Fundamental Journal of Mathematics and Mathematical Sciences Vol. 3, Issue 1, 2015, Pages 1-18 This paper is available online at http://www.frdint.com/ Published online July 31, 2015

OPERATIONS GENERALIZED PRE-REGULAR CONTINUOUS MAPPINGS

D. SARAVANAKUMAR^{*}, N. KALAIVANI and G. SAI SUNDARA KRISHNAN

Department of Mathematics SNS College of Engineering Coimbatore, India e-mail: saravana_13kumar@yahoo.co.in

Department of Mathematics Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College Chennai, India e-mail: kalaivani.rajam@gmail.com

Department of Applied Mathematics and Computational Sciences PSG College of Technology Coimbatore, India e-mail: g_ssk@yahoo.com

Abstract

In this paper, we defined (γ^*, β) - generalized-pre-regular-continuity and (γ^*, β^*) - generalized-pre-regular-continuity and obtained several characterizations and some properties of these mappings.

 $\label{eq:Keywords and phrases: γ_g^* - pr.closed (open), (γ_g^*, β) - pr.continuous, (γ_g^*, β_g^*) - continuous.}$

2010 Mathematics Subject Classification: 54A05, 54A10, 54D10.

*Corresponding author

Received December 24, 2014; Accepted March 9, 2015

© 2015 Fundamental Research and Development International

1. Introduction

The concepts of pre-open sets and semi-pre-open sets were introduced, respectively, by Mashhour et al. [9] and Andrijevic [2]. Kasahara [6] defined the concept of operations α on topological spaces. Ogata [10] called the operations α (respectively, α -closed set) as γ -operations (respectively, γ -closed set) and introduced the notion of τ_{γ} which is the collection of γ -open sets in topological spaces. Ahmad et al. [1] introduced the concept of γ^* -regular spaces and explored their many interesting properties. Further, they initiated and discussed the concept of γ^* -semi-open sets which generalizes γ -open sets introduced by Ogata [10]. Sai Sundara Krishnan and Balachandran [13] introduced the concept of γ - pre-open sets and studied the separation axioms using γ -pre-open sets. Further, they generated a topology $\tau_{\gamma p}$ using γ -pre-open sets. Sai Sundara Krishnan et al. [14] introduced the concept of γ^* -pre-open sets and γ^* -semi-pre-open sets in topological spaces and investigated some basic properties. Further, they introduced γ^* -pre- $T_i(i = 0, \frac{1}{2}, 1, 2)$ spaces and studied the relationship between them. Saravanakumar et al. [15, 16] introduced the concepts of (γ^*, β) - pre-continuous and (γ^*, β^*) - precontinuous mappings on topological spaces. Also we introduced the concept of γ^* -generalized-pre-open (closed) sets and defined the relationship between (γ^*, β) -generalized-pre-continuous and (γ^*, β^*) -generalized-pre-continuous mappings and investigated some of their basic properties. In this paper, we discussed the notions of $(\gamma_g^*,\beta)\text{-}\,pr.continuous$ and $(\gamma_g^*,\beta_g^*)\text{-}\,pr.continuous$ on topological spaces and investigated some of their basic properties.

2. Preliminaries

Throughout this paper, we represent the topological spaces (X, τ) , (Y, σ) and (Z, η) as X, Y and Z, respectively, unless otherwise no separation axiom mentioned. An operation γ [6] on the topology τ is a mapping from τ into the power set P(X) of X such that $V \subseteq V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the

value of γ at V. It is denoted by $\gamma: \tau \to P(X)$. A subset A of X is γ -open [10], if for each $x \in A$, there exists an open neighborhood U such that $x \in U$ and $U^{\gamma} \subseteq A$. Its complement is called γ -closed and τ_{γ} denotes set of all γ -open sets in X. For a subset A of X, γ -interior [10] of A is $\operatorname{int}_{\gamma}(A) = \{x \in A : x \in N \in \tau \text{ and } N^{\gamma} \subseteq A\}$ for some N} and γ -closure [10] of A is $cl_{\gamma}(A) = \{x \in X; x \in U \in \tau \text{ and } U^{\gamma} \cap$ $A \neq \emptyset$ for all U}. An operation γ on τ is regular [10], if for any open neighborhoods U, V of each $x \in X$, there exists an open neighborhood W of x such that $U^{\gamma} \cap V^{\gamma} \supseteq W^{\gamma}$; open [10], if for every neighborhood U of each $x \in X$, there exists a γ -open set B such that $x \in B$ and $U^{\gamma} \supseteq B$. A space X is γ -regular [10], if for each $x \in X$ and for each open neighborhood V of x, there exists an open neighborhood U of x such that $U^{\gamma} \subseteq V$. A subset A of X is called γ^* -dense (resp., γ^* - nowhere dense, γ^* - regular-open, γ^* - pre-open, γ^* - semi-pre-open (briefly γ^* sp.open)) [14], if $cl_{\gamma}(A) = X$ (resp., $int_{\gamma}(cl_{\gamma}(A)) = \emptyset$, $A = int_{\gamma}(cl_{\gamma}(A))$, $A \subseteq$ $\operatorname{int}_{\gamma}(cl_{\gamma}(A)), A \subseteq cl_{\gamma}(\operatorname{int}_{\gamma}(A))).$ The set of all γ^* -pre-open (resp., γ^* -regularopen, γ^* -sp.open)) sets is denoted by $PO_{\gamma^*}(X)$ (resp., $RO_{\gamma^*}(X)$, $SPO_{\gamma^*}(X)$ A is γ^* -pre-closed (resp., γ^* -regular-closed, γ^* -semipre-closed (briefly γ^* sp.closed)) [14] in X if and only if X - A is γ^* -pre-open (resp., γ^* - regular-open, γ^* -sp.open)) in X. A is γ^* -pre-clopen [14], if A is both γ^* -pre-open and γ^* -preclosed in X. For a subset A of X, γ^* -pre-interior [14] of A is $pint_{\gamma^*}(A) = \bigcup \{U : U \in PO_{\gamma^*}(X) \text{ and } U \subseteq A\}$ and γ^* -pre-closure [14] of A is $pcl_{\gamma^*}(A) = \bigcap \{F : X - F \in PO_{\gamma^*}(X) \text{ and } A \subseteq F \}.$ For a subset A of X, γ^* sp.interior [14] of A is $spint_{\gamma^*}(A) = \bigcup \{U : U \in SPO_{\gamma^*}(X) \text{ and } U \subseteq A \}$ and γ^* -sp.closure [14] of A is $spcl_{\gamma^*}(A) = \bigcap \{F : X - F \in SP \ O_{\gamma^*}(X) \text{ and } A \subseteq F \}.$

Throughout this paper, let *X*, *Y* and *Z* be three topological spaces and operations $\gamma: \tau \to P(X)$, $\beta: \sigma \to P(Y)$ and $\rho: \eta \to P(Z)$ on topologies τ, σ

and η , respectively. Here $PO_{\gamma^*}(X)$, $PO_{\beta^*}(Y)$ and $PO_{\rho^*}(Z)$ denote the family of γ^* -pre-open sets, β^* -pre-open sets and ρ^* -pre-open sets, respectively.

Definition 2.1. A subset A of a topological space X is said to be

(i) γ -generalized closed (briefly γ -g.closed) if $cl_{\gamma}(A) \subseteq U$ whenever $A \subseteq U$ and U is γ - open;

(ii) γ^* -regular-generalized closed (briefly γ^* -rg.closed) if $cl_{\gamma}(A) \subseteq U$ whenever $A \subseteq U$ and U is γ^* -regular-open;

(iii) γ^* -pre-generalized closed (briefly γ^* -pg.closed) if $pcl_{\gamma^*}(A) \subseteq U$ whenever $A \subseteq U$ and U is γ^* -pre-open;

(iv) γ^* -generalized-pre-closed (briefly γ^* -gp.closed) if $pcl_{\gamma^*}(A) \subseteq U$ whenever $A \subseteq U$ and U is γ -open;

(v) γ^* -semi-pre-generalized closed (briefly γ^* -spg.closed) if $spcl_{\gamma^*}(A) \subseteq U$ whenever $A \subseteq U$ and U is γ^* -sp.open;

(vi) γ^* -generalized-semi-pre-closed (briefly γ_g^* -sp.closed) if $spcl_{\gamma^*}(A) \subseteq U$ whenever $A \subseteq U$ and U is γ -open;

(vii) γ^* -generalized-pre-regular-closed (briefly γ_g^* -pr.closed) if $pcl_{\gamma^*}(A) \subseteq U$ whenever $A \subseteq U$ and U is γ^* -regular-open.

We denote the set of all γ -g.closed (resp., γ^* -regular-closed, γ^* -pre-closed, γ^* -sp.closed) γ^* -rg.closed, γ^* -pg.closed, γ^* -gp.closed, γ^* -spg.closed, γ^*_g sp.closed and γ^*_g -pr.closed) sets by $GC_{\gamma}(X)$ (resp., $RC_{\gamma^*}(X)$, $PC_{\gamma^*}(X)$, $SPC_{\gamma^*}(X)$, $RGC_{\gamma^*}(X)$, $PGC_{\gamma^*}(X)$, $GPC_{\gamma^*}(X)$, $SPGC_{\gamma^*}(X)$, $SPC_{\gamma^*_g}(X)$ and $PRC_{\gamma^*_g}(X)$). **Example 2.1.** Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{d\}, \{a, d\}, \{a, c, d\}\}$ and define operation $\gamma : \tau \to P(X)$ by

$$\gamma(A) = \begin{cases} A \cup \{b\} \text{ if } A = \{a\}, \\ A \cup \{c\} \text{ if } A = \{d\}, \{a, d\} \text{ for every } A \in \tau, \\ A \text{ if } A \neq \{a\}, \{d\}, \{a, d\}. \end{cases}$$

Then $RC_{\gamma^*}(X) = \{\emptyset, X, \{a, b, c\}, \{b, c, d\}\};$

 $GC_{\gamma}(X) = \{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\};$ $RGC_{\gamma^*}(X) = \{\emptyset, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, c\},$

 $\{a, b, d\}, \{a, c, d\}, \{b, c, d\}\};$ $PC_{\gamma^*}(X) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{b, c, d\}\};$ $SPC_{\gamma^*}(X) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{c,$

 ${a, b, c}, {b, c, d};$

 $PGC_{\gamma^*}(X) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{b, c, d\}\};$ $GPC_{\gamma^*}(X) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\};$

 $SPGC_{\gamma^*}(X) = \{ \emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\},$

 $\{a, b, c\}, \{b, c, d\}\};$

 $SPC_{\gamma_{\varrho}^{*}}(X) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{c,$

 ${a, b, c}, {a, b, d}, {b, c, d};$

 $PRC_{\gamma_a^*}(X) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\},$

 $\{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}.$

Theorem 2.1. Let X be a topological space and $\gamma : \tau \to P(X)$ be an operation

on τ . Then

(i) every γ -closed set is γ -g.closed, γ^* -rg.closed and γ^* -pre-closed;

(ii) every γ^* - regular-closed set is γ^* - pre-closed;

(iii) every γ^* - pre-closed set is γ^* - sp.closed and γ^* - pg.closed;

(iv) every γ^* - pg.closed set is γ^* - gp.closed, γ^*_g - sp.closed and γ^*_g - pr.closed;

(v) every γ^* -gp.closed set is γ_g^* -sp.closed;

(vi) every γ^* - sp.closed set is γ^* - spg.closed;

(vii) every γ^* - spg.closed set is γ_g^* - sp.closed.

Proof. Proof follows from Definition 2.1, Theorem 2.2 [14] and Remark 2.1 [15].

The complement of γ -g.closed (resp., γ^* -rg.closed, γ^* -pg.closed, γ^* -gp.closed, γ^* -gp.closed, γ^*_g -sp.closed and γ^*_g -pr.closed) set is called γ -g.open (resp., γ^* -rg.open, γ^* -gp.open, γ^* -gp.open, γ^* -spg.open, γ^*_g -sp.open and γ^*_g -pr.open) set and defined in the following lemma.

Lemma 2.1. A subset A of a topological space X is

(i) γ -g.open iff $int_{\gamma}(A) \supseteq F$ whenever $(A) \supseteq F$ and F is γ -closed;

(ii) γ^* -rg.open iff $int_{\gamma}(A) \supseteq F$ whenever $(A) \supseteq F$ and F is γ^* -regularclosed;

(iii) γ^* -pg.open iff $pint_{\gamma^*}(A) \supseteq F$ whenever $(A) \supseteq F$ and F is γ^* -preclosed;

(iv)
$$\gamma^*$$
-gp.open iff $pint_{\gamma^*}(A) \supseteq F$ whenever $(A) \supseteq F$ and F is γ -closed

(v) γ^* -spg.open iff spint_{$\gamma^*}(A) \supseteq F$ whenever $(A) \supseteq F$ and F is</sub>

 γ^* - *sp.closed*;

(vi)
$$\gamma_g^*$$
 - sp.open iff spint $\gamma_{\gamma^*}(A) \supseteq F$ whenever $(A) \supseteq F$ and F is γ -closed;

(vii) γ_g^* -pr.open iff $pint_{\gamma^*}(A) \supseteq F$ whenever $(A) \supseteq F$ and F is γ^* -regularclosed.

We denote the set of all γ -g.open (resp., γ^* -rg.open, γ^* -pg.open, γ^* -gp.open, γ^* -spg.open, γ_g^* -sp.open and γ_g^* -pr.open) sets by $GO_{\gamma}(X)$ (resp., $RGO_{\gamma^*}(X)$, $PGO_{\gamma^*}(X)$, $GPO_{\gamma^*}(X)$, $SPGO_{\gamma^*}(X)$, $SPO_{\gamma_g^*}(X)$ and $PRO_{\gamma_g^*}(X)$).

Theorem 2.1. For any topological space X and $\gamma : \tau \to P(X)$ is an operation on τ , $A \subseteq X$, the following hold:

(i) If
$$A \in GC_{\gamma}(X) \cap \tau_{\gamma}$$
, then $A \in \tau_{\gamma}^{c}$;
(ii) If $A \in RGC_{\gamma^{*}}(X) \cap RO_{\gamma^{*}}(X)$, then $A \in \tau_{\gamma}^{c}$;
(iii) If $A \in PGC_{\gamma^{*}}(X) \cap PO_{\gamma^{*}}(X)$, then $A \in PC_{\gamma^{*}}(X)$;
(iv) If $A \in GPC_{\gamma^{*}}(X) \cap \tau_{\gamma}$, then $A \in PC_{\gamma^{*}}(X)$;
(v) If $A \in SPGC_{\gamma^{*}}(X) \cap SPO_{\gamma^{*}}(X)$, then $A \in SPC_{\gamma^{*}}(X)$;
(vi) If $A \in SPC_{\gamma_{g}^{*}}(X) \cap \tau_{\gamma}$, then $A \in SPC_{\gamma^{*}}(X)$;
(vii) If $A \in PRC_{\gamma_{g}^{*}}(X) \cap RO_{\gamma^{*}}(X)$, then $A \in PC_{\gamma^{*}}(X)$.

Proof. Proof is straightforward.

3. (γ_g^*, β_g^*) - pr.continuous Mappings

Definition 3.1 [15]. A mapping $f : X \to Y$ is called:

(i) (γ^*, β) -pre-continuous if $\forall B \in \sigma_{\beta}^c, f^{-1}(B) \in PC_{\gamma^*}(X);$

Definition 3.2. A mapping $f : X \to Y$ is called:

(i) (γ^*, β) -rg.continuous if $\forall B \in \sigma^c_{\beta}, f^{-1}(B) \in RGC_{\gamma^*}(X);$

(ii) (γ^*, β^*) -regular-continuous if $\forall B \in RC_{\beta^*}(Y), f^{-1}(B) \in RC_{\gamma^*}(X)$;

- (iii) (γ_g^*, β) -pr.continuous if $\forall B \in \sigma_{\beta}^c, f^{-1}(B) \in PRC_{\gamma_g^*}(X);$
- (iv) (γ_g^*, β_g^*) -pr.continuous if $\forall B \in PRC_{\beta_g^*}(Y), f^{-1}(B) \in PRC_{\gamma_g^*}(X).$

Example 3.1. Let $X = \{a, b, c\}, Y = \{1, 2, 3\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\emptyset, Y, \{2\}, \{2, 3\}\}$ and define operations $\gamma : \tau \to P(X)$ and $\beta : \sigma \to P(Y)$ by $\gamma(A) = A$ if $a \in A$; cl(A) if $a \notin A$ for every $A \in \tau$ and $\beta(A) = cl(A)$ if $A = \{2\}$; A if $A \neq \{2\}$ for every $A \in \sigma$, respectively. Define $f : X \to Y$ by f(a) = 2, f(b) = 3 and f(c) = 1. Then the inverse image of every β -closed set is γ^* -rg.closed under f. Hence f is (γ^*, β) - rg.continuous.

Example 3.2. Let $X = \{a, b, c\}$, $Y = \{1, 2, 3\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\emptyset, Y, \{1\}, \{2\}, \{1, 2\}\}$ and define operations $\gamma : \tau \to P(X)$ and $\beta : \sigma \to P(Y)$ by $\gamma(A) = A$ if $a \in A$; cl(A) if $a \notin A$ for every $A \in \tau$ and $\beta(A) = A \cup \{3\}$ if $A = \{1\}$; A if $A \neq \{1\}$ for every $A \in \sigma$, respectively. Define $f : X \to Y$ by f(a) = 1, f(b) = 2 and f(c) = 3. Then the inverse image of every β^* -regular-closed under f. Hence f is (γ^*, β^*) -regular-continuous.

Example 3.3. Let $X = \{a, b, c\}, Y = \{1, 2, 3\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$ and $\sigma = \{\emptyset, Y, \{1\}, \{3\}, \{1, 3\}\}$ and define operations $\gamma : \tau \to P(X)$ and $\beta : \sigma \to P(Y)$ by $\gamma(A) = A$ if $A \neq \{b, c\}$; cl(A) if $A = \{b, c\}$ for every $A \in \tau$ and $\beta(A) = A$ if $A = \{1, 3\}$; int(cl(A)) if $A \neq \{1, 3\}$ for every $A \in \sigma$, respectively. Define $f : X \to Y$ by f(a) = 1, f(b) = 3 and f(c) = 2. Then the inverse image of every β -closed set is γ_g^* - pr.closed under f. Hence f is (γ_g^*, β^*) -pr.continuous.

Example 3.4. Let $X = \{a, b, c\}, Y = \{1, 2, 3\}, \tau = \{\emptyset, X, \{b\}, \{a, b\}\}$ and $\sigma = \{\emptyset, Y, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}\}$ and define operations $\gamma : \tau \to P(X)$ and

 $\beta: \sigma \to P(Y)$ by $\gamma(A) = A$ if $a \in A$; cl(A) if $a \notin A$ for every $A \in \tau$ and $\beta(A) = A \cup \{1\}$ if $A = \{2\}$; cl(A) if $A \neq \{2\}$ for every $A \in \sigma$, respectively. Define $f: X \to Y$ by f(a) = 3, f(b) = 2 and f(c) = 1. Then the inverse image of every β_g^* - pr.closed set is γ_g^* - pr.closed under f. Hence f is (γ_g^*, β_g^*) - pr.continuous.

Remark 3.1. (i) From Examples 3.1, 3.2 and Definition 3.2 the concepts of (γ^*, β) -rg.continuous and (γ^*, β^*) -regular-continuous are independent.

(ii) From Examples 3.2, 3.4 and Definition 3.2 the concepts of (γ^*, β^*) - regularcontinuous and (γ_g^*, β_g^*) - pr.continuous are independent.

Remark 3.2. Every (γ^*, β) - pg.continuous mapping is (γ_g^*, β) - pr.continuous. But converse need not be true.

Let $X = \{a, b, c\}, Y = \{1, 2, 3\}, \tau = \{\emptyset, X, \{b\}, \{a, b\}\}$ and $\sigma = \{\emptyset, Y, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}\}$ and define operations $\gamma : \tau \to P(X)$ and $\beta : \sigma \to P(Y)$ by $\gamma(A) = A$ if $A = \{b\}; cl(A)$ if $A \neq \{b\}$ for every $A \in \tau$ and $\beta(A) = cl(A)$ if $A = \{1\}, \{2\}; A$ if $A \neq \{1\}, \{2\}$ for every $A \in \sigma$, respectively. Define $f : X \to Y$ by f(a) = 2, f(b) = 1 and f(c) = 3. Then f is (γ_g^*, β^*) -pr.continuous. $f^{-1}(\{1, 3\}) = \{b, c\}$ is not γ^* -pg.closed in X for the β -closed set $\{1, 3\}$ of Y. So f is not (γ^*, β) -pg.continuous.

Remark 3.3. Every (γ_g^*, β_g^*) -pr.continuous mapping is (γ_g^*, β) -pr.continuous. But converse need not be true.

Let $X = \{a, b, c\}, Y = \{1, 2, 3\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\emptyset, Y, \{1\}, \{1, 2\}\}$ and define operations $\gamma : \tau \to P(X)$ and $\beta : \sigma \to P(Y)$ by $\gamma(A) = A$ if $A = \{a\}, \{b\}; A \cup \{c\}$ if $A \neq \{a\}, \{b\}$ for every $A \in \tau$ and $\beta(A) = A$ if $A = \{1, 2\}; cl(A)$ if $A \neq \{1, 2\}$ for every $A \in \sigma$, respectively. Define $f : X \to Y$ by f(a) = 2, f(b) = 1 and f(c) = 3. Then f is (γ_g^*, β) -pr.continuous. $f^{-1}(\{1\}) = \{b\}$ is not γ_g^* -pr.closed in X for the β_g^* -pr.closed $\{1\}$ of Y. So f is not (γ_g^*, β_g^*) -pr.continuous.

Theorem 3.1. Let X be a topological space and $\gamma: \tau \to P(X)$ be an open operation on τ .

- (i) If A is a γ^* -regular-closed set in X, then A is γ -closed;
- (ii) If A is a γ^* rg.closed set in X, then A is γ^*_g pr.closed;
- (iii) If A is a γ^* -gp.closed set in X, then A is γ_g^* -pr.closed.

Proof. (i) Let A be γ^* -regular-closed in X. Then $A = cl_{\gamma}(\operatorname{int}_{\gamma}(A))$. By Theorem 3.6 (iii) [10], we have that $cl_{\gamma}(A) = cl_{\gamma}(cl_{\gamma}(\operatorname{int}_{\gamma}(A))) = cl_{\gamma}(\operatorname{int}_{\gamma}(A))$ = A. Therefore A is γ -closed.

(ii) Let A be γ^* -rg.closed in X and $A \subseteq U$ where U is γ^* -regular-open. Then $cl_{\gamma}(A) \subseteq U$. Then by Theorem 3.6 (iii) [10], we have that $cl_{\gamma}(A)$ is γ -closed. Since every γ -closed set is γ^* -pre-closed, $cl_{\gamma}(A)$ is γ^* -pre-closed. This implies that $pcl_{\gamma^*}(A) \subseteq cl_{\gamma}(A)$ and hence $pcl_{\gamma^*}(A) \subseteq U$. Hence A is γ^*_g -pr.closed.

(iii) Let A be γ^* -gp.closed in X and $A \subseteq U$, where U be γ^* -regular-open. Then by (i), U is γ -open. Since A is γ^* -gp.closed, $pcl_{\gamma^*}(A) \subseteq U$. Hence A is γ_g^* -pr.closed.

Theorem 3.2. Let X be a topological space and $\gamma: \tau \to P(X)$ be an open operation on τ . Then

- (i) If f is (γ^*, β) -rg.continuous, then f is (γ^*_g, β) -pr.continuous;
- (ii) If f is (γ^*, β) -gp.continuous, then f is (γ^*_g, β) -pr.continuous.

Proof. (i) Let *B* be β -closed in *Y*. Then by hypothesis, $f^{-1}(B)$ is γ^* -rg.closed in *X*. Since γ is open and by Theorem 3.1 (ii), $f^{-1}(B)$ is γ_g^* -pr.closed in *X*. Hence *f* is (γ_g^*, β) -pr.continuous.

(ii) Let *B* be β -closed in *Y*. Then by hypothesis, $f^{-1}(B)$ is γ^* -gp.closed in *X*. Since γ is open and by Theorem 3.1 (iii), $f^{-1}(B)$ is γ_g^* -pr.closed in *X*. Hence *f* is (γ_g^*, β) -pr.continuous.

Theorem 3.3. Let $f : X \to Y$ be a mapping. Then

- (i) (γ_g^*, β) -pr.continuous $\forall B \in \sigma_{\beta}, f^{-1}(B) \in PRO_{\gamma_o^*}(X);$
- (ii) (γ_g^*, β_g^*) -pr.continuous $\forall B \in PRO_{\beta_g^*}(Y), f^{-1}(B) \in PRO_{\gamma_g^*}(X).$

Proof. (i) Let f be (γ_g^*, β) -pr.continuous and let B = Y - V be β -open in Y. This implies that V is β -closed in Y. Since f is (γ_g^*, β) -pr.continuous, $f^{-1}(V)$ is γ_g^* -pr.closed in X. Hence $f^{-1}(B) = X - f^{-1}(Y - B) = X - f^{-1}(V)$ is γ_g^* pr.open in X. Conversely, let F be β -closed in Y. Then B = Y - F is β -open in Y. Then by hypothesis, $f^{-1}(B)$ is γ_g^* -pr.open in X. Hence $f^{-1}(F) = X - f^{-1}(Y - F) = X - f^{-1}(B)$ is γ_g^* -pr.closed in X. Therefore, we obtain that f is (γ_g^*, β_g^*) -pr.continuous.

(ii) Let f be (γ_g^*, β_g^*) - pr.continuous and let B = Y - V be β_g^* - pr.open in Y. This implies that V is β_g^* - pr.closed in Y. Since f is (γ_g^*, β_g^*) - pr.continuous, $f^{-1}(V)$ is γ_g^* - pr.closed in X. Hence $f^{-1}(B) = X - f^{-1}(Y - B) = X - f^{-1}(V)$ is γ_g^* - pr.open in X. Conversely, let F be β_g^* - pr.closed in Y. Then B = Y - F is β_g^* - pr.open in Y. Then by hypothesis, $f^{-1}(B)$ is γ_g^* - pr.open in X. Hence $f^{-1}(F) = X - f^{-1}(Y - F) = X - f^{-1}(B)$ is γ_g^* - pr.closed in X. Therefore, we obtain that f is (γ_g^*, β_g^*) - pr.continuous.

Definition 3.3 [15]. A mapping $f : X \to Y$ is called:

(i) (γ^*, β^*) -regular-closed if $\forall F \in RC_{\gamma^*}(X), f(B) \in RC_{\beta^*}(Y);$

- (ii) (γ^*, β^*) -regular-open if $\forall F \in RO_{\gamma^*}(X), f(B) \in RO_{\beta^*}(Y);$
- (iii) (γ^*, β^*) -pre-closed if $\forall F \in PC_{\gamma^*}(X), f(B) \in PC_{\beta^*}(Y);$
- (iv) (γ^*, β^*) -pre-open if $\forall F \in PO_{\gamma^*}(X), f(B) \in PO_{\beta^*}(Y);$
- (v) (γ^*, β^*) -gp.closed if $\forall F \in GPC_{\gamma^*}(X), f(B) \in GPC_{\beta^*}(Y);$
- (vi) (γ^*, β^*) -gp.open if $\forall F \in GPO_{\gamma^*}(X), f(B) \in GPO_{\beta^*}(Y).$

Theorem 3.4. Let $f: X \to Y$ be a (γ^*, β^*) -regular-continuous and (γ^*, β^*) -pre-closed mapping. Then for every γ_g^* -pr.closed set A of X, f(A) is β_g^* -pr.closed in Y.

Proof. Let A be γ_g^* -pr.closed in X. Let $f(A) \subseteq U$, where U be β^* -regularopen in Y. Then $A \subseteq f^{-1}(U)$. Since f is (γ^*, β^*) -regular-continuous and A is γ_g^* -pr.closed, implies that $f^{-1}(U)$ is γ^* -regular-open in X and $pcl_{\gamma^*}(A) \subseteq$ $f^{-1}(U)$. That is, $f(pcl_{\gamma^*}(A)) \subseteq U$. Now $pcl_{\beta^*}(f(A)) \subseteq pcl_{\beta^*}(f(pcl_{\gamma^*}(A))) =$ $f(pcl_{\gamma^*}(A)) \subseteq U$, since f is (γ^*, β^*) -pre-closed. Thus f(A) is β_g^* -pr.closed in Y.

Theorem 3.5. Let $f: X \to Y$ be a bijective, (γ^*, β^*) -pre-continuous and (γ^*, β^*) -regular-open mapping. Then for every β_g^* -pr.closed set B of Y, $f^{-1}(B)$ is γ_g^* -pr.closed in X.

Proof. Let U be a γ^* -regular-open set such that $f^{-1}(B) \subseteq U$. Then $B \subseteq f(U)$. Since f is (γ^*, β^*) -regular-open, f(U) is a β^* -regular-open set containing B. Since B is β_g^* -pr.closed, hence $pcl_{\beta^*}(B) \subseteq f(U)$ and so $f^{-1}(pcl_{\beta^*}(B)) \subseteq U$. Since $f^{-1}(pcl_{\beta^*}(B))$ is a γ^* -pre-closed set containing $f^{-1}(B)$, implies that $pcl_{\gamma^*}(f^{-1}(B)) \subseteq f^{-1}(pcl_{\beta^*}(B)) \subseteq U$. Hence $f^{-1}(B)$ is

 γ_g^* - pr.closed in X.

Theorem 3.6. For any surjection mapping $f : X \to Y$, the following statements are equivalent.

(i) For any γ^* -pre-open G of X, f(G) is β^* -gp.open in Y;

(ii) For any $B \subseteq Y, U \in PO_{\gamma^*}(X)$ such that $f^{-1}(B) \subseteq U$, there exists $V \in GPO_{\beta^*}(Y)$ such that $B \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof. Let $B \subseteq Y, U \in PO_{\gamma^*}(X)$ such that $f^{-1}(B) \subseteq U$. Then by hypothesis, we have that $f(U) \in GPO_{\beta^*}(Y)$. Put V = f(U). Since $f^{-1}(B) \subseteq U$, $B = f(f^{-1}(B)) \subseteq f(U) = V$ and $f^{-1}(V) = f^{-1}(f(U)) \subseteq U$. Conversely, let $G \in PO_{\gamma^*}(X), f(G) \supseteq F$ such that $F \in \sigma_{\beta}^c$, then $G \supseteq f^{-1}(F), F \subseteq Y$. This implies that there exist $V \in GPO_{\beta^*}(Y)$ such that $F \subseteq V$ and $f^{-1}(V) \subseteq G$. Since $V \in GPO_{\beta^*}(Y), F \in \sigma_{\beta}^c$ and $F \subseteq V$. Consequently, $pint_{\beta^*}(V) \supseteq F$. Since $V \subseteq f(G), F \subseteq pint_{\beta^*}(V) \subseteq pint_{\beta^*}(f(G))$. This implies that $f(G) \in GPO_{\beta^*}(Y)$.

Theorem 3.7. For any surjection mapping $f : X \to Y$ the following statements are equivalent.

(i) For any γ^* -pre-open G of X, f(G) is β_g^* -pr.open in Y;

(ii) For any $B \subseteq Y, U \in PO_{\gamma^*}(X)$ such that $f^{-1}(B) \subseteq U$, there exists $V \in PRO_{\beta^*_{\alpha}}(Y)$ such that $B \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof. Proof is similar to Theorem 3.6.

Note that if $f: X \to Y$ is (γ_g^*, β) pr.continuous and $g: Y \to Z$ is (β_g^*, ρ) -pr.continuous, then the composition $gof: X \to Z$ is not (γ_g^*, ρ) -pr.continuous mapping.

Example 3.5. Let $X = Y = Z = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b\}, \{a, b, c\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, c, d\}\}$ and define operations $\gamma : \tau \rightarrow P(X), \beta : \sigma \rightarrow P(Y)$ and $\rho : \eta \rightarrow P(Z)$ by $\gamma(A) = A$ if $A = \{a\}, \{a, b\}; cl(A)$ if $A \neq \{a\}, \{a, b\}$ for every $A \in \tau$ and $\beta(A) = A$ if $A = \{a\}, \{b\}; A \cup \{c\}$ if $A = \{a, b\}; cl(A)$ if $A \neq \{a\}, \{b\}, \{a, c, d\}$ for every $A \in \sigma$ and $\rho(A) = A \cup \{b\}$ if $A = \{a\}, \{a, c, d\}; A \text{ if } A \neq \{a\}, \{a, c, d\}$ for every $A \in \sigma$ and $\rho(A) = A \cup \{b\}$ if $A = \{a\}, \{a, c, d\}; A \text{ if } A \neq \{a\}, \{a, c, d\}$ for every $A \in \sigma$ and $\rho(A) = a \cup \{b\}$ if $A = \{a\}, \{a, c, d\}; A \text{ if } A \neq \{a\}, \{a, c, d\}$ for every $A \in \eta$, respectively. Define $f : X \rightarrow Y$ by f(a) = d, f(b) = c, f(c) = b and f(d) = a and define $g : Y \rightarrow Z$ by g(a) = b, g(b) = c, g(c) = a and g(d) = d. Then f and g are (γ_g^*, β) -pr.continuous and (β_g^*, ρ) - pr.continuous, respectively. $\{d\}$ is ρ -closed in Z. $(gof)^{-1}(\{d\}) = f^{-1}(g^{-1}, (\{d\})) = f^{-1}(\{d\}) = \{a\}$ which is not γ_g^* - pr.closed in X. Hence gof is not (γ_g^*, ρ) -pr.continuous.

Theorem 3.8. Let $f: X \to Y$ and $g: Y \to Z$ be two mappings. Then

(i) If f is (γ_g^*, β) -pr.continuous and g is (β, ρ) -continuous, then gof is (γ_g^*, ρ) -pr.continuous;

(ii) If f is (γ_g^*, β_g^*) -pr.continuous and g is (β_g^*, ρ_g^*) -pr.continuous, then gof is (γ_g^*, ρ_g^*) -pr.continuous;

(iii) If f is (γ_g^*, β_g^*) -pr.continuous and g is (β_g^*, ρ) -pr.continuous, then gof is (γ_g^*, ρ) -pr.continuous.

Proof. (i) Let V be ρ -closed in Z. Then $g^{-1}(V)$ is β -closed in Y since g is (β, ρ) - continuous. (γ_g^*, β) - pr.continuity of f implies that $f^{-1}(g^{-1}(V))$ is γ_g^* - pr.closed in X. That is, $(gof)^{-1}(V)$ is γ_g^* - pr.closed in X. Hence gof is (γ_g^*, ρ) - pr.continuous.

(ii) Let V be ρ_g^* -pr.closed in Z. Since g is (β_g^*, ρ_g^*) -pr.continuous, $g^{-1}(V)$ is

 β_g^* - pr.closed in Y. As f is (γ_g^*, β_g^*) - pr.continuous $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is γ_g^* - pr.closed in X. Therefore gof is (γ_g^*, ρ_g^*) - pr.continuous.

(iii) Let V be ρ -closed in Z. Since g is (β_g^*, ρ) -pr.continuous, $g^{-1}(V)$ is β_g^* -pr.closed in Y. As f is (γ_g^*, β_g^*) -pr.continuous $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is γ_g^* -pr.closed in X. Therefore gof is (γ_g^*, ρ) -pr.continuous.

Theorem 3.9. Let X be a topological space and $\gamma : \tau \to P(X)$ be an operation on τ . Then the following properties are equivalent:

(i) For any pair of disjoint γ^* -regular-closed sets A, B of X, there exist disjoint γ^* -pre-open sets U, V such that $A \subseteq U$ and $B \subseteq V$;

(ii) For any pair of disjoint γ^* -regular-closed sets A, B of X, there exist disjoint γ_g^* -pr.open sets U, V such that $A \subseteq U$ and $B \subseteq V$;

(iii) For any γ^* -regular-closed set A and any γ^*_g -regular-open set V containing A, there exists a γ^*_g -pr.open set U such that $A \subseteq U \subseteq pcl_{\gamma^*}(U) \subseteq V$.

Proof. (i) Let A and B be γ^* -regular-closed and $A \cap B = \emptyset$. Then by hypothesis, there exist disjoint γ^* -pre-open sets U, V such that $A \subseteq U$ and $B \subseteq V$, this follows that disjoint γ_g^* -pr.open sets U, V such that $A \subseteq U$ and $B \subseteq V$.

(ii) \Rightarrow (iii). Let A be any γ^* -regular-closed set and V a γ^* -regular-open set containing A. Since A and X - V are disjoint γ^* -regular-closed sets of X, there exist γ_g^* -pr.open sets U, W of X such that $A \subseteq U, X - V \subseteq W$ and $U \cap W = \emptyset$. Therefore by Definition 2.1, we have that $X - V \subseteq pint_{\gamma^*}(W)$. Since $U \cap pint_{\gamma^*}(W) = \emptyset$, we have that $pcl_{\gamma^*}(U) \cap pint_{\gamma^*}(W) = \emptyset$ and hence $pcl_{\gamma^*}(U) = X - pint_{\gamma^*}(W) \subseteq V$. Therefore $A \subseteq U \subseteq pcl_{\gamma^*}(U) \subseteq V$. (iii) \Rightarrow (i). Let A and B be any disjoint γ^* -regular-closed sets of X. Since X - B is a γ^* -regular-open set containing A, there exists a γ_g^* -propen set G such that $A \subseteq G \subseteq pcl_{\gamma^*}(U) \subseteq X - B$. By Definition 2.1, we have that $A \subseteq pint_{\gamma^*}(G)$. Put $U = pint_{\gamma^*}(G)$ and $V = X - pcl_{\gamma^*}(G)$. This implies that U and V are disjoint γ^* -pre-open sets such that $A \subseteq U$ and $B \subseteq V$.

References

- [1] B. Ahmad and S. Hussain, γ^* -regular and γ -normal spaces, Math. Today 22(1) (2006), 37-44.
- [2] D. Andrijevic, Semi pre open sets, Math. Vesnik 38 (1986), 24-32.
- [3] D. Andrijevic, On the topology generated by preopen sets, Math. Vesnik 39 (1987), 367-376.
- [4] D. S. Jankovic, On functions with γ^* -closed graphs, Glasnik Math. 18 (1983), 141-148.
- [5] S. Kasahara, On weakly compact regular spaces II, Proc. Japan Acad. 33 (1975), 255-259.
- [6] S. Kasahara, Operation compact spaces, Math. Japonica 24 (1979), 97-105.
- [7] N. Levine, Semi-open sets and semi continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [8] H. Maki, J. Umehara and T. Noiri, Every topological space is $pre-T_{\frac{1}{2}}$ space, Mem. Fac. Sci. Kochi Univ. (Math) 17 (1996), 33-42.
- [9] A. S. Mashhour, M. S. Abd El-Monsef and S. N. El-Deep, On pre-continuous and weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
- [10] H. Ogata, Operation on topological spaces and associated topology, Math. Japonica 36 (1991), 175-184.
- [11] H. Ogata, Remarks on some operation-separation axioms, Bull. Fuckuoka Univ. Ed. Part III 40 (1991), 41-43.
- [12] G. Sai Sundara Krishnan and K. Balachadran, On γ-semi open sets in topological spaces, Bull. Cal. Math. Soc. 98(6) (2006), 517-530.
- [13] G. Sai Sundara Krishnan and K. Balachandran, On a class of γ-preopen sets in a topological space, East Asian Math. J. 22(2) (2006), 131-149.

- [14] G. Sai Sundara Krishnan, D. Saravanakumar, M. Ganster and K. Balachandran, On a class of γ^* -pre-open sets in topological spaces, Kyungpook Math. J. 54 (2014), 173-188.
- [15] D. Saravanakumar and G. Sai Sundara Krishnan, Generalized mappings via new closed sets, Int. J. Math. Sci. Appl. 2(1) (2012), 127-137.
- [16] D. Saravanakumar and G. Sai Sundara Krishnan, Operations generalized mappings associated with γ_p^* normal spaces and γ_p^* regular spaces, Proc. Jangjeon Math. Soc. 15(4) (2012), 423-435.
- [17] D. Saravanakumar, N. Kalaivani and G. Sai Sundara Krishnan, On γ^* -pre-regular- $T\frac{1}{2}$ spaces associated with operations separation axioms, J. Interdisciplinary Math. 17(5-6) (2014), 485-498.
- [18] M. L. Thivagar and N. R. Paul, A new sort of separation axioms, Bol. Soc. Paran. Mat. 31(2) (2013), 67-76.