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Abstract 

We investigate theoretically the unsteady magnetohydrodynamic natural 

convection heat and mass transfer of a viscous, incompressible, 

electrically-conducting and radiating fluid over a porous vertical infinite 

plate. A uniform magnetic field of magnitude 0B  is applied normal to the 
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plate. An algebraic flux model is employed valid in the optically thin limit 

to simulate radiative heat transfer. Magnetic induction effects are 

excluded. However viscous heating and wall transpiration effects are 

included in the model. Following non-dimensionalization of the transient 

boundary layer conservation equations, a perturbative series expansion 

solution is derived. Expressions are also obtained for the surface shear 

stress (skin friction), Nusselt number and Sherwood number. An increase 

in magnetic body force parameter (M) is found to escalate temperatures in 

the regime whereas an increase in the conduction-radiation parameter (R) 

is shown to exert the opposite effect. Velocity is reduced considerably 

with a rise in conduction-radiation parameter (R) whereas the temperature 

is found to be markedly boosted with an increase in the viscous 

dissipation effect, i.e., Eckert number. Velocity and concentration 

functions are both reduced with an increase in Schmidt number. Similarly 

velocity and temperature are both considerably decreased with an increase 

in the free convection parameter, i.e., Grashof number. 

1. Introduction 

Transport phenomena in materials processing flows in the presence of magnetic 

fields have stimulated considerable attention in recent years. Many modern 

technologies involve the interaction of electromagnetic fields and flowing liquids 

such as metal production and electrolytic manufacture. Magnetic damping involves 

the application of an intense, static magnetic field to suppress fluid motion. 

Semiconductors, smart metallic alloys, ceramics and intelligent metallo-organic 

liquids are often produced using electromagnetic materials processing as are 

ferrofluids for medical applications, laser welds, nano-scale metallic powders etc. [1-

3]. Important magneto-fluid dynamic phenomena arising in materials processing 

including the flow of metal along translating surfaces, magnetic-field control in the 

production of steel, aluminum, and high-performance superalloys and also magnetic 

stirring, where a rotating magnetic field is used to agitate and homogenize the liquid 

zone of a partially-solidified ingot [4]. Applications of magnetohydrodynamic 

boundary layer flows in crystal growth processes are also significant [5]. When 

magnetohydrodynamic flows are combined with simultaneous heat and species 

diffusion under free convection, the resulting multi-physical flow phenomena are 

characterized by numerous intricate interactions. Buoyancy-driven transport 

processes also occur in geophysics and such flows are modified or driven by density 

differences caused by temperature, chemical composition differences and gradients, 

and material or phase constitution. Elucidation of the multiple effects arising in such 
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flow regimes such as the interplay between thermal and concentration buoyancies is 

necessary to successfully control these processes, particularly in an industrial context. 

Regimes are further complicated by the presence of unsteadiness, i.e., transient 

phenomena. Steady and unsteady combined heat and mass transfer by free convection 

along an infinite and semi-infinite vertical plate have been studied extensively by 

different scholars. Much of the work reported up to 1988 has been addressed lucidly 

by Gebhart et al. [6]. Several excellent studies of both steady and transient 

hydromagnetic convection flows have been communicated, using a variety of 

analytical and numerical methods. Soundalgekar [7] investigated analytically the two-

dimensional steady hydromagnetic flat plate flow with constant suction velocity for 

the case of both plate cooling and heating and with viscous heating present. Krishna 

and Prasada Rao [8] used complex variables to study Hall effects on the rotating 

hydromagnetic thermal boundary layers along an infinite oscillatory porous plate 

under a uniform transverse magnetic field. Hossain and Mandal [9] presented 

numerical solutions for transient laminar free convection hydromagnetic flow along 

an accelerated vertical infinite porous plate with wall suction velocity proportional to 

( ) 21
time

−
 for both water and air. Kafoussias [10] used a Laplace transform method 

to study Soret effects on hydromagnetic free-convective heat and mass transfer along 

a translating vertical infinite plate, for both cases of the impulsively started and 

uniformly accelerated plate. Sattar [11] considered Hall current effects on unsteady 

magneto-convective flow under an oblique magnetic field. Acharya et al. [12] 

reported on transient hydromagnetic flow caused by the interaction of gravity and 

density difference due to simultaneous diffusion of thermal energy and chemical 

species with Hall currents. Nanousis [13] studied plate oscillation influence on 

hydromagnetic thermal boundary layer flow along a porous plate, also solving the 

magnetic induction equations and including dissipation effects. 

Coupled heat and mass transfer in hydromagnetic flows are also of considerable 

interest. In particular with buoyancy forces present, free convection effects can exert 

a major role in such regimes. Char [14] presented closed-form solutions for the 

combined heat and mass transfer in a hydromagnetic flow of a viscoelastic fluid 

along a stretching surface, showing that increasing magnetic field elevates both 

temperature and species concentration increase whereas the mass transfer coefficient 

at the wall is reduced with a decrease in modified Schmidt number decreases. Rawat 

et al. [15] used the finite element method to simulate the unsteady hydromagnetic 

natural convection heat and mass transfer in a non-Darcian porous medium channel 

for the case of an electrically-conducting micropolar fluid. Zueco et al. [16] 
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employed the network simulation method to study thermophoretic effects on 

magnetohydrodynamic heat and mass transfer in boundary layer flow along a flat 

plate with viscous heating, Joule heating and wall suction. These studies all identified 

the strong influence of transverse magnetic field on very different flow regimes. 

In numerous high-temperature materials processing operations, conduction and 

convection heat transfer are invariably accompanied with thermal radiation heat 

transfer. Radiation may have a dominant role in, for example, Czochralski crystal 

growth processes [17]. It has been shown that thermal radiation is among the best 

mechanisms for rapid thermal processing (RTP) and rapid thermal chemical vapor 

deposition (RTCVD) of semiconductor wafers [18]. Other important areas in which 

thermal radiation heat transfer must be considered with thermal convection heat 

transfer (and mass transfer) are direct flame impingement (DFI) furnace for rapid 

heating of metals in materials processing [19], heating of a continuously moving load 

in the industrial radiant oven [20] and glass melting simulation [21]. Several articles 

have addressed the combined effects of thermal radiation and magnetohydrodynamic 

phenomena on combined heat and species transfer flows. A significant drawback of 

modeling thermal radiation effects is a robust solution of the radiative transfer 

integro-differential equation [22]. To circumvent this, generally simplified algebraic 

flux models such as the two-flux model, Milne-Eddington approximation or the 

Rossel and diffusion approximation, are employed in engineering studies owing to 

their adaptability to boundary layer heat transfer models. Shateyi and Petersen [23] 

used the Rosseland flux model to examine numerically the influence of thermal 

radiation and buoyancy effects on heat and mass transfer over a semi-infinite 

stretching surface with wall flux effects, showing thermal radiation flux exerts a 

strong effect on the regime. Ogulu and Prakash [24] employed the optically-thin 

Milne-Eddington differential radiation approximation to study analytically the 

hydromagnetic convection flow along a moving plate with viscous dissipation effects. 

Further interesting studies of radiative-convective magnetohydrodynamic flows in a 

variety of applications have been communicated in [25-32]. In several of these 

studies viscous dissipation effects have also been considered. 

In the present analysis, we investigate theoretically thermal radiation heat 

transfer effects on an unsteady two-dimensional laminar mixed convective thermal 

and species boundary layers along an accelerated semi-infinite vertical permeable 

plate with variable suction, in the presence of a transverse magnetic field. Viscous 

dissipation effects are included. Such a study has thus far not been communicated in 
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the engineering science or applied mathematics literature and finds pertinent 

applications in high-temperature magneto materials processing. 

2. Mathematical Model 

We study the transient magneto hydrodynamic free convection heat and mass 

transfer in viscous, incompressible, Newtonian, electrically-conducting flow of a 

radiating fluid over a porous vertical infinite plate. Thermal and concentration 

buoyancy effects are present owing to free (natural) convection effects. The physical 

regime is illustrated in figure below. 

 

The x -axis is assumed to be taken along the plate and the y -axis normal to the 

plate. The plate is considered infinite in the x -direction and therefore all physical 

quantities will be independent of x  . Under these assumptions, the physical variables 

are functions of y  and t  only. The wall is maintained at constant temperature wT  

and concentration wC  higher than the ambient temperature ∞T  and concentration 

,∞C  respectively. A uniform magnetic field of magnitude 0B  is applied normal to 

the plate. The transverse magnetic field and magnetic Reynolds number are assumed 

to be sufficiently weak, so that the induced magnetic field is negligible. Also there is 

no applied voltage indicating that electric field is absent. The concentration of the 

diffusing species in the binary mixture is assumed to be very small in comparison 

with the other chemical species, which are present, and hence Soret and Dufour 

effects are negligible. A unidirectional thermal radiation flux is present perpendicular 

to the plate. Under the Boussinesq approximation and boundary layer theory, the 

governing equations for the problem under consideration are: 

,0=
∂

∂

y

v
 (1) 
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The third and fourth terms on the right hand side of the momentum equation (2) 

denote the thermal and concentration buoyancy effects, respectively. Also the second 

and third terms on the right hand side of the energy equation (3) represent the 

radiative heat flux and viscous dissipation effects, respectively. Equation (4) 

represents the Milne-Eddington differential approximation for radiation which yields 

quite good accuracy for boundary layer flows [33]. The corresponding boundary 

conditions of the problem are: 
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In equation (1), it is evident that the suction (transpiration) velocity at the plate is 

either a constant or function of time only. Hence the suction velocity normal to the 

plate is assumed to take the form, following Ahmed [34, 35]: 

 ( ),10
tnAeVv ε+−=  (7) 

where A is a real positive constant and ε  is small such that ,1,10 <<ε<<ε< A  and 

,00 >V  the negative sign indicates that the suction is towards the plate. External to 

the boundary layer, i.e., in the free stream, equation (3) reduces to: 

 .
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Since the medium is optically thin with relatively low density and α  (absorption 

coefficient) ,1<<  the radiative heat flux given by equation (4), following Shateyi et 

al. [36] takes the algebraic form: 
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∞
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 and B is Planck’s function. All other parameters have been 

defined implicitly in the nomenclature. To facilitate a perturbation solution, we 

introduce the following non-dimensional quantities into the equations (1) to (5): 
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where all variables are again defined in the notation section. Implementing these 

dimensionless variables in addition to equations (4) and (7) to (9), the governing 

conservation equations (2), (3) and (5) may be shown to take the following non-

dimensional form: 

( ) ( ),1
2

2

uUMGmCθGr
y

u

t

dU

y

u
Ae

t

u nt −+++
∂

∂
+

∂
=

∂

∂
ε+−

∂

∂
∞

∞  (11) 

( ) ,
1

1
2

2

2

2









∂

∂
+








−

∂

θ∂
=

∂

θ∂
ε+−

∂

θ∂

y

u
EcR

yPry
Ae

t
nt  (12) 

( ) .
1

1
2

2

y

C

Scy

C
Ae

t

C nt

∂

∂
=

∂

∂
ε+−

∂

∂
 (13) 

In due course the boundary conditions are also transformed to: 
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The system comprising (11) to (13) is well-posed and can yield either semi-analytical 

or numerical solutions. We elect to seek perturbation solutions here. 
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3. Solution Methodology 

The two-point boundary value problem defined by equations (11) to (13) is non-

linear and coupled. We adopt a perturbative series expansion about ( ).1, <<εε  As a 

first step to the solution of equations (11) to (13), we assume that: 

 ( ) ( ) ( ) ,, 10 ⋅⋅⋅+⋅⋅⋅+ε+= yfeyftyf nt  (15) 

where f stands for θ,u  or ,Φ  i.e., f denotes a general dependent physical non-

dimensional variable. Substituting (15) in (11) to (13), we find that the leading 

approximations satisfy the following sequence of equations: 
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where prime denotes differentiation w.r.t.  y. The corresponding boundary conditions 

now are: 
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The non-linear terms in equations (12), (16), (17) are multiplied by the Eckert 

number, ,Ec  in order to decouple them, since it is known that 1<<Ec  for all 

incompressible fluids. We assume that: 
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Substituting equations (23) into the equations (16) to (21), we arrive at: 

,000
2

0000 =θ−θ′+θ ′′ RPr  (24) 
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Equations (24) to (35) are to be solved subject to the corresponding boundary 

conditions: 
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The solutions of the equations (24) to (35) under the boundary the conditions (36) 

are: 
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4. Skin-friction 

Knowing the velocity field, the skin-friction coefficient can be obtained in non-

dimensional form, and is given by: 
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This allows the computation of drag effects at the plate, a characteristic of 

considerable importance in materials processing. 

5. Heat Transfer 

Evaluation of the temperature field similarly allows the calculation of the heat 

transfer rate at the plate, which is in the non-dimensional form computable as the 

Nusselt number: 
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where  
υ

=
xV

Rex
0  is the local Reynolds number. 
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6. Mass (Species) Transfer 

Finally the concentration field can be used to determine the rate of mass transfer 

coefficient at the plate surface which in non-dimensional form is calculated using the 

Sherwood number: 
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7. Graphical Results and Discussion 

Selected computations have been depicted graphically in Figures 1 to 12. The 

figures presented generally show the spatial variable distribution at a fixed time, t. 

All data corresponding to each figure is included therein. 5== GrGm  implies 

strong species and thermal buoyancy forces; 6.0=Sc  approximately simulates 

lower molecular weight gases diffusing in air. 
( )

2
0

2
2

UC

TT
R

P

w

κρ

−α
= ∞  is fixed as 0.5 

unless otherwise stated. 71.0=Pr  which represents air. The current perturbative 

series method has been well-validated in previous studies by Ahmed [34, 35] and 

therefore comparisons with earlier studies are omitted here for brevity. Also we have 

excluded species transfer distributions also for conservation of space. 

 

Figure 1. Effects of magnetic parameter on flow velocity. 
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Figure 2. Effects of magnetic parameter on temperature. 

 

Figure 3. Effects of thermal radiation on flow velocity. 

 

Figure 4. Effects of thermal radiation on temperature. 

 

Figure 5. Effects of viscous dissipation on flow velocity. 
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Figure 6. Effects of viscous dissipation on temperature. 

 

Figure 7. Effects of Schmidt number on flow velocity. 

 

Figure 8. Effects of Schmidt number on temperature. 

 

Figure 9. Effects of Grashof number on flow velocity. 
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Figure 10. Effects of Grashof number on temperature. 

 

Figure 11. Skin-friction coefficient versus Hartmann number for various values of R, 

Sc and .Ec  

 

Figure 12. Nusselt number versus Hartmann number for various EcR,  and Pr. 

Figure 1 shows the velocity response (u) with transverse coordinate (y) for 

various magnetohydrodynamic body force parameters (M). In the dimensionless 

momentum equation (11) the magnetic effect appears as the Lorentzian linear body 

force term, ( ).uUM −+ ∞  This acts perpendicular to the plate and effectively retards 

the boundary layer flow along the plate length. This is indeed the trend observed in 

Figure 1 where a strong deceleration in the flow is achieved with an increase in M 

from 0 (non-conducting case, i.e., Lorentz force vanishes) through 1, 2, to 5. In no 

case, however, is there flow reversal, i.e., velocities remain positive through the 

boundary layer. 
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Figure 2 shows the dimensionless temperature distribution ( )θ  with various 

magnetic parameters (M). The trend is very consistent for all M values, i.e., a 

monotonic decay from a maximum at the wall to the free stream. Temperatures are 

strongly enhanced with increasing magnetic field. The supplementary work exerted 

by the fluid in dragging against the magnetic field retarding action, is dissipated as 

thermal energy which serves to heat the fluid. These results concur with many studies 

on magnetohydrodynamic free convection boundary layer flows, for example, by 

Char [14], Shateyi and Petersen [23], Ogulu and Prakash [24], Chamkha [37] and 

Cramer and Pai [38]. 

Figure 3 depicts the spatial velocity distribution with various radiation 

parameters (R). The trend is similar to that for the velocity response to different M 

values, i.e., a peak arises close to the wall and then all profiles decay smoothly to 

unity as prescribed by the free stream boundary condition. The radiation parameter 

arises only in the energy equation (12) in the thermal diffusion term, 

,
1 2

2

2









−

∂

θ∂
R

yPr
 and via coupling of the temperature field ( )θ  with the buoyancy 

terms in the momentum equation (11), the velocity field is indirectly influenced by 

thermal radiation effects. 
( )

2
0

2
2

UC

TT
R

P

w

κρ

−α
= ∞  and therefore for ,0=R  radiation 

effects vanish and increase for .0>R  An increase in R clearly reduces substantially 

the velocity in the boundary layer, i.e., decelerates the flow. Similarly in Figure 4, the 

temperature θ  is reduced in this regime with increasing thermal radiation. For 

,1=R  thermal radiation and thermal conduction contributions are equivalent. For 

,1>R  thermal radiation is dominant over conduction and vice versa for .1<R  

Figures 5 and 6 illustrate the variation of velocity and temperature with various 

Eckert numbers ( ).Ec  Ec  quantifies the ratio of kinetic energy of the flow to the 

enthalpy difference. Velocity is noticeably enhanced with an increase in ,Ec  as seen 

in Figure 5. No flow reversal has been computed in our case although such an effect 

has been reported for the case of a moving wall by Gschwendtner [39] who studied 

much higher values of .Ec  Conversely in Figure 6, temperature is strongly increased 

with a rise in .Ec  With increasing viscous heating, mechanical energy is converted 

into thermal energy in the flow which heats the fluid. Eckert number effectively 

signifies the difference between the total mechanical power input and the smaller 
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amount of total power input which produces thermodynamically reversible effects, 

i.e., elevations in kinetic and potential energy. This difference constitutes the energy 

dissipated as thermal energy by viscous effects, i.e., work done by the viscous fluid in 

overcoming internal friction, hence the term viscous heating. Positive values of Ec  

correspond to plate cooling, i.e., loss of heat from the plate to the fluid; negative 

values imply the reverse, i.e., plate heating wherein heat is received by the plate from 

the fluid. In the present study, we have restricted attention to the former case. Also 

we note that increasing Ec  causes an increase in Joule heating as the magnetic field 

adds energy to the fluid boundary layer due to the work done in dragging the fluid, 

although this effect has been neglected in the present study. 

Figures 7 and 8 present the spatial velocity and species concentration profiles for 

various Schmidt numbers ( ),Sc  again at .2.0=t  Sc quantifies the relative 

effectiveness of momentum and mass transport by diffusion. Higher values of Sc  

amount to a fall in the chemical molecular diffusivity, i.e., less diffusion therefore 

takes place by species transfer. In the present study we have performed calculations 

for Prandtl number ,7.0=Pr  so that .ScPr ≠  Physically, this implies that the 

thermal and species diffusion regions are of different extents. An increase in Sc  will 

suppress concentration in the boundary layer regime. Higher Sc  will imply a 

decrease of molecular diffusivity causing a reduction in concentration boundary layer 

thickness. Lower Sc  will result in higher concentrations, i.e., greater molecular 

(species) diffusivity causing an increase in concentration boundary layer thickness. 

For ,0.1=Sc  the momentum and concentration boundary layer thicknesses are of 

the same value approximately, i.e., both species and momentum will diffuse at the 

same rate in the boundary layer. Velocity, u, as shown in Figure 7 is found to 

decrease strongly with an increase in Schmidt number from 0.22 (hydrogen diffusing 

in air), 0.66 and 0.78 (in all these cases species diffusivity >  momentum diffusivity) 

through to 2.62 (species diffusivity <  momentum diffusivity). Similarly there is a 

strong reduction in species concentration values ( )Φ  as shown in Figure 8 with a rise 

in .Sc  Concentration profiles follow a smooth decay from the wall (plate) to the edge 

of the boundary layer; velocity profiles, however, as in earlier graphs peak close to 

the plate and then descend thereafter towards the free stream. 

Figures 9 and 10 show the effect of thermal buoyancy parameter ( )Gr  on the 

velocity and temperature profiles, respectively. For the case of ,0=Gr  thermal 

buoyancy vanishes. For ,0>Gr  it is present. A strong acceleration in the flow is 
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induced with a rise in Gr  from 0 through 1 (thermal buoyancy and viscous forces 

equivalent) to 5 and 10 (for which thermal buoyancy forces exceed viscous 

hydrodynamic forces in the boundary layer). This pattern is sustained for some 

distance into the boundary layer, transverse to the plate; however, as we approach the 

free stream, a reverse in this trend is witnessed with increasing thermal buoyancy 

serving to damp the flow, i.e., decelerate the boundary layer flow. Conversely there is 

a consistent suppression of temperatures with a rise in ,Gr  as observed in Figure 10. 

The maximum temperatures correspond to ,0=Gr  i.e., the case of pure forced 

convection heat transfer. 

In Figure 11, the distribution of skin friction coefficient with magnetic parameter 

(Hartmann number, M) is shown at 3.0=t  with various ScR,  and Ec  values. 

Inspection shows that increasing radiation decelerates the flow, i.e., reduces skin 

friction, to the extent that for ,0.1=R  flow reversal is observed, i.e., skin friction 

becomes negative. Clearly all profiles decay as M increases since larger Hartmann 

number corresponds to greater magnetohydrodynamic drag which decelerates the 

flow. An increase in Sc  also strongly reduces the skin friction, in consistency with 

earlier discussion for the velocity response (Figure 7). 62.2=Sc  (maximum value 

studied) could correspond realistically to ethyl benzene (i.e., heavier molecular 

weight hydrocarbon gases) diffusing in air. Increasing Ec  is found also to decrease 

skin friction. Finally in Figure 12, we observe that an increase in Prandtl number 

( )Pr  which signifies the ratio of momentum to thermal diffusivity generally 

decreases heat transfer rate at the wall, i.e., Nusselt number. Nusselt number, 

however, is increased with Hartmann number (magnetic parameter) although for very 

high ( ) ,4.11=Pr  there is a subsequent plummet in Nu  value with further increase 

in M. Increasing radiation parameter, R, tends to boost the heat transfer rate at the 

wall, i.e., elevates Nu  magnitudes. For low Pr  values however with ,5.0=R  there 

are negative Nu  values induced at the wall. With rising Ec  values, the Nu  values 

are generally decreased, to the point of becoming increasingly negative for 

.1.0=Ec  We note that in all cases 0>A  in our computations indicating uniform 

suction at the wall. 

8. Conclusions 

Perturbation series solutions have been obtained to study the influence of 

thermal radiation and viscous heating on transient convective heat and mass transfer 
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in boundary layer flow from an upward translating plate. A flux model has been 

employed to simulate thermal radiation effects. A range of Schmidt numbers have 

also been investigated to simulate the diffusion of various species in air including 

hydrogen, oxygen and ethyl benzene. The analysis has shown that increasing thermal 

buoyancy effects (simulated via thermal Grashof number) accelerate the flow but 

depress temperatures. Increasing thermal radiation acts to generally boost Nusselt 

number values at the plate, whereas increasing Eckert number (viscous dissipation 

parameter) effectively reduces heat transfer rates at the wall and also skin friction, 

i.e., wall shear stress values. The present study has been confined to Newtonian flow. 

Future investigations will consider viscoelastic and power-law rheological fluid 

models and will be communicated in the near future. 

9. Nomenclature 

( )vu ,  Dimensional velocity components along the yx,  directions ( ),sm  

T   Dimensional temperature of the fluid ( ),K  

wT   Dimensional temperature at the plate ( ),K  

∞T   Dimensional fluid temperature in the free stream ( ),K  

C   Dimensional species concentration ( ),Kg.m 3−  

wC   Dimensional species concentration at the plate ( ),Kg.m 3−  

∞C   Dimensional species concentration in the free stream ( ),Kg.m 3−  

q   Radiative heat flux, 

g  Gravity ( ),sm 2  

xτ   Dimensional shear stress ( ),N.m 2−  

0v   Suction velocity ( ),sm  

PC   Specific heat at constant pressure ( ),K.J.kg 1−  

Pr  Prandtl number, 

R  Radiation parameter, 
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A  Suction parameter, 

Sc  Schmidt number, 

D  Mass diffusion coefficient ( ),s.m 12 −  

t  Time (S), 

Gr  Thermal Grashof number, 

Gm  Mass Grashof number, 

0B   Magnetic field flux density, 

M  Hartmann number. 

Greek Symbols 

α   Thermal diffusivity ( ),s.m 12 −  

β   Coefficient of thermal expansion ( ),K 1−  

β   Coefficient of thermal expansion with concentration ( ),K 1−  

θ   Dimensionless temperature ( ),K  

Φ   Dimensionless species concentration ( ),kg.m 3−  

κ   Thermal conductivity ( ),K.m.W 11 −−  

ρ   Density ( ),kg.m 3−  

µ   Coefficient of viscosity ( ),mkg.s 1−  

υ   Kinematic viscosity ( ),s.m 12 −  

ω   Frequency parameter ( ),s 1−  

τ   Dimensional shearing stress ( ),N.m 2−  

σ   Electrical conductivity ( ).mS  

Subscripts 

w  Evaluated at wall conditions, 

∞   Evaluated at free stream conditions. 
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10. Appendix 
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and the other parameters are not presented here to conserve space. 
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