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Abstract

The electromagnetic potential Al is a quadrivector in Minkowski

k

spacetime x" and its gradient [aki] is a tensor of rank two whose

elements are the sixteen partial derivatives 8Ai/ k. We study in this

article the properties of a family of tensors resulting from [aki]. We

first introduce the covariant tensor [ap;]. Four initial tensors are

obtained by separating [aki] on the one hand, and [ap;] on the other
hand into their symmetric and antisymmetric parts. These are
([ski 1, [fki], [Sgil, [Fg;]). As the lowering-raising index operations and

symmetrization-antisymmetrization operations do not commute, these
four tensors are different and each describes different physical

phenomena: [Fj;] is the well-known electromagnetic tensor, [Sg;]

contains the source terms, [ski] introduces the electromagnetic
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particles and |[ fki] is the origin of the electrostatic field. The article is

divided into two main parts. In the first, we study [ski] and [fki]

which show that there is a particular coordinate system where the
scalar potential obeys the Hemholtz equation. The solutions allow to
describe the “electromagnetic particles”, characterized by three

quantum numbers n, ¢ and m. The condition of existence of these

particles is related to a property of the electron described in Wheeler-
Feynman’s absorber theory. We give the potentials corresponding to the

first five solutions. We associate a Lagrangian density L to the

determinant of [aki] which is an invariant of this tensor in an

operation of symmetry of the Poincaré group. Potential energy and
electric charge distributions are included in the tensors properties. In

the second part, we first check that [Fj;] is the usual electromagnetic

tensor whose components are the electric and magnetic fields. We prove

that Maxwell’s equations are obtained by applying the principle of least
action to the 4-potential endowed with £. The source terms (p and })
are expressed in terms of the components of [Sp;]. The results

obtained are covariant. The formulation of the potential and its
derivatives being independent of scale, they unify the human and the

electron scales, giving a new way to understand elementary particles.
1. Introduction

The notion of potential has been introduced by the French
mathematician and physicist Simeon-Denis Poisson in the year 1813

when he was studying a modification to Laplace’s equation [1]. It was
then understood and extended [2] as a 4-vector A’ in Minkowski’s

spacetime X, Tts time-component is the scalar potential ¢/c, and the
spatial part A = (A%, AY, A?) is the vector potential. Spacetime being
also 4-dimensional, there are 16 partial derivatives aki = aAi/ dx* which
form the gradient tensor [aki ] The aim of this article is to describe some

mathematical properties which can be deduced from [aki] and to



POTENTIAL THEORY 1: GRADIENT TENSORS 79

interpret them in the context of electromagnetism and elementary

particles.

We will show that [aki] is the source of four different tensors: one of
them is the Faraday tensor [F};], or the electromagnetic tensor, which

was described by Hermann Minkowski as early as 1909 [3]. This tensor is
usually deduced from Maxwell’s equations and classical textbooks in

electromagnetism [4, 5, 6] describe [F}; | as an object which neatly groups

the components of the electric and magnetic fields. An essential

application of [F};] is to show that a pure electric field in a standing
system of coordinates gives a magnetic field in a moving system through
a Lorentz transformation.

[F}; ] is only one member of a family of tensors which are obtained

from [aki] at each event M in spacetime. The members of this family

are generated through the use of two operations which do not commute:

(1) The raising-lowering (r.l.) index operation which is done with the

metric tensor and

(2) The antisymmetric-symmetric (a.s.) splitting which makes use of

the transpose of the tensors.
Four different tensors are thus obtained. One of them is [F};], it

results from the lowering index operation acting on [aki] followed by the

a.s. operation where it corresponds to the antisymmetric part.

This preliminary remark has led us to study the properties of each of

these tensors and to develop a general theory where the sole assumption

is that of a 4-potential Al in a flat spacetime. A characteristic of these
tensors is that their formulation is scale-independent. They should
thus be perfect tools to unify phenomena at ordinary and microscopic

scales.
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Indeed, many unsolved problems in modern physics are due to the
difficulties associated with scaling. One of the most important is the
structure of a “point-like” particle. In string models, such an idealized
particle is represented by a one dimensional object called a string.
However, despite the abundance of developments in these models the
solution remains questionable [7, 8]. We show in this article that the
potential theory offers a new way to solve it and especially a method to

unify macroscopic and microscopic scales.

The first authors to use tensor techniques to study the properties of
an elementary particle, the electron, were Max Born and Leopold Infeld
in the year 1934 [9]. However, their attempt was not successful because
their tensor was phenomenological: the antisymmetric part was indeed

[F}; ] but the symmetric part was chosen to be the metric tensor and both
parts of the tensor were of a different nature. The tensors we use in this
article were obtained from [aki] and [ap;] and both parts are
combinations of partial derivatives.

The non-commutativity mentioned above leads to divide the theory

into two parts:

The first part is based on the study of the symmetric ([s;,’]) and

antisymmetric ([fki 1) parts of [aki ]. We show that a proper time exists
in which the scalar potential obeys a Helmholtz equation whose solutions
describe “electromagnetic particles”. Splitting [aki] into its symmetric

and antisymmetric parts induced us to associate the former to the
description of the mass and the latter to the field which could explain the
particle-field duality.

The second part is based on the study of the symmetric ([Sy;]) and
antisymmetric ([F};]) parts of [ap;]. There is absolutely no reason to

reduce [ap;] to its antisymmetric part [F;]: we will show that both
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parts contribute to Maxwell equations. If [S;; ] is forgotten, which is the

case in classical electromagnetism, it becomes necessary to replace it with
phenomenological quantities. These are charges and currents: we

demonstrate that they can be expressed in terms of the elements of [Sy; |.

A key point of the theory is the association of a Lagrangian density
with [aki ]. This density is a local scalar invariant of the tensor and plays

a central role: it allows the description of the structure, or the geometrical
distribution of energy in the particle where it is used to compute the
canonical momenta. In the second part, it is used to deduce Maxwell’s

equations from [a;; ] through the least action principle.

The second section of this paper describes the few basic assumptions

and the notations.

The third section develops the properties of the electromagnetic
particles. Solutions of the Helmholtz equation in the proper time of [aki]

describe these particles which are classified by three quantum numbers
n, ¢, m. We studied the spatial distribution of energy and the electric
charge of these solutions. Here an interesting result occurs: while the
distribution of field and mass energies are different, their sum, when
integrated over spacetime, vanishes. A second important result concerns
the electric charge: it is found that it can be different from zero for the
even and odd solutions n =1, ¢/ = m = 0 only, which confers the status
of electron and positron to these solutions. Finally, we obtained the

tensors of a spinning particle.

In the fourth section, we computed the electromagnetic inductions
which are the derivatives of the Lagrangian with respect to the fields.
The second set of Maxwell’s equations is obtained from Euler-Lagrange

equations. A new result is the expression of the sources (charge p and

current j densities) in terms of the elements of [Sy; ].
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Associated with this subject is the question of the preeminence of
potentials and fields which arises in standard textbooks on classical
electromagnetism: In ref. [4], electric and magnetic fields are deduced
from a 4-potential. In refs. [5, 6], the 4-potential is deduced from the
fields. In classical theory, fields are more fundamental than the potential

because they are observable quantities and the 4-potential is a Deus ex
machina which can be seen only through its gradient [aki ]. In quantum

theory, it is the potential that is more fundamental as illustrated by the
Aharonov-Bohm effect [10, 11]. Recently, two articles [12, 13] have been
published where the authors develop Richard Feynman’s idea of
introducing potentials before fields [14]. The theory which is presented
here brings the proof that the potential is also more fundamental than

the fields in classical electromagnetism.

—
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Figure 1. Schematics of the three frames of coordinates in the geometrical space. M is
the point of observation. Tensors leading to Maxwell’s equations are expressed in the

laboratory frame. Electromagnetic particles tensors are first described at M in spherical

coordinates r, ©, ¢ with M fixed with respect to the origin O,. A particle spinning

around the Z axis is described by the tensors obtained from a local Lorentz transformation

at M. Note that M close to Op allows the description of the structure of the particle.

The long range behavior of the particle is obtained when M is far from O P
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2. Foundations and Notations

The theory that we are developing is nothing but the study of the
properties of the electromagnetic potential and its derivatives in different

frames of observation. It is based on few ingredients:

1- One considers a point M (an “event”) in a continuous and flat

Minkowski’s spacetime where the observer is located. Given a coordinates

frame with an origin O, M is defined by the vector O—M

The natural coordinates [17] will be wused to describe the
electromagnetic particles in Section 3. They happen to be the proper time
and the geometrical spherical system at M. On the other hand,
Maxwell’s equations are covariant and can be computed in any coordinate

system.

We will thus have two independent Cartesian coordinate systems
with two different origins, the first is the laboratory frame with origin O.

Let us name the second the particle frame with O, as an origin. The

external and internal coordinates of M are noted, respectively, as Xk =

(ct, x, v, z) and xk = (T, X, Y, Z) in Cartesian coordinates. Here, ¢ or
T stands for the time, (x,y,z) or (X,Y,Z) for the geometrical

coordinates and ¢ is the speed of light. We will also use a spherical
system of coordinates at M. Figure 1 shows the three coordinate frames
which will be used. The two systems of coordinates (x, v, z) or (X, Y, Z)
are the analog to those of a moving body, where the internal degrees of
freedom allow the description of its shape, its rotations (Euler’s angles)
and its deformations and where the independent external coordinates are

used to describe the motion of the center of gravity.

2- A four-potential A’ = (o/c, A*, AY, A?) is associated with each

point M. ¢/c is the scalar potential and (A, AY, A®) are the three
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contravariant components of the vector potential in the direct space. This
1s the standard notation in classical electromagnetism. We will make use
of the direct and the inverse spaces where the potential is defined,
respectively, by its contravariant and covariant components. Convention

N =diag(1,-1,-1,-1) is taken for the metric tensor 1. Covariant

components of the potential in the reciprocal space are: A; =
(0/c, A, Ay, A= (o/c,— A", =AY, — A®). We divide the potential

into two parts: the first is coherent and will describe an isolated particle
while the second is incoherent and describes the space in which it is
embedded. This second part originates from the fundamental noise. The

following study will essentially be concerned by the isolated particle.

3- The 16 partial derivatives aAi/ ox”* of the potential are the
components of the gradient tensor [aki ]. They are obtained from the total

derivative of each component A’ at M. The extended form of [aki] in a

Cartesian frame is:

0fc), AT A A

o/c), AL AL AL

(¢/c) o
@/c), A5 A)
(/c)

[aki] =
2y

o/c), AL AL A7

(0/e), = 29D (o), = 29
. A% . 9A%
Ap = cot ’ Ay = 0x

k and i, respectively, indicate the line and the column index for a reason

which will appear in eq. (109). The above derivatives become more
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complicated in curvilinear coordinates where they include Christoffel’s
coefficients [16].

The theory is essentially local: a particle will be described by vector
and tensor fields. Global properties are obtained after integrations over

spacetime.

4- The fourth ingredient is the set of constraints that are imposed by

nature:

a) Coordinate transformations form the Poincaré group: they include
translations with respect to time and space, rotations, and Lorentz
transformations (or boosts). Tensors are characterized by invariants in
such transformations. Our attention should thus be fixed on these

invariants.

b) The evolution of a system is subject to the principle of least action

which is expressed by the Euler-Lagrange equations.

¢) The principle of relativity couples time and the geometrical

coordinates of M in two frames in relative motion.

5- Finally, transformations of vectors or tensors have to obey
mathematical rules. A fundamental concept is the splitting of a tensor
into its antisymmetric (or skew-symmetric) and symmetric parts (a.s.
operation). This operation does not commute with other manipulations
such as the raising or lowering index operations (r.l. operations)
performed with the metric tensor. This non-commutativity is illustrated
in Appendix A. This simple law is at the origin of the splitting of
electromagnetism into two parts where the first gives the description of
electromagnetic particles (Section 3) and the second describes how

Maxwell’s equations can be deduced from the gradient tensor (Section 4).
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Table 1. Synopsis of the different electromagnetic tensors. Tensors in the upper part are

obtained from the gradient aki of the 4-potential Al at point M. aki is split into its

symmetric and antisymmetric parts ski and fki in the coordinate frame where M is at

rest with respect to the origin (a.s. splitting). A; and aj; in the lower part are obtained

from the lowering index operation acting on Al or aki. Then aqp; is split into its
symmetric part Sp; and its antisymmetric part Fp; which is the usual electromagnetic

tensor. The non-commutativity of the r.l. and a.s. operations is fundamental.

Al [aki] a.s. splitting: [aki] = [ski]+ [fki]

lowering i

A;, lag;] | as.splitting:  [ag; | = [Sp; ]+ [Fp; ]

Table (1) shows the different tensors ap;, Sp;, Fj;, aki, ski, fki
which will be described as we progress. One has to distinguish between
those tensors which are defined in the pure direct space (aki, ski, fki)
where contravariant components A" and x* only are involved and
(ap;, Spi, Fp;) where the geometrical coordinates can depend on time

and where we need covariant components A;. One should note that:

1- covariant or contravariant tensors keep their symmetry or
antisymmetry properties in a coordinate transformation which is not the

case of a mixed tensor [15].

2- the determinant of mixed tensors remain invariant in a coordinate

transformation which is not the case of a co or contravariant tensor.
3 Tensors of Electromagnetic Particles

The main part of this section deals with tensors written in the pure
direct space where the geometrical coordinates do not depend on time

(the observation point M 1is fixed with respect to the origin of
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coordinates). We first show that the natural coordinates of the tensor
[aki] are introduced by a Helmholtz equation whose solutions describe

the electromagnetic particles. We first derive this equation, then
illustrate some of its solutions and the associated tensors. Some local and
global properties are given. The case of a spinning particle is finally
studied.

The point M in Figure 1 is motionless with respect to the origin

Op. We will first write the derivatives in the local Cartesian frame

(T, X,Y, Z): a =0A'/ox* .

We use the transpose [aik] of [aki] to split [aki] into its symmetric

([ski]) and antisymmetric ([sz]) parts:

[ax' 1= [si' ]+ '] 2)

with elements:
s = %( Al [ax" +aAk[ax), 3)
fil = 5 (04 ax - aakfox). 0)

The pair of tensors [ski] and [ fki] will be a good candidate to explain
the matter-field duality: [fki] describes the field properties and [ski]
contains matter waves. [ski] will be referred to as the matter tensor and

[ fki] as the field tensor. Note that [fki] is not the usual electromagnetic

field tensor (compare with eq. (97)).
3.1. Helmholtz equation

A Helmholtz equation for the scalar potential is demonstrated in the

following way:
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1- Being symmetric, [ski] can be diagonalized provided its

determinant does not vanish. The consequence 1s that a time coordinate

¢t exists in which transformed terms 512 = §13 = 514 = §% = §§ = §i =0.

We referred to ¢ the proper time of the tensor. In the proper time system,

we use the barred symbols ct, X, Y, Z and Al = (6/0, AX, AY, AZ).

The ordinary derivatives of a Cartesian system are replaced in a general
system by absolute derivatives including Christoffel coefficients [16]. One

obtains the equations:

A i+ (0/e) x =AY i +(0fc)y = AZi+(0fc), =0  (5a)

—— —— 94 _
or grad (¢/c)+ peri 0. (5b)

Here a symbol like (¢/c ) x generally stands for the absolute derivative
of (¢/c ) with respect to X. The second formulation (5b) is tensorial. Eq.

(5b) means that in the proper time, the temporal derivative AiZ is

compensated by the spatial derivative of (¢/c ) in the direction ..

[ski ] and [fki ] are written in the proper time frame:

(s3] = 5 (lay' 1+ [a" D) =

2(0/c )5 0 0 0 ]
1 0 _2AX5‘_ AY’XLAX’? A_fo +A_X’Z ©6)
21 9 AXy v AY 5 24Y 5 A%y +AY;

L 0 AX’Z +AZ5( AY’Z +AZ’17 2AZZ

and
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(7] = 5 (' 1= [a"]) =
0 24%; 24Y; 247%;
Aoy 0 Alx -ty Ay -aTg|
% | 2(¢/c )y A_X,? —A_Y,;? o A’y —AY 7
200/c), A¥z -A%x Az -4’y o

One should note that, in the proper time, when geometrical
coordinates are independent of time (the point M is at rest with respect
to the origin O), one has: aij/a(ct) =0 for j =2,3,4 and aE’/a(ct) =1

for j = 1. It follows that the potential A’ = (o/c, AL, A%, A®) becomes

transformed  into  A! = ((o/c), AL, A%, A%) in a geometrical

transformation in the proper time. In the same way, one finds that the

elements of the first line of the transformed tensor remain

A" = ((0/¢), 0,0, 0).

2- Now we will use the invariants of [Eki] in a time translation. There

are four scalar invariants that are the coefficients of the characteristic

polynomial. The most well-known are the trace and the determinant. We
use the property of the trace of [ski] to be invariant in a time translation

to obtain:

STy 94X aaY  aaZ
9 [30/e) , 9a% 9AY 24| _
k| @ X Y  oZ

(8a)

9%(0/c) . af
— =0. b
2577 + div = 0 (8b)

Note that the trace of [ski ] is the term that appears in Lorenz’s gauge.
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Equations (5b) and (8b) are combined to give:

9%(¢/c)
c2012

- A(¢/c) = 0, 9)

where the symbol A stands for the Laplacian.

In the following, we will be interested in permanent oscillatory

potentials which are proportional to cos (ot + ¥).

+coswt even solutions,

0/c o< cos (ot +y) = { (10)

+sin ¢ odd solutions.

x =0 or ® and ¥ = +7/2 correspond, respectively, to solutions which

are even or odd in time. These potentials obey a Helmholtz-type equation:

(1)2

C_z (M‘)spatial + A(q)_/c)spatial =0, (11

where (M‘)

spatial Tepresents the spatial part of (%) This equation is a

tensor equation that remains the same in any system of spatial

coordinates.

One sees that eq. (9) is invariant under space and time reversal, i.e.,

invariant when the sign of time ¢ is changed. One should thus consider

the solutions obtained with ¢ = —¢:

* cos cotN,

0/c o< cos (0f +7%) = { (12)

+ sin 7 .

The even and odd solutions: ¢/c = cos(wt) and ¢/c «< sin (wt) will be

used in the following. The + signs do not play any role in the
development of the theory. However one sees that the even solutions only
remain invariant in time reversal. This property will be used to study the

electric charge of the particles (Section 3.3.4).



POTENTIAL THEORY 1: GRADIENT TENSORS 91

3.2. Electromagnetic particles

Solutions of eq. (11) will describe spatial distributions of the scalar

potential q)_/c in geometrical space. The components of the vector

potential can be determined from q)_/c thanks to eq. (56b). The knowledge

of the components of the four-potential for each solution will lead to the
corresponding tensor of derivatives. A particle will be described by a
potential and its derivatives at each event M in spacetime (i.e., by vector

and tensor fields). These solutions are studied in this section.

Helmholtz equation can be written in the spherical reference frame
attached to M with the proper time ¢ and the geometrical coordinates
(r, 6, @) such that:

X = rsin 6 cos ¢, Y = rsin@sin ¢, Z = rcos 6. (13)

The advantage of the (r, 8, @) system is that it makes use of the spherical

or cylindrical symmetry of the solutions that we are going to use. The set

ct, r, 8, @ isthe natural set of coordinates of the particles [17].

We introduce the normalized distance to the origin O, of the
coordinates: x = wr/c. (Note the typography which is different from that
of the coordinate x). This distance will thus be measured in units of the

reference length c/®.

Eq. (11) has been studied extensively in the context of the hydrogen

atom where some of its solutions describe the electronic orbitals [18].
Solutions of eq. (11) can be split into normal and coupled modes:

1- Coupled angular-radial modes describe simultaneous vibrations on

the three coordinates. They are obtained from the ansatz: ((l)_/c)spatial =

R(r) ©(8) ®(¢) where R(r), ©(0), and ®(¢) are functions of r, 6, and
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¢, respectively. One thus obtains the coupled angular-radial modes in

terms of spherical Bessel functions of order /¢: ,(x) and spherical

harmonics: Y,” (8, ¢):

00 m(x, 6, 0) = £A J,(x) Y,"(6, ) {COS at, (14)

sin ot.

The two even and odd solutions are explicitly written. Quantities A and

@ are the constants of integration and are not determined at this stage.

Amplitude A has the dimension [A] = ML?’T2Q! in the standard

nomenclature.

J,(x) is a solution to the radial equation:

x2R + %(x

2 R

axj — i +1) R (15)

The Y, (8, ¢) describe the solutions of the angular part of eq. (11).

2- Normal modes describe independent vibrations on one of the three

coordinates. They are obtained from the ansatz: (q)_/c)spatial = R(r) + ©(0)

+ ®(9). There is an important difference between the equations which

describe normal and coupled modes of an oscillator. Typically an oscillator
receives a sustaining energy from the outside and looses energy from, for
instance, mechanical friction or electromagnetic radiation. Equilibrium is
attained when both energies compensate each other. Normal and coupled
modes need a source term (a seed) to develop. This source is generally a
noise (again mechanical vibrations or electromagnetic waves), it starts
the oscillation whose amplitude increases until the equilibrium state. In
the case of coupled modes, the source originates from the coupling term
and the noise does not need to be explicitly written: the source term for

the radial oscillation is /(¢ +1) R in eq. (15). The source term must also
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appear in the equation of a normal mode where it originates from the
noise in which the particle is embedded. We consider that this noise is a

homogeneous background (independent of the point of observation M). It

1s also 1sotropic and acts as a source for spherical potentials only. We thus

replace /(¢ +1)R in eq. (15) by the source term cst R where cst is a

proportionality constant:

x’R + i(x2 B_R) = cst R. (16)
ox ox

Physically acceptable spatial solutions are the spherical Bessel functions

J, which are obtained when the constant is cst = n(n + 1).

Grouping coupled and normal modes together shows that the
potential which describes a solution finally depends on three quantum

numbers n, ¢, m: ¢/c = ¢/c(n, ¢, m). Its general expression is:

cos ot

0/c(x, 8, 0) = £A4 J,(x) Y, (6, @) { am

sin .

Explicit values of the first spherical harmonics are:

o_ |1 o_ |3
Yy = i ;" = 17 8 6,
1_ |3 -1 _ |3 . .
Y, = 1/_47t sin 6 cos @, Y, = 1/—4n sin 0 sin @. (18)

The first spherical Bessel functions are:

sin x

Jo = Jp(x) = ot (192)
J; = Jp(x) = szx - C"EX . (19b)
X

Equation (5b) allows the computation of the components of the vector

potential in the proper time frame from the scalar potential.
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These solutions obey the physical boundary conditions: they become

asymptotically null far from the origin and they are either finite or null at

the origin. Each solution describes an “electromagnetic particle” (e.m.

particle).

The general expression of the gradient tensor in the spherical system

of coordinates associated with point M is:

_ r 0
((P/C)’t A,Z A’[
. (©/c) A7, 49
1 — 1 1
lar'] (0/c) g/ 7(Afe—A9) 7(A%+Ar)
(¢/C) [ Ar(p A® 1 0
’ - - ¢
rsin® rsin® rsjne(AAP cos 6 A?)

A?
)t
A9
1
7 4%
1 1 cosO .o
- A%+ = A" ———A
rsine ? r sin©
(20)

This tensor does not include the noise and will characterize the particle

only. Its symmetric part (the mass part) is:

2(¢/c) 7
(©/c), + A%
(0/c) g /r + A
(9/c) ¢

+A?

L rsin 0 3

A% +(9/c)z
24,
1
~(Af - A%) + AY
A®

r
A.’(P -—+ A9
rsin 0 r T

A® +

A

1

Z A% 4+
r 0

1
2 ——— A% +
(r sing ?

The antisymmetric part (the field part) is:

rsin 6

o, 00

1
rsin 0

0
A7+ @/c)g/r
45+ 1 (4 - 4%
2%(4% LA

1 (Afp—coseA(")+%Afg

it rsin®

A _A°
rsin® r

(A,?p —cos9A?)

)

. (21)

lArJrlcosG

r sin 0
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0 A%~ (9/c), A% —(o/c) o1
1
£ ] = < 0/, = 47 0 Af - (Al - A%)
r1=75 1
2| 0fe)g/r - AT T(af - a%) - Af 0
5 A7 2 —AY A8 - A0y 1 g9
| 7sme 2AF Tsme » Ar rsine( o —cosBA?) - Aj

o @l
!t rsin6
A" A®
o __"9 a
Ar reing 7 -(22)
1o 1 0 _ ¢
. Aj " (A —cos® A?)
0 _
In the proper time, one has:
(9/c)
r _ 0 _ (0] P —
A+ (q)/c),r = A7 + (q)/c)’e/r = A7 + e 0. (23)

The components of the field are defined by the relations: B”

€ e = F(Al - 0f0),) = AT =~(]c),.

1
E%c = 5 (AS ~©/e)g/r) = AY = = (0/0) o
1 (¢/c) (¢/c)
(P = — (E ’(P = (P = — ’(P
£ /c 2 (A,t rsin ) A’t rsin 0 @4
1(1 1 0
B’ = E(;A% ~ e (A% —coseA(p)),
B =1 Al _AY A®
~ 2|rsin® r "y
1 1
B° —E(A§—7( ';,—Ae)) (25)
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The antisymmetric part writes in the proper time:

0 Ele &% £9/c
~&le 0 B® -B°
&% -B* 0 B |
&% B -B" 0

(/] = (26)

Note that these components are different from the components of the
electromagnetic field which are obtained in eq. (96) in the next section

from the tensor a;; which makes use of both the direct and dual spaces.
The difference arises from the fact that the field is defined here from the
components of the mixed tensor [fki] while they are defined from the

covariant tensor [F}; | in ordinary electromagnetism.

Explicit formulas for the potential components, their derivatives and
the corresponding tensors are given in Appendix B for the first 5 even

and odd solutions corresponding to n =/ = m = 0 (solutions g), n =1,
¢ =m =0 (solutions e) and n =1, £ =1, m =0, £1 (solutions qq, ¢,
q-1)-

3.3. Particles properties

Some properties resulting from the tensorial description of the

particles are listed in this section. These properties will be illustrated

i

with the use of the spherical “g” or “¢” solution (n=0,1, ¢/ =m = 0)

where the potentials are written with the + sign in eq. (10):

o/ 1 {J cos wt,
c=—
ANam J sin wt,
—J sin ot luti ,
AT = 1 , sin even so u. 10ns @7
Aam J  coswt odd solutions.

As before J stands for J (solutions g) or JJ; (solutions e).

Gradient tensors are obtained from the partial derivatives of the
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potential with respect to time (d/cdt) or space (9/dr = w/c d/dx). We will

essentially use the tensor which writes for the even e solution

¢/c o< cos ot:

[a,}] = — ALy
: Jan ¢
[—sinwt J —coswt J’ 0 0 1
cosot J —sinwt J” 0 0
) ’ . (28
0 0 — sin ¢ J 0 28)
0 0 0 — sin ot
It writes for the odd solution:
i 1 Aw
[a']= =22
k 4n C
[coswt J —sinwt J’ 0 0 1
sinwt J° cosmt J” 0 0
0 0 cos ot J 0 ’ (29)
0 0 0 cos 0t

The gradient tensor for the reversed-time odd solution is obtained from

the odd solution ¢/c « sin wt. We name this solution e* or g* following
the value of J. One reverses the time ¢t — —¢, time derivatives are taken
with respect to —¢ and one obtains ¢/c < —sin ®t, A" o cos ot. This

tensor writes:
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; 1 Aw
[a)']= =22
k vJam €

[ cos ot J sin ot J’ 0 0 1

—sinwt J*  coswt J” 0 0
0 0 cos wt 0 (30)
0 0 0 cos wt

The symmetric part is diagonal, the antisymmetric part contains the
field. Particle properties will be described with tensor (28). Tensor (30)

will also be used to describe the electric charge.
3.3.1. Waves

Each element of the tensor (28) is a system of stationary waves. Their
amplitudes vary radially and are maximum in the vicinity of the center.

For the moment, one can recognize several kinds of waves:
1- The field is defined in eq. (24) and is expressed by the formula:

&le=0/e), = 47 = 0 T s, 6D

where J’ = Jj) = cosx/x — (sinx)/ x? for solution g and J = =

sin x/x + 2 cos x/ x2 — 2 sin x/ x? for solution e.

E" is a longitudinally polarized standing wave. When x becomes

large, the long range field (for the even e solution) is proportional to:
E" ~cosmtsinx/x =1/2x (sin ®(t + r/c) —sin ® (¢ — r/c)). (32)

This expression displays a travelling advanced wave sin (¢ + r/c) and a
retarded wave sin ®(¢ —r/c) which corresponds to those described in

Wheeler-Feynman’s absorber theory [21]. Thus, we have adopted their
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interpretation based on causality: the outgoing wave is emitted by the
particle and is absorbed by the surrounding medium which also acts as
the emitter of a wave that is absorbed by the particle. Equilibrium is
obtained when both incoming and outgoing waves have the same energy.
This is the condition for the stability of the particle and the existence of
permanent solutions. It follows that the amplitude A is fixed by this

condition which is certainly scale-dependent.

2- The second kind of waves appears in s;': these are 311 and 322.

They can be interpreted as “matter waves” and should correspond to de

Broglie’s pilot wave [22]. Moreover, they could be the origin of

gravitation. The physical interpretations of sll and 322 are different:

-sll originates from the time derivative of the scalar potential ¢/c.

The standing wave is scalar.

- 822 originates from the radial derivative of the radial potential A".
The standing wave is radially polarized.

In the following, we will find other kinds of waves (e.g., induction

waves) emitted by the particle.
3.3.2. Energy

General formulas. The Hamiltonian density describes the local
density of energy at point M. We have to find the Lagrangian which is
linked to the Hamiltonian through a Legendre transform. An integration

over spacetime will give the total energy of the particle.

We have two hints to find the Lagrangian associated with an

electromagnetic particle:

- The first hint is the invariance of a Lagrangian in a coordinate
change. Among the four invariants of [aki], one is proportional to the

Lagrangian density L.
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- The second hint is that the global Lagrangian of a particle should be

finite. In other words, the Hamiltonian density H, when integrated over

the whole volume, should converge, giving the total energy of the particle.

This integral is:

2T = 9 b 2T
jsc/(oj d(mt)J' r drj sinedej doH (33)
0 0 0 0

in the spherical system of coordinates. The first summation will give the

mean value over a period of time. These conditions are met by the

determinant of [aki] only and we are led to the equation:

L=Cla| (34)

where the double bar is the symbol for the determinant. The

proportionality constant C is a physical quantity that has the dimensions
[c] = M2L2T2Q*.

The Hamiltonian is given by the Legendre transform:

H = Zaki a—El - L =Trace aki aﬁi - L. (35)
ik day,

aak

This equation uses the canonical momentum L£'%; = L/ aaki associated

with aki. This term appears in the Euler-Lagrange equations (65).

Since £ is the determinant of [aki], one sees that £'%; is the minor
relative to the element aki (with the sign (- 1)i+k ) and that
Z " oL/ aaki aki = L (development of the determinant with respect to the
elements of line k). The simple equation follows:

H = 3L. (36)

Integration over spacetime with the 4-volume element dv gives a
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quantity which is proportional to the total energy of the particle:
Wi = [ £dv = [[| @y’ | do. (37

Each term of this integral can be split into a product of 4 integrals of the
+oo .
or A

b : : 2
form I 0A! / ox™ dx™ = A On. As the potential is periodic and
a

oo

vanishes at infinity, one finds that the total energy of an

electromagnetic particle is identically zero.

Now we divide [aki] into its symmetric part (elements [ski]) and

antisymmetric part (elements [fki]). In the same way the momentum

tensor can be split into its symmetric and antisymmetric parts:

oL oL oL

- = -~ + —. (38)
aakl askl afkl
We will use the notation:
L _ok amd 2L gk (39)
askl afkl 1
Eq. (35) gives:
. . T T
H = Trace ((s;," + fkl))(ﬁ'sf3 + E}f j— L, (40)

where the exponent T stands for the transpose of the matrix.

As the trace of the product of a symmetric and an antisymmetric

tensor nullifies, it remains:
_ i kT i kT
H = Trace| sy L, |+ Trace| fp, Ly, |- L. (41)

The energy density H can thus be split into two parts: ‘H = H, + Hy
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with:
ipr kT
Hg = Trace| s Lg; |- Ls (42)
and
ipr kT
Hyp = Trace| [y, Efi - Ly. (43)
We have introduced the mass Lagrangian: £ = || sy’ | and the field

Lagrangian: L; = L - L = || aki -1 ski I

As the total energy nullifies, the integrals over spacetime of H, and

Hp (eq. (33)) are equal and opposite in sign.

Application to solution e. Distribution of energies is illustrated
now in the case of solutions e and g. The Lagrangian density which

corresponds to solution e is the determinant of (28):

4 ’2 ’4
=1 (ﬂj (Jl J{ J sin* ot + /1 sin? ot cos? mtj. (44)
X X

1
(am? \ ¢ 2 2

The first term in the sum is the mass (or the potential energy) term:

4 ’2
L (A Gt e (45)
(an)? \ ¢ x2

It corresponds to the determinant of the symmetric part of [aki ].

The second term is the field term:

4 54
L= 1 (Amj J1 sin? ot cos? wt. (46)

(4n)® \ ¢ x2

It is the difference between £ and L.
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The total energy density is:

i
Wt_cZakg—ccﬂ%w (47)

The mass energy density is:

oL
WSZCZ klg—c,c =3C L,. (48)

In the following, the factor 3 will be included in C.

The integrated value of £ over a period 7 = 2n/® is (first integral in

eq. (33)):

c (7 ¢ 1 (Aw ,,Jl nJ'4
GJO E(mt)d(mt)—6(4n)2( - ) {4 e e

The total energy included in the volume element limited by two

concentric spheres separated by dx 1is:
¢t 2
H, = 4nC— W, x° dx. (49
0)4

The corresponding mass energy is:

4
Hy = 4nC<- W, x* dx. (50)
(O]

A factor 4m originates from the volume integration over the angles
T 21
( JO sinGdGIO dg). A factor ¢3/0® originates from the relation

r = ¢/ox. Graphical illustrations of the radial distributions of H,, H,
and the difference H;, — H, for particle g and particle e are given in

Figures 2 and 3. Formulas leading to Figure 3 are similar to those of

Figure 2 if we replace J; by .
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The total energy W of the particle is the integral over x when x

varies from zero to infinity. It is proportional to:

o ’2 ,4
W o J 37, Jf% n % x2dx
0 X X

(o [0 7)) /3] _
- jo dx[ L |y 7 = 0, (51)
The integral vanishes because <J; vanishes when x — 0 [23] and

X — oo,

This result illustrates the general rule demonstrated before that the
total field and mass energies which are, respectively, associated with the
antisymmetric and symmetric parts of the tensor, are equal and opposite.
It is a wonder that mathematics can build a world from zero total energy,
the negative part of which being the mass, and the positive part the field

energy.

ooap  ar e particle
| units b
ooz arh youzol\ @D

() Hounts gy units

radial distance Eaak | A facial distance

tadial distance

Figure 2. Radial distribution of energies for particle e. (a): H; (total).
(b): H; (mass). (c): H;, — H, (field).
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g particle

S ‘“’ - ) ‘ ©

radial distance

Figure 3. Radial distribution of energies for particle g. (a): H; (total).
(b): H, (mass). (c): H; — H, (field).

3.3.3. Far field tensors

The potential and its derivatives contain terms in 1/x, 1/ x2, 1/ x3,

etc... Far from the origin O,, only terms in 1/x survive. This is the far

p’
field region where the potentials and the derivatives are limited to these

terms. The asymptotic behavior of even spherical Bessel functions o/ (x),
J9(x), J4(x) ..., when x islargeis ¢J;, ~ £sinx/x. For odd functions it
is o, ~ tcosx/x. The sign of successive functions is alternated. While
®, ., and A" are functions in 1/x, A® and A® behave like 1/x2. If

we keep the 1/x terms only, our fundamental tensor becomes:

_(¢/C),t Ay 0 0]

; A0 0
a1, = (¢/c), Al 52)

0 0 0 O

0 0 0 0]

We will use this expression later.

Asymptotic values of the potentials in the far field are for the even

solutions:
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P imfc~ Ay sizx Y/ (8, ¢) cos ot
~ A, % Y/ (sin (ot + kr) + sin (wt — kr)), (53)
mm ~ —Ay SALES Y/" sin wt
~ A, % Y/ (sin (ot + kr) — sin (of — k), (54)
A% ~o,
A® ~0.

It follows that the field far from the particle is purely radial for any
electromagnetic particles. The field becomes a superposition of an
incoming and an outcoming spherical waves. As indicated above, this

finding fits the conclusions published in [21].
3.3.4. Electric charge

This section describes the method to find the electric charge @

associated with an e.m. particle. The strategy is to use the fundamental

equation which relates the induction D and the charge density p at a

point M : div D = p and to integrate over the spacetime volume. For this

purpose we will consider the even and the odd time-reversed spherical
solutions, then we will find the relation between the field and the
induction in the far field and finally we will integrate the charge density
to obtain the total charge of the particle. We will find that this charge has

a different sign for the two solutions which are considered.

Charge density for the even and the odd time-reversed
spherical solutions. In spherical coordinates the divergence is given by

the formula:
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.= D" 2D" 3D aD? cos® o
D= D",
div o 7 oo " rsinGE)(pJr r sin 0 (55)
The induction is given by:
= L L L
D= el
(gr T gd’ 5‘P) 9

Let us apply these equations to the even spherical solutions (¢ and g)

(case 1):

AO 7 cos ot A= L AC et (B7)

QH
a

and to the time-reversed odd solutions (¢t — —¢) (e* and g* ) (case 2):

ofc = —— A% ssiner, A" =L A% risen  (58)

vJ4m € V4w ¢

The Lagrangian, the field, the induction and the charge density are
given by:

(case 1):

4 2 24
L= C(Lﬂ) [J J” J sin® ot + J cos? ot sin? (Ot], (59a)

v4am € x? x”
1
& =—-———AwnJ coswnt, (59b)
Varn
3 73
D’ o= aaﬁr = _%(% %) J2 sin? ot cos o, (59¢)
£ Varn x
oC( 1
=div(D,)=-—- )
b= 2 \Van

x sin? of cos ot (59d)

(3 J'2J '3 J’3\J
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(case 2):
4 ’2 7z
L= C(_/lﬂ) J T L cost ot + L sin? ot cos? ot |, (60a)
4t ¢ x? x>
1 .
&= — AwJ sin ot, (60Db)
Jan
3 73
D= aaLr = %( i AC(D) J—20082 ot sin ot, (60c)
& v4n x
A ﬂf cos? wt sin ot | 3L (60d)
c? 4t € x2 )

Long range behavior of the field and the induction: role of the
noise. As a particle manifests itself at large distances by terms in 1/x,
the potential, the field or the energy stored in an element dv around a
point M are very small in this region as compared to the incoherent sum
of the corresponding quantities originating from the multitude of
particles of the universe (we presume here that any existing particle can
be described in the context of potential theory). One can thus characterize

this region (the “vacuum”) by a noise tensor whose components n;’' are

incoherent and with a modulus large as compared to those originating
from a single test-particle. We write the local tensor as a sum of this noise
tensor and the test-particle tensor (eq. 52). The far field Lagrangian

density Ly is proportional to the determinant:
[’ff =C “ nki + akiff “ (61)

In the case of spherical solutions, the local induction due to the field

E" e = Al = ~(¢/c), (see definition (24)) of the test particle is the

derivative of £ ff with respect to € ". Here we should write the field with
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the 1/x terms only as the above expression stands for the long range. In

order to keep this fact in mind we will write the field as & ?f. This field

writes for the even e solution:

1 Aw
g = ¢
ff [in ¢

os ot 22X (62)

Developing the determinant (61), performing the derivation with respect
to £ ?f and keeping the term proportional to the field only, give the far

field radial induction:

Dy = 2Cc™%(n§ ng —nd ni) . (63)

This equation expresses the vacuum permittivity % in terms of the noise

tensor components:

Dy = aé’?f with: €y = 2Cc 2(n} n§ — n3 nj). (64)

Note that the dimensions of g, are: M~ 'T?Q?L™ while the usual

vacuum permittivity has the dimensions gy = M_1T2Q2L_3. This is
because the dimensions of £ are that of a density of energy in four

dimensional space.

General relation between the gradient tensor and the charge
density. Let us now compute the induction created by the test-particle

only at point M. For this purpose, we will use Euler-Lagrange equations:

Z ak oL |_9L _, (65)
oxk |24y | aA!

k

The term JL/ dA! nullifies because £ does not depend on Al explicitly.

The remaining terms represent a 4-divergence. For the component
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A% = ¢/c:
div (L)) =0, (66)
where (E'ko) is the 4-vector:
oy_|_oc L L L
(L) = o (B8] 5 (2ef) (Aefl) 2L | ©D
c ot or r a0 r sin 0 0@

In the proper frame, components of the field &£/c¢ are: (—d(0/c)/or,

—3(¢/c)/(r 98), — A(¢/c)/(r sin 8 dp) ). One can thus write (£} ) under the

form (D" = 9L/ 0A}; = - 9L/ d(9/c), etc...):
(L) = %,—cl)’,—we,—cm , (68)
(%)
cot

where D', De, D® are the components of the induction B in the

geometrical space.

The simple equation follows:

0 oL =

— | ——=——| = D.

vy a(a(¢/0)j cdiv (69)
cot

One sees that the term 9L/ a(%) is simply the minor relative to

9(9/c)
c ot

in the determinant | a,’ | times the constant C (eq. 34). This

minor is the determinant which groups the spatial derivatives in aki.
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One gets:
.= 0 1
cdivD =C—| A5 |,
ANy
where:
A AS AY
] 1. .0 1
|4 0= - a®) L4+ A7) 244
Ar A® 1 0 ;A(P sl
9 A7 _ ©
rsin 0 r rsin® (A’q’ cos8 AY)  rsin6 r
is the minor relative to all = (o/ )z
When applied to solutions g or e, we have:
1 A0\ ,J% .
| AL ||_-( jJ I sin® ot.
V4 € X
One obtains:
divD =
Ny

_30)(3( 1 Aemej3J,,J’2 .y
2 m C2 2

C X

When applied to solutions g* or e*, we have:

’2
™ ||_(LA ePe ] T T cos o,

c <2

and:

. —’_g d 1
divD = ¢ ca(—t)" Ay "

_30C( 1 A, J,,J’2
2 Wam o« 2

C X

sin“ t cos L.

cos ot sin ©f.

1 cgseAe
r sin®

111

(70)

(71)

(72)

(73)

(74)

(75)
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These expressions are the same as those obtained for the density of
charge eqgs. (69d) and (60d) before.

Total charge. In order to find the total charge of the particle we
compute now the integral of div D in egs. (73) and (75) with the volume

element r2dr sin 6 d@ de and over the geometrical volume V defined by
the intervals r =[0, R], 6 =[0, n], ¢ =[0, 2r] (with x = or/c). This

volume integral is exactly computed:
2 3 em 21 X 2
J' 7L dv = C—gj' sin 0 d6 j do J' [J"J—zjx%lx
% X o’ Y0 0 0 X

4T c3

(1)3

J‘XJ// J/2dx - 475 C3 (
0

3 3
2?0 6=x) <x=0)j' (76)

The term J (S:: X) is negligible in the far field and eqgs. (73) and (75) give:

.= B ancd)30C( 1 Ao) ,3 sinzcotcoscot,
Jvdldev—( . J . (JH - )J(XZO) , (77)

[0 c — cos” ot sin Wt.

In spacetime standard electrostatics, the field does not oscillate in time,
and the factor sin w¢ or cos w¢ does not appear in Gauss law expressed

in its integral form:

-1
Dy =IS(5r)tcdS =g RWEA(DJ'{I’ (78)

’

where ®p is the flux of the electric field across the Gauss surface S

which is a sphere with a radius R. dS is the surface element and (&" )ie

is the time component of the electric field:

r _ 1 ’ _1’
(€ )ye __\/HA(DJ{I.
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The total charge @, for the even solution is obtained after an integration
over a time-length 27 ¢/® of (IV divﬁdv) in the upper line of eq. (77)

divided by cos wt:

_ 3vn c A® 73

Qe = —— ——Joy (79)

The total charge @, for the time-reversed odd solution is obtained after

an integration over a period of inversed time-length —27 c¢/® of

(-[V div D dv) in the lower line of eq. (77) divided by sin o¢:

svnc A® 73

Qo == % (x=0)" (80)

Now one sees that solution g is not charged because o/ E)?x:O) = 0 while

solutions e and e* have the charge:

Jrca?

Q== 18 ¢ (81)

because Ji? 0) = (1/3)3 [23].

X=

This quantity depends upon the amplitude A but @ is not an
invariant of the tensor in spacetime and should be computed again for
spinning particles.

A similar calculation can be done for cylindrically symmetric solutions
q;.

For solution g, the determinant (71) becomes:

N2

3
AL = [i ﬂj sin® ot | - cos® 0 J7 (i)
4T c2 X

/N3
+cosOsin’ @ [%)] . (82)
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Integrations over the angle 6 which appear in the calculation of the

electric charge @ lead to the integrals:
T3 T 3
I cos Gsinedez". cos sin® 6.6 = 0 (83)
0 0

which implies that the charge associated to solution g is identically O.

The same result occurs for solutions q; and ¢_; where the determinant

includes terms proportional to cos® ¢ or sin? ¢ cos @ whose integrals

between 0 and 27n vanish. One can verify that all other solutions have
the same property. The only charged electromagnetic particles are

those described by solutions e and e*. This result leads us to name

solutions e and e* the electron and the positron.

We note that the total charge (81) is not invariant in a coordinate
change. It is the spinning electron that will give the global, observable,

electron charge.

3.4. Rotating tensors
Up to now, the electromagnetic tensors have been written for points
M at rest with respect to the local (or internal) center of coordinates O,

l.e., in the inertial system where the geometrical coordinates are time-
independent. We next studied the situation where M 1is subject to a
rotation around the z axis. We have computed the expressions for the
components of [aki] in the frame where M is at rest. We consider now
the local infinitesimal length elements cdt, dr, rd6, rsin0d¢ which

define the volume element dv around M and which are measured by a

rotating observer attached to M. These coordinates become cdt’, dr’,
rd®’, r’'sin® d¢ for a fixed observer at M in the laboratory frame.

Both sets of coordinates are linked by a local, tangential, Lorentz

transformation. The elementary motion is a translation along the ¢" axis
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and the two other local axes r’ and 6" are perpendicular to it. It follows

that the coordinates dr and rd6 are not affected by the rotation. Only
the length element rsin 8 dg and the time element c dt at event M are

subject to the Lorentz transformation:

cdt’ =vyedt+yBrsin0do, r=r, 0 =0,
rsin@de = yrsin6do + ypcdt. (84)

We use the standard notation B for the relative tangential velocity, and

v for the Lorentz factor:
= . 85
§ ¢’ Y ) (85)

where B and 7y could depend upon the coordinates.

Note that the temporal phase wt (which is a true scalar) is invariant
in a Lorentz transformation: w¢ = ®¢. Note also that the factor c/®
which appears in the equation of the potential or its derivatives is the
normalization parameter that transforms the invariant radial coordinate
r into the non-dimensioned quantity x. This parameter is not modified

here.

The expression of the potential A'i, as seen by a non-rotating

observer at M, is obtained with the Jacobian (the Lorentz matrix):

y 0 0 B
0 1 0 0
I = (86)
0 0 1 0
Yy 0 0 vy

One gets:
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¢’/c o/c] [yo/c+ypA?]
A/r Ar Ar
A A%] yBofc+yA®]

The angle ¢ is now a function of time and the gradient tensor has
supplementary terms originating from A't(p =0dA® /cot' +BcaA?/o¢
and from (¢'/c )y = 0’/c)/cot’ +Bca(¢/c)/o¢’. Equation (5b) no
longer applies, the observer is not in the proper time.

Let us apply the Lorentz transformation to solution e. The rotating

potential is:

o’/c Yo/c
A'r Ar
A% | o
A®] |yBo/c

The components of the gradient tensor are the derivatives of A" with

respect to the coordinates eqs. (84). The general expression (20) gives:

@), Al 0 AP ]
. @/c), Al 0 AP
l[az'] = ’ r
0 0 A" [r 0
, cos® , r
| 0 — A ¢ /7" — m A ¢ A /7"_
0f),  lYvA] 0 B (9/c),
v(9/¢), A 0 7B (9/c),
— . (87
0 0 A" [r 0
vB (¢/c) cos 0 .
0 - ~—sng B AT/r
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The covariant tensor is:
©/c), -1vA] 0 - B(9/c),
v(0/c),  —AL 0 - YB(9/c),
ol =| " 0 _ ATy 0 - (88)
YB(@/c) cos® Car
0 - g 1P 0/c) AT [r
The electromagnetic field is the antisymmetric part:
0 _1/YA,rt _'Y(q)/c),r
[Fkl] =05 ’Y(q)/c)’ro-‘r 1/YA,t g
Blofe),  vBlefe), + 1B
0 B/, ]
0 ~1B(ofe), - YU/
cos 0 . (89)
90 ~ g 1B /)
cos
rsinBYB(q)/c) 0 J
Using the relation: (¢/c) . = —A};, one obtains:
I 0 ~1/y A} +y A,
-vAL +1/y A], 0
[F] = 0.5 YA; +1/y A}
0 0
B(9/c), - YB (A} = (¢/c)/r)
0 _B (q)/c)’t
0 YB (A} - (¢/c)/r)
cos 0 .
; 0 T sn® YB (¢/c)
cos
rsinGYB(q)/c) 0 J
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Components of the electric field are:

E" =-1/yA; +vA, = A (v-1/v), (90a)
E® =0, (90Db)
E® = —B(9/c),. (900)

Components of the magnetic field are:

r _ cos®
B = s 1B (9/0), (91a)
BY = yB(A] +(9/c)/r), (91b)
B® =0. (91c)

The factor 0.5 is left aside. As expected one notes the appearance of a

magnetic field perpendicular to the electric field. In the far field range,

B" -0 and B% - YB A}. The magnetic field becomes oriented along
the local axis 6.

These fields are computed in the coordinate frame where the observer
M is motionless with respect to the origin O p- They are the

electrostatic fields of the electron.

4. Tensors in the Laboratory Frame

This section shows that the standard electromagnetic tensor Fj; is

the antisymmetric part of aj; expressed in a general coordinates frame.

The Lagrangian density which is associated with aki allows the

calculation of inductions. Then Euler-Lagrange equations are applied to

find Maxwell’s equations.
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4.1. Splitting the covariant derivative

One starts with the contravariant components of a general
electromagnetic four-potential vector Al (z=0,1, 2, 3). This potential
can be related to those studied in the preceding section in each particular

problem. The scalar potential is noted again A° = 0/c and the set

—

A = (A%, AY, A%) represents also the vector potential. An event M in
real Minkowski’s spacetime is defined by its coordinates Xk = (ct, x, v, 2)

and a four-potential corresponds to each event: Al =Ai(M). The

coordinates are defined in the Cartesian frame spanned by the

normalized basis vectors (é;, €, €,, €,) with origin O (see Figure 1). All

the theory described here is local: the point M 1is surrounded by an
arbitrarily small volume. There are quantities, like fields, which are

defined at M and densities which are defined around M.

To obtain the corresponding covariant components A; in the dual

space, we use again the (+, —, —, —) convention for the metric tensor

[Nmn] and, therefore, one has the relation: A; = n1;,A™ written with

Einstein’s summation convention.

The 16 partial derivatives aki = 0A! / dx* at M are the components

of the tensor [aki] which are given in the expression (1).

The covariant form [ap;] is written explicitly using co or

contravariant components of the potential:
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i ((P/C)t Ax,t Ay,t Az,t ]
g |0 A A A
el ©/c)y  Axy Ayy Az,
(0fc) . Az Ay As

(0f),  -AF A7 - A7
0/c), -AL -Ay -A%

(¢/C),y —Ay -4y - A,Zy
_((P/C)’z - Afz - A,D./Z - Aé

This tensor is divided into its symmetric and antisymmetric parts:

1 1 i
[Ski] =5 (lari 1+ e ]) = E(aAi/axk + oA, [ox), (93)
1 .
[F]= 5 ( 94; [axk — 24, [oxt ). (94)
The antisymmetric part of [az; ] is:
0 - Al - 0/e), —A) - (0/c), ~AF - (9/c),
(9/c) . + AF 0 A% — A% AL - A%
(Fil=g| v 2 (95)
0/c) , +47 A% - A} 0 A% - A%
(Ofc) . + A7 AT -AL A5 -A% 0

The electromagnetic field is defined from the components of [Fy;].
Below are the usual equations which condense these definitions:

—

E = —aa—‘? — grad ¢, B = curl A. (96)

—

In these equations, the vector potential A 1is expressed with its

contravariant components.

The fields which are used in Maxwell’s equations are pseudovectors.
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We will use the special notation EX, EY, EZ, BX, BY, BZ to

distinguish them from usual vectors.

The electromagnetic tensor writes:

0 EX /c EY /c EZ /c_
X Z Y
1|-EXJ)e o -B B
~EY/)c B 0o -B
-E%“)c -BY BX 0

The preceding formulas are not new: they belong to the basic

knowledge of electromagnetism (apart from the factor 1/2 in [F};]). This

is not the case for the symmetric part of [ay; ]:

20/c), A +@/c), - AY +(0/c), - AF +(9/c),
(0/c) . — AF - 2A% - A% — A - A% - A%
[Skil = % o) ty * v St (99
(¢/c)’y - A; —A;XC - A5 —2A7yy —A;VZ -A5
0/c) , - AF - A% - AL - A% - A - 24%

[Sp;] has been ignored in textbooks [4, 5] and in the specialized
literature. This neglect leads to its replacement by charge and current
densities, which are phenomenological quantities. We name this tensor
the source part because it is responsible for the source terms which, as

seen below, will appear in Maxwell’s equations.
4.2, The Lagrangian

The remaining of this section is devoted to the demonstration of

Maxwell’s equations written in the standard form:

divB = 0, curlE = - 28,
o
divD = p, curlH =22 .3 (99)
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We will show that these equations result from the principle of least action

applied to the electromagnetic potential and its derivatives.

The first pair of egs. (99) shows the relation between electric E and
magnetic B fields. The second couple links the inductions D and H to
the sources p (charge density) and } (current density). Inductions are

defined from the Lagrangian £ which is proportional to the determinant
(eq. 34):

(9/c )t Atx Aty Atz
_o|@o. AL AL A%
/), A, A A]
0/c), AL AL A

)

L:dbg

This expression will not be explicitly used in the following. However, it

shows that the derivative of £ with respect to the term Aki is the

determinant of the minor relative to Aki (accompanied by the proper

sign). For instance:

Ay ALY A

oL
o —C|AY, A)  AF
a((¢/c); ) S
AY AL AR

4.3. Maxwell’s equations

First pair. The first pair of Maxwell’s equations are identities which

are nicely expressed [9] by the equation:

OFy , Fpm , Wy

ox™  oxk ox’ =0 (100

Second pair. Let us now show that the source terms p and ; in the

second pair are related to the induction tensor [E'ki ].
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An element £%; of [£%i] is obtained from the derivative of the

Lagrangian with respect to the element aki. The developed form is:

L L L AL

AaO/c),  dAF  aA}  9AF

L L L AL

A0/c) . AL aAY 047

kY _ X X X X
%=\ 53 o ar  ar (101)

A0/c)y A% 3AY,  aA?,

L L oL AL

00/c),  9ar  aAY  0A%

An element £%; is the canonical momentum corresponding to ay'.

Now the corresponding covariant tensor [L};] is split into its

symmetric and antisymmetric parts which are then transformed back
into mixed tensors. The first operation ensures that the symmetry (or

antisymmetry) of the tensors is independent of the coordinates system.

One obtains the separation of [£%;] into two parts: [£7i]=

[ ]+ [s%i].

The first part is directly linked to the usual induction tensor, it
corresponds to the antisymmetric part of [£};]. The second part
corresponds to the symmetric part of [£};] and will be referred to as the
source tensor. The expressions of these tensors are:

I oL oL oL oL oL oL

g 9= =4 —+
0 AF Tl aay  0/e), aaz  90/0)
oL, o 0 oL I oL oL
aar  9¢/c) A%, A%, A% 9AX
k. :l t X , X Y X 2 102)
%1=5ac , _ac aL oL . ot ot | ¢

a4y 90le),  aa% Al 047, 0AY
ar L aL o L oL

+ - - 0
aa7  90/0).  aAY 2A%  aa) 04,
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and:
oL L L AL oL oL L
a(0/c), aay 00/c), aay /)y a3 00/c),
L o L oL oL L oL
a(0/c) X 2 x tox o2
shyo L x QA% A%, A% AT, A% 9A% (103)
“Tg|_oL oL oL | OL g 0L oL , o |
ofe)y  aay oAk aAl 243, 247, 042,
oL oL L . I oL oL oL
a(¢/c) T oAz x a2 y + z 2 z
| = AT AL 0A%  aA)  A47 A%,

Electric and magnetic inductions are given by the derivatives of the

Lagrangian with respect to the components of the fields E and B. One

applies the chain rule and equations (96) to obtain:

oL L L

Dy = £ __, I (104)

X AEY) o0/c);  9A%

Hy - 2L (oot ) (105
oBX (247 2AY

Other components Dy, D,, Hy and H, are obtained from circular

permutations of x, y, z.

We have used a lower index notation Dy, Dy, ... to stress the fact
that the components of the induction pseudovectors are those of a type

[D*;] tensor:

0 —CDX —CDY —CDZ
- CDX 0 HZ - HY
%=1 . (106)
2 - CDY - HZ 0 HX
- CDZ HY - HX 0

The relations [24] between the pseudovectors DX s e HX.. and

Dy, ..., Hx... are:
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DX =Dy, DY =-Dy, D% =-D,, (107a)

HX =Hy, HY =Hy, H? =H,. (107b)

In the following we will use this notation to write Maxwell’s equations in
both direct and inverse spaces. In passing, one should note that the

splitting of [az;] into its symmetric and antisymmetric parts allows the

study of special cases where one of the tensor can be nullified in some
regions of space while the other still exists. An illustration is the
Aharonov-Bohm effect [10] which shows that a potential can exist in a

region of space even in the absence of any field (F;; = 0). One sees that
in such a situation it is the source tensor [S;;] which can change the

phase of the electron when it crosses this region.

Euler-Lagrange equations. Equation (65) expresses the principle of
least action and introduces the conjugate momenta 9L/ aAik which are

the elements of the induction tensor (101). We will show that Maxwell’s

equations are a consequence of this principle.

The Lagrangian density £ does not depend explicitly on the

potentials (only on its derivatives) and equation (65) reduces to the first

term. It introduces the tensor [[Z'ki] whose elements have been written

before:
oty = 9L (108)
aakl
When d£/ dA! = 0, equation (65) can be written in matrix form:
0 0 9 0 ko
(W’g’wg)[ﬁ i1=(0,0,0,0). (109)

This expression groups four equations and we show now that it leads to

the second pair of Maxwell’s equations in reciprocal space.
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We use the separation of [£*;] into its two parts [D¥;] and [S¥;]

and write eq. (109) in compressed notation:
@[£*]=(0) or @(D%]) =-0)(s"]. (110)

Expressions for H))ki and Ski are given by eqgs. (102) and (103). In the
following we skip the factor 1/2 before H))ki and Ski which simplifies eq.
(110).

The first term (9) ([D*;]) is computed first:

0 —-cD X —CDY —cD 7

d 2 3 9 - cDy 0 H, - Hy
QD= (5 v o]
codt X y < —CDY —HZ 0 HX

—CDZ HY —HX 0

= [—cdivE, [-JZ?[’-%D. (111)

E = (Dyx, Dy, D) is the symbol for the induction in the reciprocal
space.

The 4-vector E in equation (111) has a time component — ¢ div E

—_—

——= D . .
et 3 space components (—curl H —C—alt). These are the induction

components in Maxwell’s equations.

The right hand side term () ([S%;]) in eq. (110) is computed now:
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k(9 9 9 9
@' = (5 2 3 32
[ g 9L oL oL oL oL oL IL |
o0/, a5 00/, gay 0/, gaz 90/c),
oL o L oL ar o
AO/e) A% A%, A% a4% A 9A%
oc_ L o o oL T ):
oofe)y a4y a4%  0AY 9% A%, 9AY
oc oL oL oL o oc oL
/), aas oAt | oa v oan sz
00/, 94z 2 04f, 24%, 047, 0AZ
T oL or AL T
0, e, a0, a0,
V. oL oL
9 2 o 9 aAf aAfC BA’QS/ aAi;
=(m7g’g’gj B oL oc |- (112
oAy oA 24%, 2AY,
B oL oL
0A% 0A% 0A7, 0A% |

The second expression is obtained after simplification by eq. (109).

Equating each component of the 4-vector of eq. (110) gives:

W(Q)/C)’t 0x A¥ dy A,Jt) 0z A,Zt,

0 oL 9L 2L D oL
cot (¢/c), ox A% dy A2, 0z A%

9Dy + [Jrlﬁ]x = -

= . (113b)

The two remaining equations along the y and z axis are obtained from

circular permutations of x, y, z and X, Y, Z.

We use these equations to introduce the following new 4-vectors in

spacetime:

— | e AL o

E, = s )
6/, Ay Ay A

; (114)

where k stands for ¢, x, y, or z.
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One sees that the r.h.s. of eqs. (113a, 113b) are all 4-divergences of

these vectors:

cdiv Dy = div L], (115a)
ala)tX +[curl H], = —div L. (115b)

These divergences define the source terms:
1, = . v
pzzzdwﬁt, Jy =—div L,

jy=—divLly, j,=-divL]. (116)

The lower indices x, y, z label the components of the covector
Z = (Jy» Jys Jz ). One thus obtains Maxwell’s equations in matrix form in

the reciprocal space:

(ep, Jus Jy, Jz)

0 —CDX —CDY —CDZ

—CDX 0 HZ —HY
(22,29 a1

cdt’ dx’ dy’ oz - cDy -Hy 0 Hx

—CDZ HY _HX 0

Finally, Maxwell’s equations in the direct space are obtained after

transforming the covariant quadrivector (cp, j,, Iy j») into its
contravariant counterpart (cp, —j*, —j”, — j°) and the pseudovector

E into f) These operations give the desired result:

divD = P,
[ X —
[curlH]X _ 9D +j* (x component)

ot
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or in matrix form:
(Cp, _jx7 _jy7 _jZ)

0 DX cDY cD?

d 9 9 29 DX 0 H? -HY
cdt’ odx dy oz DY - HZ 0 HX
cD?¥ HY -HX 0
One can use the above formulas to verify the continuity equation:
divj=-2, (119)

ot

We have demonstrated in this section that Maxwell’s equations can
be deduced from a few basic operations:

1- The covariant tensor of derivatives [aj;] has been split into its
symmetric and antisymmetric parts. This symmetry is independent of the
coordinate system.

2- The Lagrangian density has been associated with the determinant

of [aki ]. This determinant is independent of the coordinate system.

3- Induction tensors have been computed.
4- The principle of least action has been applied.

The study which is presented in this section is very general and does
not need any particular form of potential. It connects the well-known

electromagnetic tensor to the antisymmetric part of [az; | and the source

terms to the symmetric part. It shows that the fundamental quantity is
the potential and that Maxwell’s equations are a consequence of the least
action principle. The potential is very general and can be related to the

potential which describes a particle in particular situations.
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5. Conclusion

We have described in this article the properties of a family of tensors

whose elements are obtained from partial derivatives of a potential Al at

each point M in Minkowski’s spacetime. The primary tensor is the

gradient [aki] at M.

In the first main part of the study, [aki] is divided into its symmetric

([ski]) and antisymmetric ([fki]) parts. We use the properties of these

tensors to show that there is a proper time where the scalar potential
obeys the Helmholtz equation. The solutions of this equation describe
electromagnetic particles. These are characterized by an accumulation of

energy around the origin of the coordinates and by far fields in 1/x. The

condition of existence of these particles corresponds to Wheeler-Feyman’s
theory where an equilibrium must exist between the incoming and
outgoing waves of the electron. Each solution can be even or odd and is
characterized by three quantum numbers. We have given the tensors
corresponding to the first five solutions. The essential result of this part is

the union in a single expression of field and matter properties. In the
second main part of the study, [aki] is first transformed into the
covariant tensor [aj; | which is then divided into its symmetric ([Sy;])
and antisymmetric ([F};]) parts. These two tensors are different from
([sg; 1) and ([fy;]) because the lowering-index operation does not
commute with the symmetric-antisymmetric splitting. We find that Fj; is

the well-known tensor of classical electromagnetism. By applying the
Euler-Lagrange equations, we find Maxwell’s equations. We prove that
the source terms are expressed as functions of the derivatives of the

potential.

We summarize below the key points of the study.
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1- There are two assumptions:

- A continuous and flat Minkowski’s spacetime: xF = (ct, x, y, 2, 1).

- A 4-dimensional potential A': with the scalar potentiel ¢/c and the

vector potentiel A*, AY, AZ.

2- The study of the gradient of the potential: [aZ] = [94° / 9x"] (rank
2 tensor, 16 components) and its splitting into its symmetric and
antisymmetric parts: [aé] = [52]+ [f,g] leads to the concept of

“electromagnetic particles”.

The main invariants of [a;g] in symmetry operations of the Poincaré

group are its determinant | aﬁe | and its trace Zi af. They are used to

obtain the fundamental Helmholtz equation in the proper time and to

obtain the local Lagrangian density L.

3- The study of the covariant tensor [a;;] and its splitting into its
symmetric and antisymmetric parts: [ag; | = [Sk; |+ [F}; ] leads directly

to [F}; ]; the usual electromagnetic tensor.

Applying the principle of least action, Maxwell equations are

obtained from [ay; ].

The theory that has been described is simple, synthetic and powerful.

It is simple because it is based (1) on a single assumption, that of a 4-
potential in Minkowski’s spacetime, (2) on two non-commuting
mathematical manipulations of tensors, i.e., raising-lowering operation
and antisymmetric-symmetric splitting, (3) on fundamental physical
principles which are the principle of least action, the principle of

symmetry and the principle of relativity. It is synthetic because it
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groups in a family of tensors classical electromagnetism and a description
of new fundamental particles. It is powerful because it contains a wealth
of developments. The mathematical existence of the electromagnetic
particles is thought-provoking: Associating these particles together and
studying their interactions will change our perception of the microscopic

and cosmological universe.

6. Appendix A

The non-commutativity of the antisymmetrization-symmetrization
operation (a-s operation) and the lowering-raising operation (I-r
operation) is illustrated in this appendix with the use of 2 x 2 matrices to

shorten the notation (or in a one dimensional geometrical space).

The starting tensor is written as a mixed tensor in the real space:

. b
[akll{j d}. (120)
The metric tensor is:
1 0
nl= . 121
= 1= ] 121

Let us consider first the lowering index operation (1) acting on [a ki ]:

: b 0 -b
O e A N S S

and followed by the a-s operation (2):

-b-c
ol = 3 Gud-laad =3 0 0]

1= § o]+ o) = 5|

po|—
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Consider now the a-s operation (2) acting on [a ki ]:

1= 5 ([’ T+ [a* D) = 5

1= 2 (ay']-la/) = &

1

[ 2a b+c
c+b 24 |
0 b-c
c—-b 0 .

It is followed by the lowering index operation (1):

[_] 1_2(1

Spil==

' 2_c+b
0

z 11

“ﬁ]_z_c—b

b+ c} {1
2d 0

ik

0
-1

0
-1

_l 2a
2lc+b

|-4.°

(122)

(123)

—(b+¢)
—2d }

c—b}
o I

One sees that [sy;]# [5] and [fi;]# [fy;]. It is this non-

commutativity which leads to the two branches of electromagnetism:

The first branch is based on the tensors (1) (expressed in the

Cartesian frame of coordinates):

(0/c), A3
i |0/e), AL
[ap'] =
©/c), A}
|(0/c), AZ
2(0/c),
i 1 ((P/C)’x + Aftc
[sx"]= 9
(9/c) , + A}
| (0/c) , + A]

A} A3
AL A%
Ay A
Af; Aj"z_

Te0/e), A+ (/o)

2A%
Afv + Aﬁc

X 4
A7Z + A,x

A%+ A,’;
y
2A,y
Afg + A,Zy

(124)

A% +(9/c) |
Ajc + Af;

z y
A’y + A,Z

242

(125)

133
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[hi'1=5
(5] = 5
[l =3

0
(0/c) . — A}
(0/c)., ~ AY

(/) , — AF
- 2(0/c),
(¢/c) , + A}
(0/c),, + AJ
(9/c), + A7
o
(0/c) . — A}
(0/c) , — A}
(@/c) . — AF
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Afg - (q)/c),x A’%’ - (q)/c)’y A,zf: - (q)/c)’z
0 A2 - A%, AZ - A
A% - AL 0 A% -ay |
AL - A% AY- A7 o |
(126)
— A3 —(9/c),
— 24%
- A% - A
- A7 - A%
- A} - (/c), —AF-(0/c),
—AY _ A — A% _ AF
Y TR (127)
- 2A,yy - Ai’v - Af;
- Afg - Afy - 2Afz

- Aj +(9/c),

s

0
- Af“y + A%
- A,xz + A,Zx
- A3 +(9/c), —AF+(9/c),
- A% + A% - A% + A%
Y TR (128)
0 — Aj, + Af;
- Af‘; + A,Zy 0 |

The second branch is based on the tensors starting from (92):
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((0/e), -AF -A} -AF]
(0/c) - A* AV - AZ
fagg = | /) ” N o’ (129)
(q)/c),y - A,y - A7y - A7y
[0fc), -AZ -AL -A%
200/c), - AY +(0/c),
[S ] 1 ((P/C),x - A,Dtc - ZA,J;
kil =
o2 @/c), - A7 A} - A%
[(9fc) ., - AT -AL-A%
- Ay + /), —AF +(0/c),
-AY - A% - A% - A*
" 24 ~ Z | (130)
z
- 2A%', - A’y - Af'z
- Af'z - Aj, - 2Af’z
0 - A7 -0/, — AT -(0/c), —AF-(0/c),
(¢/c) . + AT 0 - A + A - A% + AL
[Fril =% : ; x4y ’ Y A (131)
(¢/c)7y + Ay - A+ AX 0 - A%+ A%
0/c), + A7 -AZ+AL AL+ AY 0

[F}; ] is the standard electromagnetic tensor (apart from the factor 1/2 ).

Fields are defined from the usual equations (96).
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7. Appendix B

This appendix gives explicit formulas for the potentials and the
corresponding tensors for the first 5 even electromagnetic particles. Odd

solutions are obtained by changing ¢ into ot + /2.

g solution (n = ¢/ = m = 0):

Potential:
o/c = 1 a J cos wt,
V4T
AT =—ﬁAJ6 sinot, A, = -A",
A% =0, A% =o0. (132)
Mixed tensor:
[aki] =
—sinwtJ; —coswtd 0 0
1 cosotJ, —sinotJy 0 0
1 (0] J!
A dhad : 0 1
Jan ¢ 0 0 — sin ot = 0 , (133)
0 0 0 — sin ot %

e solution (n =1, ¢/ = m = 0):

qo solution (n =1,/ =1, m = 0):

Potential:

o/c = 1/4—?; A J7 cos 8 cos o,
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AT = o2 AJ{cosBsinot, A, = -A7
a1 c ’
A% = |2 ATt gnosinor,  4g = -4°,
4T X

A® = 0. (134)

Mixed tensor:

— sin @t J; cos 6 — cos @t J] cos O
[a;'] = /iﬂ cos ot J1 cos 0 — sin @t J7 cos 6
v 4t ¢ J J! J
1 . . 1 1 .
—cos®Wf—sIn® sin 0t (— — —j sin O
X X <2
i 0 0
cos mt%sine 0
sin ot sin © (Jl - i) 0
X x (135)
— sin ot cose(i—ﬁj 0
X <2
0 — sin ot cos 0 ﬁ—ﬁ
X  x2)]

q; solution (n =1,/ =1, m =1):

Potential:
3 .
o/c = i A J,, sin 8 cos ¢ cos ¢,

Ar

—1{% Ad; sinBcos osinwt, A, =-A",
AY = 7/% A%cosecosq)sin wt, Ay = —Ae,

A® = 1{% A% sinpsinwt, Ay = —A°, (136)
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Mixed tensor:

— sin ot J7 sin 6 cos @ — cos ot J71 sin B cos @
cos Wt J7 sin 6 cos @ — sin ot J7 sin 0 cos ¢
(0] = AL |3 J, . J, )
k c V4n coswt?cosecos(p — sin ©t - cos 6 cos @
X
Jp . . (J{ Jlj .
— COS W —= sIn ¢ sSIn Wt | — — —— |sIn ¢
L X x 2
— cos mt%cosﬂcosq) cos wt%sin(p
: (J{ Jlj o (J’ Jlj
—sin ®t cos Bcos Q| — — — sin ®f sin Q| — — —
X x2 X 2
F g . (137
—sinmtsinecosq)(—l——lj 0
X 52
0 — sin ot sin 6 cos @ AN
X  x2)

(p_

(1]

(2]

(3]

(4]

q_1 solution (n =1,/ =1, m = -1).

Formulas for the q_; solution are obtained by changing ¢ into

7/2 in the preceding expressions.
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The power series expansion for J; about the point x = 0 is: J; = x/3 — x® /30 +
5 7 9 ’ s s ’ 2 4
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