3

0
=θθθ=θθθ ∫∫

ππ
dd  (83) 

which implies that the charge associated to solution 0q  is identically .0  

The same result occurs for solutions 1q  and 1−q  where the determinant 

includes terms proportional to ϕ3cos  or ϕϕ cossin2  whose integrals 

between 0  and π2  vanish. One can verify that all other solutions have 

the same property. The only charged electromagnetic particles are 

those described by solutions e  and .*e  This result leads us to name 

solutions e  and *e  the electron and the positron. 

We note that the total charge (81) is not invariant in a coordinate 

change. It is the spinning electron that will give the global, observable, 

electron charge. 

3.4. Rotating tensors 

Up to now, the electromagnetic tensors have been written for points 

M  at rest with respect to the local (or internal) center of coordinates ,Op  

i.e., in the inertial system where the geometrical coordinates are time-

independent. We next studied the situation where M  is subject to a 

rotation around the z  axis. We have computed the expressions for the 

components of [ ]i
ka  in the frame where M  is at rest. We consider now 

the local infinitesimal length elements ,dtc  ,dr  ,θdr  ϕθ dr sin  which 

define the volume element dv  around M  and which are measured by a 

rotating observer attached to .M  These coordinates become ,tdc ′  ,rd ′  

,θ′′ dr  ϕ′θ′′ dr sin  for a fixed observer at M  in the laboratory frame. 

Both sets of coordinates are linked by a local, tangential, Lorentz 

transformation. The elementary motion is a translation along the ϕ′  axis 
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and the two other local axes r′  and θ′  are perpendicular to it. It follows 

that the coordinates dr  and θdr  are not affected by the rotation. Only 

the length element ϕθ dr sin  and the time element dtc  at event M  are 

subject to the Lorentz transformation: 

,sin ϕθβγ+γ=′ drdtctdc    ,rr =′    ,θ=θ′  

.sinsin dtcdrdr βγ+ϕθγ=ϕ′θ  (84) 

We use the standard notation β  for the relative tangential velocity, and 

γ  for the Lorentz factor: 

 ,
c

v
=β            ,

1

1
2β−

=γ  (85) 

where β  and γ  could depend upon the coordinates. 

Note that the temporal phase tω  (which is a true scalar) is invariant 

in a Lorentz transformation: .tt ω=ω  Note also that the factor ωc  

which appears in the equation of the potential or its derivatives is the 

normalization parameter that transforms the invariant radial coordinate 

r  into the non-dimensioned quantity x.  This parameter is not modified 

here. 

The expression of the potential ,iA′  as seen by a non-rotating 

observer at ,M  is obtained with the Jacobian (the Lorentz matrix): 
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One gets: 
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The angle ϕ  is now a function of time and the gradient tensor has 

supplementary terms originating from ϕ′∂′∂β+′∂′∂=′ ϕϕϕ
′ ActcAA

t,  

and from ( ) ( ) ( ) ., ϕ′∂φ′∂β+′∂φ′∂=φ′ ′ cctccc t  Equation (5b) no 

longer applies, the observer is not in the proper time. 

Let us apply the Lorentz transformation to solution .e  The rotating 

potential is: 
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The components of the gradient tensor are the derivatives of iA′  with 

respect to the coordinates eqs. (84). The general expression (20) gives: 
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 (87) 
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The covariant tensor is: 
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The electromagnetic field is the antisymmetric part: 
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Using the relation: ( ) ,,,
r
tr Ac −=φ  one obtains: 
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Components of the electric field are: 

( ),11 ,,, γ−γ=γ+γ−= r
t

r
t

r
t

r AAAE  (90a) 

,0=θE  (90b) 

( ) .,tcE φβ−=ϕ  (90c) 

Components of the magnetic field are: 

( ),
sin

cos
c

r
Br φβγ

θ

θ
=  (91a) 

( ( ) ),, rcAB r
t φ+βγ=θ  (91b) 

.0=ϕB  (91c) 

The factor 5.0  is left aside. As expected one notes the appearance of a 

magnetic field perpendicular to the electric field. In the far field range, 

0→rB  and .,
r
tAB βγ→θ  The magnetic field becomes oriented along 

the local axis .θ
r

 

These fields are computed in the coordinate frame where the observer 

M  is motionless with respect to the origin .Op  They are the 

electrostatic fields of the electron. 

4. Tensors in the Laboratory Frame 

This section shows that the standard electromagnetic tensor kiF  is 

the antisymmetric part of kia  expressed in a general coordinates frame. 

The Lagrangian density which is associated with i
ka  allows the 

calculation of inductions. Then Euler-Lagrange equations are applied to 

find Maxwell’s equations. 
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4.1. Splitting the covariant derivative 

One starts with the contravariant components of a general 

electromagnetic four-potential vector iA  ( ).3,2,1,0=i  This potential 

can be related to those studied in the preceding section in each particular 

problem. The scalar potential is noted again cA φ=0  and the set 

( )zyx AAAA ,,=  represents also the vector potential. An event M  in 

real Minkowski’s spacetime is defined by its coordinates ( )zyxctxk ,,,=  

and a four-potential corresponds to each event: ( ).MAA ii =  The 

coordinates are defined in the Cartesian frame spanned by the 

normalized basis vectors ( )zyxt eeee
rrrr

,,,  with origin O  (see Figure 1). All 

the theory described here is local: the point M  is surrounded by an 

arbitrarily small volume. There are quantities, like fields, which are 

defined at M  and densities which are defined around .M  

To obtain the corresponding covariant components iA  in the dual 

space, we use again the ( )−−−+ ,,,  convention for the metric tensor 

[ ]mnη  and, therefore, one has the relation: m
imi AA η=  written with 

Einstein’s summation convention. 

The 16 partial derivatives kii
k xAa ∂∂=  at M  are the components 

of the tensor [ ]i
ka  which are given in the expression (1). 

The covariant form [ ]kia  is written explicitly using co or 

contravariant components of the potential: 
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This tensor is divided into its symmetric and antisymmetric parts: 

[ ] ([ ] [ ]) ( ),
2
1

2
1 i

k
k

iikkiki xAxAaaS ∂∂+∂∂=+=  (93) 

[ ] ( ).
2
1 i

k
k

iki xAxAF ∂∂−∂∂=  (94) 

The antisymmetric part of [ ]kia  is: 
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 (95) 

The electromagnetic field is defined from the components of [ ].kiF  

Below are the usual equations which condense these definitions: 

 ,: φ−
∂

∂
−= grad

t

A
E            .: AcurlB =  (96) 

In these equations, the vector potential A  is expressed with its 

contravariant components. 

The fields which are used in Maxwell’s equations are pseudovectors. 
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We will use the special notation ,XE  ,YE  ,ZE  ,XB  ,YB  ZB  to 

distinguish them from usual vectors. 

The electromagnetic tensor writes: 

 [ ] .
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The preceding formulas are not new: they belong to the basic 

knowledge of electromagnetism (apart from the factor 21  in [ ]).kiF  This 

is not the case for the symmetric part of [ ]:kia  

 [ ]

( ) ( )

( )

( )

( )











−−−φ

−−−φ

−−φ

φ+−φ

=

x
z

z
x

z
tz

x
y

y
x

y
ty

x
x

x
tx

x
x
tt

ki

AAAc

AAAc

AAc

cAc

S

,,,

,,,

,,

,

2

2

2
1

  

( ) ( )

.

2

2

,,,

,,,

,,,,

,,













−−−

−−−

−−−−

φ+−φ+−

z
z

y
z

z
y

z
y

y
z

y
y

z
x

x
z

y
x

x
y

z
z
ty

y
t

AAA

AAA

AAAA

cAcA

 (98) 

[ ]kiS  has been ignored in textbooks [4, 5] and in the specialized 

literature. This neglect leads to its replacement by charge and current 

densities, which are phenomenological quantities. We name this tensor 

the source part because it is responsible for the source terms which, as 

seen below, will appear in Maxwell’s equations. 

4.2. The Lagrangian 

The remaining of this section is devoted to the demonstration of 

Maxwell’s equations written in the standard form: 

,0=Bdiv                 ,
t

B
Ecurl

∂

∂
−=  

,ρ=Ddiv                 .j
t

D
Hcurl +

∂

∂
=  (99) 
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We will show that these equations result from the principle of least action 

applied to the electromagnetic potential and its derivatives. 

The first pair of eqs. (99) shows the relation between electric E  and 

magnetic B  fields. The second couple links the inductions D  and H  to 

the sources ρ  (charge density) and j  (current density). Inductions are 

defined from the Lagrangian L  which is proportional to the determinant 

(eq. 34): 
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This expression will not be explicitly used in the following. However, it 

shows that the derivative of L  with respect to the term i
kA  is the 

determinant of the minor relative to i
kA  (accompanied by the proper 

sign). For instance: 
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4.3. Maxwell’s equations 

First pair. The first pair of Maxwell’s equations are identities which 

are nicely expressed [9] by the equation: 

 .0=
∂

∂
+

∂

∂
+

∂

∂
l

ll

x

F

x

F

x

F mk

k

m

m

k  (100) 

Second pair. Let us now show that the source terms ρ  and j  in the 

second pair are related to the induction tensor [ ].i
k
L′  
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An element i
k
L′  of [ ]i

k
L′  is obtained from the derivative of the 

Lagrangian with respect to the element .i
ka  The developed form is: 
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An element i
k
L′  is the canonical momentum corresponding to .i

ka  

Now the corresponding covariant tensor [ ]kiL′  is split into its 

symmetric and antisymmetric parts which are then transformed back 

into mixed tensors. The first operation ensures that the symmetry (or 

antisymmetry) of the tensors is independent of the coordinates system. 

One obtains the separation of [ ]i
k
L′  into two parts: [ ] =′ i

k
L  

[ ] [ ].i
k

i
k

SD +  

The first part is directly linked to the usual induction tensor, it 

corresponds to the antisymmetric part of [ ].kiL′  The second part 

corresponds to the symmetric part of [ ]kiL′  and will be referred to as the 

source tensor. The expressions of these tensors are: 
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G. M. STÉPHAN 

 

124 

and: 
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Electric and magnetic inductions are given by the derivatives of the 

Lagrangian with respect to the components of the fields E  and .B  One 

applies the chain rule and equations (96) to obtain: 
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Other components ,YD  ,ZD  YH  and ZH  are obtained from circular 

permutations of ,x  ,y  .z  

We have used a lower index notation ,XD  ...,YD  to stress the fact 

that the components of the induction pseudovectors are those of a type 

[ ]i
kD  tensor: 
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The relations [24] between the pseudovectors ......,, XX HD  and 

......,, XX HD  are: 
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,X
X DD −=     ,Y

Y DD −=     ,Z
Z DD −=  (107a) 

,X
X HH =     ,Y

Y HH =     .Z
Z HH =  (107b) 

In the following we will use this notation to write Maxwell’s equations in 

both direct and inverse spaces. In passing, one should note that the 

splitting of [ ]kia  into its symmetric and antisymmetric parts allows the 

study of special cases where one of the tensor can be nullified in some 

regions of space while the other still exists. An illustration is the 

Aharonov-Bohm effect [10] which shows that a potential can exist in a 

region of space even in the absence of any field ( ).0=kiF  One sees that 

in such a situation it is the source tensor [ ]kiS  which can change the 

phase of the electron when it crosses this region. 

Euler-Lagrange equations. Equation (65) expresses the principle of 

least action and introduces the conjugate momenta i
k

A,∂∂L  which are 

the elements of the induction tensor (101). We will show that Maxwell’s 

equations are a consequence of this principle. 

The Lagrangian density L  does not depend explicitly on the 

potentials (only on its derivatives) and equation (65) reduces to the first 

term. It introduces the tensor [ ]i
k
L′  whose elements have been written 

before: 
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L  (108) 

When ,0=∂∂ iAL  equation (65) can be written in matrix form: 
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This expression groups four equations and we show now that it leads to 

the second pair of Maxwell’s equations in reciprocal space. 



G. M. STÉPHAN 

 

126 

We use the separation of [ ]i
k
L′  into its two parts [ ]i

k
D  and [ ]i

k
S  

and write eq. (109) in compressed notation: 

 ( ) [ ] ( )0=′∂ i
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L       or      ( ) ([ ]) ( ) ([ ]).i

k
i

k
SD ∂−=∂  (110) 

Expressions for i
k
D  and i

k
S  are given by eqs. (102) and (103). In the 

following we skip the factor 21  before i
k
D  and i

k
S  which simplifies eq. 

(110). 
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( )ZYXI DDDD ,,=  is the symbol for the induction in the reciprocal 

space. 

The 4-vector ID  in equation (111) has a time component IDdivc−  

et 3 space components ( ).
tc

D
Hcurl I

∂
−−  These are the induction 

components in Maxwell’s equations. 

The right hand side term ( ) ([ ])i
k
S∂  in eq. (110) is computed now: 
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∂
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LLLL

LLLL

 (112) 

The second expression is obtained after simplification by eq. (109). 

Equating each component of the 4-vector of eq. (110) gives: 

( )
,

,,,, z
t

y
t

x
tt

I
AzAyAxctc

Ddivc
LLLL ∂

∂

∂
−

∂

∂

∂
−

∂

∂

∂
−

φ

∂

∂

∂
=  (113a) 

[ ]
( )

.
,,,,
z
x

y
x

x
xx

x
X

AzAyAxctc
Hcurl

t

D LLLL ∂

∂

∂
+

∂

∂

∂
+

∂

∂

∂
+

φ

∂

∂

∂
−=+

∂

∂
 (113b) 

The two remaining equations along the y  and z  axis are obtained from 

circular permutations of ,x  ,y  z  and ,X  ,Y  .Z  

We use these equations to introduce the following new 4-vectors in 

spacetime: 

 
( )

,,,,
,,,,












 ∂
−

∂
−

∂
−

φ

∂
=′

z
k

y
k

x
kk

k
AAAc

LLLL
L  (114) 

where k  stands for ,t  ,x  ,y  or .z  
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One sees that the r.h.s. of eqs. (113a, 113b) are all 4-divergences of 

these vectors: 

,tI divDdivc L′=  (115a) 

[ ] .xx
X divHcurl
t

D
L′−=+

∂

∂
 (115b) 

These divergences define the source terms: 

,
1

: tdiv
c

L′=ρ       ,: xx divj L′−=  

,: yy divj L′−=       .: zz divj L′−=  (116) 

The lower indices ,x  ,y  z  label the components of the covector 

( ).,, zyxi jjjj =  One thus obtains Maxwell’s equations in matrix form in 

the reciprocal space: 

( )zyx jjjc ,,,ρ  

.

0

0

0

0

,,,























−−

−−

−−

−−−









∂

∂

∂

∂

∂

∂

∂

∂
=

XYZ

XZY

YZX

ZYX

HHcD

HHcD

HHcD

cDcDcD

zyxtc
 (117) 

Finally, Maxwell’s equations in the direct space are obtained after 

transforming the covariant quadrivector ( )zyx jjjc ,,,ρ  into its 

contravariant counterpart ( )zyx jjjc −−−ρ ,,,  and the pseudovector 

ID  into .D  These operations give the desired result: 

,ρ=Ddiv  

[ ] x
X

X
j

t

D
Hcurl +

∂

∂
=   (x  component) 
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or in matrix form: 

( )zyx jjjc −−−ρ ,,,  

.

0

0

0

0

,,,























−

−

−








∂

∂

∂

∂

∂

∂

∂

∂
=

XYZ

XZY

YZX

ZYX

HHcD

HHcD

HHcD

cDcDcD

zyxtc
 (118) 

One can use the above formulas to verify the continuity equation: 

 .
t

jdiv
∂

ρ∂
−=  (119) 

We have demonstrated in this section that Maxwell’s equations can 

be deduced from a few basic operations: 

1- The covariant tensor of derivatives [ ]kia  has been split into its 

symmetric and antisymmetric parts. This symmetry is independent of the 

coordinate system. 

2- The Lagrangian density has been associated with the determinant 

of [ ].i
ka  This determinant is independent of the coordinate system. 

3- Induction tensors have been computed. 

4- The principle of least action has been applied. 

The study which is presented in this section is very general and does 

not need any particular form of potential. It connects the well-known 

electromagnetic tensor to the antisymmetric part of [ ]kia  and the source 

terms to the symmetric part. It shows that the fundamental quantity is 

the potential and that Maxwell’s equations are a consequence of the least 

action principle. The potential is very general and can be related to the 

potential which describes a particle in particular situations. 
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5. Conclusion 

We have described in this article the properties of a family of tensors 

whose elements are obtained from partial derivatives of a potential iA  at 

each point M  in Minkowski’s spacetime. The primary tensor is the 

gradient [ ]i
ka  at .M  

In the first main part of the study, [ ]i
ka  is divided into its symmetric 

([ ])i
ks  and antisymmetric ([ ])i

kf  parts. We use the properties of these 

tensors to show that there is a proper time where the scalar potential 

obeys the Helmholtz equation. The solutions of this equation describe 

electromagnetic particles. These are characterized by an accumulation of 

energy around the origin of the coordinates and by far fields in .x1  The 

condition of existence of these particles corresponds to Wheeler-Feyman’s 

theory where an equilibrium must exist between the incoming and 

outgoing waves of the electron. Each solution can be even or odd and is 

characterized by three quantum numbers. We have given the tensors 

corresponding to the first five solutions. The essential result of this part is 

the union in a single expression of field and matter properties. In the 

second main part of the study, [ ]i
ka  is first transformed into the 

covariant tensor [ ]kia  which is then divided into its symmetric ([ ])kiS  

and antisymmetric ([ ])kiF  parts. These two tensors are different from 

([ ])kis  and ([ ])kif  because the lowering-index operation does not 

commute with the symmetric-antisymmetric splitting. We find that kiF  is 

the well-known tensor of classical electromagnetism. By applying the 

Euler-Lagrange equations, we find Maxwell’s equations. We prove that 

the source terms are expressed as functions of the derivatives of the 

potential. 

We summarize below the key points of the study. 



POTENTIAL THEORY 1: GRADIENT TENSORS 

 

131 

1- There are two assumptions: 

- A continuous and flat Minkowski’s spacetime: ( ).,,,, tzyxtcxk =  

- A 4-dimensional potential :iA  with the scalar potentiel cφ  and the 

vector potentiel ,xA  ,yA  .zA  

2- The study of the gradient of the potential: [ ] [ ]kii
k

xAa ∂∂=  (rank 

2 tensor, 16 components) and its splitting into its symmetric and 

antisymmetric parts: [ ] [ ] [ ]i
k

i
k

i
k

fsa +=  leads to the concept of 

“electromagnetic particles”. 

The main invariants of [ ]i
k

a  in symmetry operations of the Poincaré 

group are its determinant i
k

a  and its trace .∑i

i
i

a  They are used to 

obtain the fundamental Helmholtz equation in the proper time and to 

obtain the local Lagrangian density .L  

3- The study of the covariant tensor [ ]kia  and its splitting into its 

symmetric and antisymmetric parts: [ ] [ ] [ ]kikiki FSa +=  leads directly 

to [ ];kiF  the usual electromagnetic tensor. 

Applying the principle of least action, Maxwell equations are 

obtained from [ ].kia  

The theory that has been described is simple, synthetic and powerful. 

It is simple because it is based (1) on a single assumption, that of a 4-

potential in Minkowski’s spacetime, (2) on two non-commuting 

mathematical manipulations of tensors, i.e., raising-lowering operation 

and antisymmetric-symmetric splitting, (3) on fundamental physical 

principles which are the principle of least action, the principle of 

symmetry and the principle of relativity. It is synthetic because it 
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groups in a family of tensors classical electromagnetism and a description 

of new fundamental particles. It is powerful because it contains a wealth 

of developments. The mathematical existence of the electromagnetic 

particles is thought-provoking: Associating these particles together and 

studying their interactions will change our perception of the microscopic 

and cosmological universe. 

6. Appendix A 

The non-commutativity of the antisymmetrization-symmetrization 

operation (a-s operation) and the lowering-raising operation (l-r 

operation) is illustrated in this appendix with the use of 22 ×  matrices to 

shorten the notation (or in a one dimensional geometrical space). 

The starting tensor is written as a mixed tensor in the real space: 

 [ ] .







=

dc

bai
ka  (120) 

The metric tensor is: 

 [ ] .
10

01









−
=n

mg  (121) 

Let us consider first the lowering index operation (1) acting on [ ]:i
ka  

[ ] [ ] [ ] 








−

−
=









−
⋅








=⋅=

dc

ba

dc

ban
m

i
kki

10

01
gaa  

and followed by the a-s operation (2): 

[ ] ([ ] [ ]) ,
0

0

2
1

2
1










+

−−
=−=

bc

cb
f ikkiki aa  

[ ] ([ ] [ ]) .
2

2

2
1

2
1










−−

+−
=+=

dbc

cba
s ikkiki aa  
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Consider now the a-s operation (2) acting on [ ]:i
ka  

[ ] ([ ] [ ]) ,
2

2

2
1

2
1













+

+
=+=

dbc

cba
s

k
i

i
k

i
k aa  (122) 

[ ] ([ ] [ ]) .
0

0

2
1

2
1













−

−
=−=

bc

cb
f

k
i

i
k

i
k aa  (123) 

It is followed by the lowering index operation (1): 

[ ]
( )

,
2

2

2
1

10

01

2

2

2
1













−+

+−
=













−











+

+
=

dbc

cba

dbc

cba
ski  

[ ] .
0

0

2
1

10

01

0

0

2
1













−

−
=













−











−

−
=

bc

bc

bc

cb
fki  

One sees that [ ] [ ]kiki ss ≠  and [ ] [ ].kiki ff ≠  It is this non-

commutativity which leads to the two branches of electromagnetism: 

The first branch is based on the tensors (1) (expressed in the 

Cartesian frame of coordinates): 
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 (125) 
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[ ]
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 (128) 

The second branch is based on the tensors starting from (92): 
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[ ]
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[ ]kiF  is the standard electromagnetic tensor (apart from the factor ).21  

Fields are defined from the usual equations (96). 
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7. Appendix B 

This appendix gives explicit formulas for the potentials and the 

corresponding tensors for the first 5 even electromagnetic particles. Odd 

solutions are obtained by changing tω  into .2π±ωt  

g  solution ( ):0=== mn l  

Potential: 

,cos
4

1
0 tJc ω

π
=φ A  

,sin
4

1
0 tJAr ω′

π
−= A       ,r

r AA −=  

,0=θA      .0=ϕA  (132) 

Mixed tensor: 

[ ] =i
ka  

.

x
sin000

0
x

sin00

00sincos

00cossin

4
1

0

0

00

00























′
ω−

′
ω−

′′ω−′ω

′ω−ω−

ω

π
J

t

J
t

JtJt

JtJt

c

A
 (133) 

e  solution ( ):0,1 === mn l  

The same formulas are obtained by replacing 0J  by .1J  

0q  solution ( ):0,1,1 === mn l  

Potential: 

,coscos
4
3

1 tJc ωθ
π

=φ A  
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,sincos
4
3

1 tJAr ωθ′
π

−= A      ,r
r AA −=  

,sinsin
x4

3 1 t
J

A ωθ
π

=θ
A       ,θ

θ −= AA  

.0=ϕA  (134) 

Mixed tensor: 

[ ]













θ







−

′
ωθω−

θ′′ω−θ′ω

θ′ω−θω−
ω

π
=

00

sin
xx

sinsin
x

cos

cossincoscos

coscoscossin

4
3

2
111

11

11

JJ
t

J
t

JtJt

JtJt

c
a

i
k

A
 

.

xx
cossin0

0
xx

cossin

0
xx

sinsin

0sin
x

cos

2
11

2
11

2
11

1























−

′
θω−









−

′
θω−









−

′
θω

θω

JJ
t

JJ
t

JJ
t

J
t

 (135) 

1q  solution ( ):1,1,1 === mn l  

Potential: 

,coscossin
4
3

tJc n ωϕθ
π

=φ A  

,sincossin
4
3

tJA n
r ωϕθ′

π
−= A       ,r

r AA −=  

,sincoscos
x4

3
t

J
A n ωϕθ

π
−=θ

A       ,θ
θ −= AA  

,sinsin
x4

3
t

J
A n ωϕ

π
=ϕ

A       .ϕ
ϕ −= AA  (136) 
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Mixed tensor: 
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1−q  solution ( ).1,1,1 −=== mn l  

Formulas for the 1−q  solution are obtained by changing ϕ  into 

2π−ϕ  in the preceding expressions. 
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