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Abstract 

We study pairs of consecutive odd numbers through a straightforward 

indexing. We focus in particular on twin primes and their distribution. 

With a counting argument, we calculate the limit of an alternating sum 

that is equal to 1 which means there are few twin primes. Finally, we show 

how to find the possible congruences for these prime numbers. 

Introduction 

With the exception of the pair (3, 5), pairs of twin primes are of the form (6m – 

1, 6m + 1). This condition is obviously not sufficient to characterize them, and we 

propose to study here the distribution of pairs of composite numbers among them. 
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1. Preliminaries 

Let us recall here some of the notations from [1] and [2]: 

(1) I is the set of odd integers greater than 1, i.e.: 

{ }N∈+== kkNI k ;32  

with the index of an odd number .kN  We note that is a multiple of 3 if and only if 

kN  is; 

(2) P is the set of odd prime numbers, primes will also be enumerated in 

ascending order ,,,,3 10 KK nPPP =  with KK nqqq ,,,0 10 =  their respective 

indices – we also note Q  the set of indices of prime numbers. Apart from ,0P  none 

of the iP  is a multiple of 3, which means that for iqi ,0>  is not a multiple of 3; 

(3) C is the set of composite odd integers greater than 1, i.e.:  

{ ( ) }abNIbaINPIC kk =∈∃∈== ,,|\  

(4) The function INkf k ∈→∈ N:  is bijective. The inverse function is 

.
2

3
:

1 −
=∈− k

k

N
kINf a  The inverse image of C is called W: 

( ) { }CNkCfW k ∈∈== −
N

1  

(5) The function 

( ) ( ) ( ) jnjnkjnk j ++=×∈ ∗
32,: aNN  

is a surjection on W. In other words, W is the (non-disjoint) union of the sets 

( ){ } .∗∈
=

Nnjj nkW  

(6) The remarkable indices are the indices of the form ( ) 2
21 jjk j =+  

,36 ++ j  they correspond to the indices of odd squares. These indices are never of 
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the form .13 +n  The counting interval ( )jID  is defined as ( )jID  

( ) .2,0 1 �� += + jk j  The cardinal of a set E being noted ,E  we have ( )jID  

( ) .1210212
2

1 ++=++= + jjjk j  

(7) We define ( )jA  as the set of indices of ( )jID  non-multiples of 3: 

( ) { ( ) }.03mod ≠∈= jjIjjA D Likewise, we introduce ( ) ( ) .WjAjB I=  

(8) With ,R∈x  we note  x  its integer part, and  +x  its positive integer part. 

The number of integers in N  not greater than x is   .1 ++x  

To avoid confusion, we reserve uppercase Latin letters for sets of odd numbers 

or indices of these numbers. Sets of pairs of numbers will be referred to with 

uppercase Greek letters. 

2. Pair of Indices of the form ( )231,3 ++ nn  

2.1. The set ΓΓΓΓ  and its remarkable subsets ΨΨΨΨ∏∏∏∏,  and ΞΞΞΞ  

We define ( )jΓ  as the set of pairs of consecutive indices of ( )jID  non-

multiples of 3: 

( ) {( ) ( ) }.1, 12
2

21 =−∈=Γ kkjAkkj  

Property 2.1. ( ) ( ) .2 jjA Γ∗=  

Proof. Since the remarkable index that is the largest element of ( )jA  is never of 

the form ,13 +n  we deduce that ( )jAn ∈+ 13  if and only if ( ) ( )jAjAn .23 ∈+  

has therefore as many numbers congruent to 1 as to 2 modulo 3. We note ( )jA1  

(respectively, ( )jA2 ) the numbers that are congruent to 1 (respectively 2) modulo 3. 

It is thus clear that ( ) ( ) ( ) .22 21 jAjAjA ==  Moreover, any element 

( )jΓ∈γ  is necessarily of the form ( ) ,23,13 ++=γ nn  so there is a bijection: 
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( ) ( )jjA Γ→1  

( )1, +xxx a  

which proves the property. 

Definition 2.1.2. We define ( ) ( ) ( )jetjj ΞΨ∏ ,  as follows: 

( ) ( ) ( ),QQjj ×Γ=∏ I  

( ) ( ) ( ),WWjj ×Γ=Ψ I  

( ) ( ) ( ) ( )( ).\ jjjj Ψ∏Γ=Ξ U  

These three sets clearly form a partition of ( ).jΓ  ( )j∏  corresponds to pairs of twin 

primes less than ( )2
52 +j  with the exception of (3.5). ( )jΨ  corresponds to the 

pairs of consecutive odd composite numbers, while ( )jΞ  corresponds to the mixed 

pairs.  

2.2. A counting result 

We show here a property linking the cardinal of the different sets defined 

previously. 

Property 2.2. We have the following equality: 

( ) ( ) ( ) ( ) .jjBjj Ψ+−Γ=∏  

Proof. The partition of ( )jΓ  (See Definition 2.1.2) allows us to write the 

following equality: 

( ) ( ) ( ) ( ) .jjjj Ξ+Ψ+∏=Γ  

Moreover, using the same arguments as in the proof of Property 2.1, we have: 

( ) ( ) ( ) .2 jjjB Ξ+Ψ∗=  
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We deduce that ( ) ( ) ( ) ,2 jjBj Ψ∗−=Ξ  and thus the desired result. 

3. Counting of ( ) ( )jB,jΓΓΓΓ  and ( )jΨΨΨΨ  

The previous property establishes a relation on the number of pairs of twin 

primes. We will now expand on the cardinals of the sets involved in this relation. 

3.1. Counting of ( )jΓΓΓΓ  and ( )jB  

Property 3.1 of [2] gives us that for all :N∈j  

( ) ( )( ) ( ).1
3

20

3

4
12

3

2 2
1 OjjjkjA j ++=





 ++= +  

In particular: 

( ) .
3

4
~ 2jjA  

The following result is an immediate consequence. 

Property 3.1. 

( ) ( )( ) ( ).1
3

10

3

2
12

3

1 2
1 Ojjjkj j ++=





 ++=Γ +  

In particular: 

( ) .
3

2
~ 2jjΓ  

Let us also remind the results of [2] on the cardinal of ( ).jB  If we denote by ( )xπ  

the number of primes less than ( )jx π ′′,  the number of indices of odd primes less 

than ( )52 +j  i.e. ( ) ( )( ) ,152 −+π=π ′′ jj  and ∏ ∈
=

KnKP ,nP  Property 3.2.3 

of [2] expresses ( )jB  in two different ways: 
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( )
( )
{ }

( )
( )

,
2

52
1

2
1

0,
,0 










 −+
−= −

≠∅≠
π′′⊂
∑

K

KK

KK
jK

j
jB

P

P

��

 

( )

( )

( )
( )

.
32

2
32

1

2

1

1










+

−+
+µ−=

+
+

=
∑

+

k

kjk
kjB

j

jk

k

j

 

Property 3.2.4 of [2] also gives the asymptotic expansion of ( ) :jB  

( ) ( ) (( ) )
( ) ( )

.
lnln

2

3

4
252

22
22











+−=++π−=

j

j
o

j

j
jjjAjB  

3.2. Counting of ( )jΨΨΨΨ  

3.2.1. The inclusion-exclusion principle 

Let ( ) ( ) ( ) .1, 2Wjjxx IΓ=Ψ∈+  Thus ( ) ,5232
2+≤+ jx  and 32 +x  is a 

composite number, so it admits at least one odd prime factor between 5 and .52 +j  

It’s the same for his successor .52 +x  

We deduce the existence of two indices of prime numbers sq  and ,tq  with 

( ) ,,1 jts π ′′≤≤  such as 
sqWx ∈  and .1

tqWx ∈+  

We can notice that sq  and tq  are necessarily distinct: in fact, two consecutive 

odd numbers are necessarily coprime, and therefore 32 +x  and 52 +x  cannot 

admit a common prime divisor. 

Furthermore, we may involve more prime numbers without changing the result. 

We deduce that more generally: 

( ) ( ) ( ) ( )
ts qq

ts
Nts

WWjjjN ×Γ=Ψπ ′′≥∀

≠
≤≤

IU
,1

 (1) 

The inclusion-exclusion principle allows us to calculate the cardinal of this union: 
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( ) ( ) ( )
( )

( ( ) .1
21

2 2,1

1

,1

jWWjjN
kk qq

Kkk

K

K
NK

Γ













×−=Ψπ ′′≥∀

∈

−

∅≠
⊂

∑ II
��

 (2) 

This result suggests to calculate, for all ,,1 2�� NK ⊂  the cardinal of  

( )
( ) ( ).

2121,
jWW

kk qq
Kkk

Γ×
∈

II  

So let us consider a subset K of ,,1 2�� N  and analyze the properties of a pair 

( ) ∈+ 1, xx
( )

( ) II
2121, kk qqKkk

WW ×
∈

( ).jΓ  

Necessarily: 

( ) 52and32,
2121 ++∈∀• xxKkk kk PP  

3mod232 =+• x  

2mod132 =+• x  

Let { ( ) }KkkkkK ∈∃= 21211 ,  and also { ( ) }., 21122 KkkkkK ∈∃=  If 1Kk ∈  

,2KI  then from the first point we deduce that kP  divides both 32 +x  and 52 +x  

that is not possible, therefore necessarily .21 ∅=KK I  

Provided that this condition is verified, we can rewrite the equations above as a 

system of Diophantine equations on :32 += xy  

,mod01 kyKk P=∈∀•  

,mod22 kyKk P−=∈∀•  

,3mod2=• y  

.2mod1=• y  



MARC WOLF et al. 

 

8 

Insofar as the above congruences involve distinct two-by-two prime numbers, we can 

deduce (according to the Chinese theorem) the existence of a unique solution 0y  

between 1 and 16
21

−KK PP  such that every other solution in ,N  and especially y, 

is of the form ,6
210 KKmy PP+  for .N∈m  

Conversely, it is easy to check that the conditions are sufficient provided that 

32 +x  and 52 +x  are composite numbers, so that two cases are distinguished: 

Case 1. If 0y  or 20 +y  is prime, then the first pair ( )2, 00 +yy  is excluded 

and necessarily: 

( )

( ) ( )jWW
kk qq

Kkk

Γ×

∈

II 21
2,1

 

( ).,3
2

1
,3

2

3
2121

00 jImm
y

m
y

DKKKK I








∈







+

−
+

−
= ∗

NPPPP  

In this case, the first coordinate of the smallest element is: +
−

=
2

30
0

y
x  

.3
21 KK PP  

Case 2. Otherwise, all the solutions of the Diophantine equation are suitable: 

( )

( ) ( )jWW
kk qq

Kkk

Γ×

∈

II 21
2,1

 

( ).,3
2

1
,3

2

3
2121

00 jImm
y

m
y

DKKKK I








∈







+

−
+

−
= NPPPP  

In this case, the first coordinate of the smallest element is: .
2

30
0

−
=

y
x  

The primality of 0y  is possible only if 
10 Ky P=  which also implies that 1K  

must be reduced to one element. In the same way, the primality of 20 +y  implies 

2
20 Ky P=+  and is only possible when 2K  is a singleton. These are not sufficient 
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conditions, but imply that case 1 occurs only for relatively low values of ,0y  that is 

to say of the same order of magnitude as the prime numbers chosen for counting. 

0y  only depends on 1K  and .2K  Subsequently, when necessary, this 

dependency will be explicitly shown using the notation ( );, 210 KKy  and similarly 

for 0x  the first coordinate of the smallest element of ( ) Kkk ∈21,I  

( ) ( )jWW
kk qq Γ× I
21

 

( )

( )

( )







−

+
−

=

.otherwise
2

3,

,1casein3
2

3,

,
210

210

210

21

KKy

KKy

KKx
KK PP

 

Property 3.2.1. We have the equality ( ) 0120 21
6, yKKy KK −= PP  

( ) .2, 21 −KK  Therefore, case 1 cannot occur for both ( )21, KK  and ( )., 12 KK  

Proof. ( )120 , KKy  is the only solution of a system of Diophantine equations 

between 0 and ,16
21

−KK PP  just check that 021
6 yKK −PP  ( ) 2, 21 −KK  is the 

solution of these same equations. We have: 

( )

( )

( )

( )














=

=

−=∈∀

=∈∀

2mod1,

3mod2,

mod2,

mod0,

210

210

2102

2101

KKy

KKy

KKyKk

KKyKk

k

k

P

P

 

hence we deduce: 
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( )

( )

( )

( )














=−−

=−−

=−−∈∀

−=−−∈∀

.2mod12,6

3mod22,6

mod02,6

mod22,6

210

210

2102

2101

21

21

21

21

KKy

KKy

KKyKk

KKyKk

KK

KK

kKK

kKK

PP

PP

PPP

PPP

 

 Moreover, ( ) ,, 210 KKy  as a multiple of ,
1KP  cannot be equal to 

1
6 KP  ,1

2
−KP  

that is to say that ( ) 2,6 21021
−− KKyKK PP  is also between 0 and ,16

21
−KK PP  

and therefore coincides with ( )., 120 KKy  

Finally, assuming that ( )210 , KKy  is prime, this implies that it is equal to ,
1KP  

and that 
2KP  divides .2

1
+KP  Therefore, using that 

1KP  and :5
2

≥KP  

( ) ( ) 216,
12120 −−= KKKKy PP  

229
1

−≥ KP  

328
1

+≥ KP  

2
1

+> KP  

.
2KP≥  

( ) ,, 120 KKy  multiple strict of ,
2KP  cannot be prime, and similarly his successor 

( ) 2, 120 +KKy  cannot either. Similar inequalities can also be written in the case 

where ( ) 2, 210 +KKy  is prime. 

3.2.2. Calculation of the cardinal of ( )jΨΨΨΨ  

Property 3.2.2. The cardinal of 
( )

( ) ( )jWW
kk qqKkk

Γ×
∈

II
212,1

 is: 

( )
( ) ( )

.1
3

,2
,

21

2101
21

+

+








+

−+
=

KK

j KKxjk
KKz

PP
 (3) 
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Proof. We know that ( )
( )

( ) ( )jWWxx
kk qqKkk

Γ×∈+
∈

II
2121,

1,  if and only 

if there is N∈m  such that: 

( ) ( ) ( ).23,and3, 1210210 2121
+≤++= + jkmKKxmKKxx jKKKK PPPP  

This correspondence is clearly bijective and ( ) ≤+
21

3, 210 KKmKKx PP  

( )21 ++ jk j  if and only if 
( ) ( )

.
3

,2

21

2101

KK

j KKxjk
m

PP

−+
≤

+
 The result follows from 

point 8 of the preliminaries. 

Remark. In the case 2, we know that ( )
21

3, 210 KKKKx PP<  and therefore: 

( ) ( )
.1

3

,2

21

2101
−>

−++

KK

j KKxjk

PP
 

In the case 1, we know that ( ) max3,3
2121 210 +≤< KKKK KKx PPPP  

( ) .6,
2121 KKKK qq PP<  Moreover, we know that one of values ( )

21
, KK qq  is an 

index of a prime number q, and that the first coordinate of the pair of indices is 

increased by q. If we know that ( ) ,21 +≤ + jkq j  then: 

( ) ( )
.1

3

,2

21

2101
−>

−++

KK

j KKxjk

PP
 

We deduce that in some cases we can use the integer part instead of the positive 

integer part: 

Corollary 3.2.2.1. Let ( ).jN π ′′≥  The cardinal ( )jΨ  is written: 

( ) ( )
( ) ( )

+

+−

∅≠
⊂









+

−+
−=Ψ ∑ 1

3

,2
1

212

21011

,1
KK

jK

K
NK

KKxjk
j

PP
��

 (4) 

or: 
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( ) ( )
( ) ( )

.1
3

,2
1

21

21

212

2

1

1

2101

,
,1,1 +

++

∅=∅≠
⊂

∅≠
⊂









+

−+
−=Ψ ∑∑

KK

jKK

KKK
NK

K
NK

KKxjk
j

PP

I

����

 

(5) 

Moreover if ( ) ,52
2+≤ jNP  we can drop the positive parts in (4) and (5). 

Proof. (4) stems directly from (2) and (3). To get (5), we group the terms 

corresponding to the same pair ( )., 21 KK  Then it is sufficient to show that: 

( ) ( ) .11 21

22

11

2

1

,1

KKL

KL
KL
NL

+−

=
=

⊂

−=−∑
��

 

Let us fix the set { }.12 njjK K=  Let us calculate first: 

( ) ( ) .1
1

,1

1

22

11

2

−

=
⊂

⊂

−= ∑ L

KL
KL
NL

Kf

��

 

To build an index L of the sum above uniquely, it suffices to choose for each element 

2Kj ∈  a non-empty subset 
j

L1  of 1K  so that { 11 KiL
j ∈=  ( ) }., Lji ∈  Thus: 

( ) ( ) ( ) .11 1

1

11

1
1

1

1
1

1
1

1

1
1

n

L

L
KL

LL

L

KL

L

KL

nj
n

j

nj
n

nj
n

j

j

Kf



















−−=−=

∅≠
⊂

−+

∅≠

⊂

∅≠

⊂

∑∑∑ L
K  

Using the binomial expansion, we get: 

( ) ( ) ( ) .111111 1

1

1

1

11

1

1

−=−−=−













=− ∑∑

=
∅≠

⊂

Kl

K

l

L

L
KL l

K
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Thus ( ) ( ) .1
1

1
2 +−= K

Kf  

This yields the result for ,11 =K  as in this case the condition 11 KL ⊂  is 

equivalent to .11 KL =  For any greater value of ,1K  the principle of inclusion-

exclusion yields: 

( ) ( ) ( ) ( ) ( ) .1111
1

1

1
1

1

,1

1

2111

1

1

11

22

11

2

l

K

l

KKLK

L

K

KL

L

KL
KL
NL l

K

Kf −













−=−=− ∑∑∑

=

−+−

∅≠
⊂

−

=
=

⊂ ��

 

With one more binomial expansion, this leads to the expected result – the observation 

on positive parts is a simple consequence of the previous remark. 

Remark. The sum in (5) contains much fewer terms than in (4): the former has 

the order of n22  against 
2

2n  for the latter! Grouping terms 1K  and 2K  of equal 

size, it can be rewritten as an double alternating sum, while (4) becomes a (simple) 

alternating sum. 

The corollary below focuses on the case where the condition ( )jN π ′′≥  is 

dropped: 

Corollary 3.2.2.2. Let .N∈N  We have the following inequality: 

( ) ( )jjeN Ψ≤  (6) 

with: 

( ) ( )
( ) ( )

+

+−

∅≠
⊂









+

−+
−= ∑ 1

3

,2
1

212

21011

,1
KK

jK

K
NK

N

KKxjk
je

PP
��

 

( )
( ) ( )

.1
3

,2
1

21

21

212

2

1

1

2101

,
,1,1 +

++

∅=∅≠
⊂

∅≠
⊂









+

−+
−= ∑∑

KK

jKK

KKK
NK

K
NK

KKxjk

PP

I

����

 (7) 
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Moreover, ( )jeN  is increasing in N and in j. 

Proof. This is a generalization of the previous results, counting 

( ) ( ) ( )
ts qq

ts
NtsN WWjj ×Γ=Ψ

≠
≤≤

IU ,1
 instead of ( ).jΨ  

Clearly ( ) ( )jj NN 1+Ψ⊂Ψ  as more elements lay in the latter union and clearly 

as well ( ) ( )1+Ψ⊂Ψ jj NN  as ( )jΓ  is increasing, hence ( )jeN  is increasing in 

both N and j. 

Remark. Similarly, if we define the set ( )jBN  of multiples of at least one of 

,1, Nii K=P  we get: 

( )

{ }

( )
( )

.
2

52
1

2
1

0,
,0 










 −+
−= −

≠∅≠
⊂
∑

K

KK

KK
NK

N

j
jB

P

P

��

 

We will reuse sets ( )jNΨ  and ( )jBN  in the last part of this article. 

3.2.3. Asymptotic expansion of ( )jΨΨΨΨ  

As we have seen in [2], the prime number theorem implies that: 

( ) (( ) )
( )

.
ln

2
~252

2
2

j

j
jx −+π=π′  

Moreover, as we have seen that two pairs of twin primes (greater than 3) cannot have 

a common value: 

( )
( )

( )
.

ln
~

2

2

j

jx
j

π′
≤∏  

The twin prime numbers infinity remains a conjecture to this day, in particular we do 

not know an equivalent to ( ) .j∏  

Property 3.2.3. We have the following asymptotic expansion: 
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( )
( ) 










+=∏

j

j
Ojj

ln3

2
2

2  

Proof. According to Property 2.2, we have ( ) ( ) ( ) ( )jjjBj ∏+Γ−=Ψ  and so 

( ) ( ) ( )
( )

.
ln

2











+Γ−=Ψ

j

j
OjjBj  The asymptotic expansions of ( )jB  and 

( )jΓ  allows us to conclude. 

3.3. A special alternate sum in the equivalent of jC  

In this section we focus on another equivalent of ( ) .jΨ  

A naive manipulation of the formula: 

( )
( ) ( )

( )
( ) ( )

+

++

∅=∅≠
π′′⊂

∅≠
π′′⊂









+

−+
−=Ψ ∑∑ 1

3

,2
1

21

21

212

2

1

1

2101

,
,1,1 KK

jKK

KKK
jK

K
jK

KKxjk
j

PP

I

����

 

consists in summing the equivalents of each term of the sum, which gives: 

( )
( ) ( )

( )

21

21

212

2

1

1

1

3

2
~

,
,1,1

2

KK

KK

KKK
jK

K
jK

j
j

PP

+

∅=∅≠
π′′⊂

∅≠
π′′⊂

−
Ψ ∑∑

I

����

 

However, we must be careful that, as the sum has more and more terms, this 

approach is not mathematically valid. However, Corollary 3.2.2.2 allows us to 

manipulate finite sums. 

Property 3.3.1. Let 
( )

.
1

21

21

21

2
2

1
1 ,1,1

KK

KK

KK

NKNKN

KK

E
PP

+

∅=

⊂⊂

−
=

∅≠∅≠

∑∑
I

����
 The sum 

( )NE  is increasing and bounded by 1. 

Proof. Allows us to assert that for ( ) .
3

2
~,

2

NN E
j

jej +∞→  But for all 
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( ) ( )jejeN NN 1, +≤  hence, dividing by 
3

2
2

j
 and taking the limit, ,1+≤ NN EE  

that is, the sequence ( )NE  is increasing. 

Moreover, ( ) ( )jjeN Ψ≤  so by using the asymptotic expansion of ( )jΨ  we 

also deduce the inequality .1≤NE  

Property 3.3.2. The alternating sum ( )NE  converges to 1: 

( )
.1

1

21

21

212

2

1

1
,

,1,1

∞→

+

∅=∅≠
⊂

∅≠
⊂

→
−

= ∑∑ N
KK

KK

KKK
NK

K
NK

NE
PP

I

����

 

Proof. The previous property already shows that ( )NE  converges to a limit not 

greater than 1. To obtain the desired result, we observe that the terms of the sum 

depend only on the disjoint union KKK =:21 U  and that terms can be grouped 

accordingly: 

( )
( ) 1

1
1

1

11

1

1

21

21

212

2

1

1
,

,1
,

,1,1
KKK

KKk

K

K
NKKK

KK

KKK
NK

K
NK

≠∅≠
⊂

∅≠
⊂

+

∅=∅≠
⊂

∅≠
⊂

∑∑∑∑ −=
−

PPP
������

I

 

( )
K

K
K

K
NK

P

22
1

,1

−
−=

∅≠
⊂
∑

��

 

( ) ( )

K

K

K
NK

K

K

K
NK

PP

1
2

2

,1,1

−
−

−
=

∅≠
⊂

∅≠
⊂

∑∑
����

 














−








−−














−








−= ∏∏

==

1
1

121
2

1

11 K

N

k
K

N

k
PP

 

.121 =+−→ ∞→N  



ON THE DISTRIBUTION OF CONSECUTIVE COMPOSITE ODD … 

 

17 

In the equations above, we used the convergence of the infinite products 









−∏ =

K

N

k P

2
1

1
 and 








−∏ =

K

N

k P

1
1

1
 towards 0, which is a consequence of the 

divergence of the sum of the reciprocals of the primes (See [3]). 

3.4. The Möbius approximation 

In the spirit of [2], we have obtained a Euler approximation of the proportion of 

pairs of composite odd numbers among the pairs of the form ( ) ,16,16 +− mm  

namely ( ).jEπ′′  It is also legitimate to study the Möbius approximation: 

( )
( )

( ) [ ]






 ∈/=−−
=

+

+
=∑

= .otherwise0

0withif221
with

12

12

1

Kn
n

k

k
M

K
KKn

k

n

P

ν

ν

 

An empirical study of this sum suggests its convergence, as shown in the graph 

below, made for n ranging from 1 to 20 000. 

 

In addition to the Möbius function (see [4]), let us introduce the following three 

arithmetic functions, with :1
1

k
k

ppn
αα

= K  

( ) ( ) ( ) ( ) ( ).;; 1 nAnnkn n
Ak µ=µα++α=Ω=ω ω

L  
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Thus, ν  coincides with µ−µ2  on odd numbers non-multiple of 3. 

The proof of [2] relating to Möbius approximation is difficult to adapt because it 

is based on a convergence result equivalent to the prime number theorem, and which 

requires analysis tools that are outside the scope of this article. 

We can nevertheless show some interesting results on generalized the Möbius 

function :Aµ  

Property 3.4.1. The following identities are true for all ∗∈ Nn  

( ) ( ) ( )n
A

nd

Ad
ω−=µ∑ 1  

( )




 =

=µ






Ω

∑
.otherwise0

,0if1

.

n

Ad d

n

A

nd

 

Proof. Let us consider ( )
( ) .1

1
n

n
ppn ωα

ω
α

= K  Then: 

( )
( )

( )
( )

( )( ) ( ) ( )
.1

0,1

nkn
k

n

k

KA

nK

A

nd

AApd
ω

ω

=ω⊂

−=−=µ=µ ∑∑∑
��

 

The second equality is obvious for .1=n  Suppose first that n is the strict power of a 

prime number: .α= pn  Then: 

( )
( ) ( ) .0. 1

0

=−=µ=µ −ααβ−αβ
α

=β

Ω

∑∑ AAAApAd AA

nd

d
n

 

Let’s go back to the general case ( )
( ) .11

11 npppn n

n
′==

αα

ω
α ω

K  We observe that: 

( ) ( )








′

Ω

′′







Ω

′µ=µ ∑∑
α

dd

n

A

nd

pd

d

n

A

nd

AddAd 1

1
11

1  
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( ) ( )








′

′
Ω+














Ω

′′

α

α

′µµ= ∑
d

n

d

p

AA

nd

pd

Add
1

1
1

1
11

1  

( ) ( )













µ

















µ=






Ω

′′







Ω

∑∑
α

d

n

A

nd

d

n

A

pd

AdAd

1
11

 

.0=  

which allows us to conclude. We immediately deduce: 

Property 3.4.2. For all :∗∈ Nn  

( ) ( ) ( )
.1

11

j

nj

A

nk

A
k

n
k

ω

≤≤≤≤

−=




µ ∑∑  

Proof. It is a simple manipulation of sums: 

( ) ( ) 1

1
11

∑∑∑
≤≤

≤≤≤≤

µ=




µ

k

n
l

A

nk

A

nk

k
k

n
k  

( )kA

nkl
lk

µ=

≤≤

∑
1

,

 

( )kA

jknj

µ= ∑∑
≤≤1

 

( ) ( )
.1

1

j

nj

A
ω

≤≤

−= ∑  

In the penultimate equality, we made a change of index klj =  and in the last 

equality we used the Property 3.4.1. 



MARC WOLF et al. 

 

20 

Corollary 3.4.2. 
( )
k

k
S

n

kn
2

1
:

µ
= ∑ =

 is bounded by 2. 

Proof. According to Property 3.4.2 applied for ,2=A  we have: 

( ) ( ) ( )
.1

1

2

1

n
k

n
k

j

njnk

≤−=




µ ω

≤≤≤≤
∑∑  

Moreover, for any k  between 1 and n: 

.1+




<≤







k

n

k

n

k

n
 

We then deduce: 

( )
( ) .22

1

2

1

nn
k

n
k

k

k
n

nknk

≤+




µ≤

µ
∑∑

≤≤≤≤

 

This allows us to conclude. 

Remark. This corollary can be generalized for [ ].2,0∈A  For AA µ< ,0  is 

always positive, and it is easy to observe that 
( )

k

kA

nk

µ
∑ ≤≤1

 diverges knowing that 

the sum of reciprocals of prime numbers diverges. 

We end with a last generalization of the result that shows that nM  is bounded: 

Property 3.4.3. For all :∗∈ Nb  

( )
k

k
S

bk
nk

b
n

2

1
1

:
µ

=

=∧
≤≤
∑  

is bounded. Moreover, nM  is bounded. 

Proof. Let ( ) ( )nnb 2,2 µ=µ  if 0,1=∧ bn  otherwise. We can generalize: 
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( ) ( ) ( )n
b

nd

bd
ω−=µ∑ 1,2  

where ( )nbω  represents the number of prime divisors of n not dividing b. We then 

deduce that ( ) ( ) ( )
,1

1,21

j

njbnk
b

k

n
k

ω
≤≤≤≤

−=




µ ∑∑  and in particular b

nS  is 

bounded. By fixing ,6=b  it is easy to deduce that nM  is bounded. 

We thus leave the convergence of nM  in the state of conjecture, and more 

generally that of the (bounded) series of the form, for [ ] :2,0∈A  

( )
n

nA

bn

µ
∑

=∧ 1

 

3.5. Fifteen possible congruences for twin primes 

We have already seen that any prime number is written 16 −m  or ,16 +m  with 

the exception of 2 and 3. The pairs of twin primes are therefore necessarily of the 

form ( ) ,16,16 +− mm  apart from (3, 5). 

Going further in congruences, we will generalize and demonstrate that there are 

15 possible congruences modulo 105 for pairs of twin primes different from (3, 5) 

and (5, 7) pairs. None, of course, guarantees the primality of any of the two numbers. 

Indeed, consider a pair of twin primes ( )2, +pp  such that p is different from 3 

and 5 (and therefore from 2 and 7 since 2+p  is prime). In particular, 11≥p  and 

so p and 2+p  are prime with 2, 3, 5, 7 - that is, they are prime with 

.7532210 ×××=  

A sieve method quickly eliminates all multiples of 2, 3, 5 and 7 between 0 and 

209: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 
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45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 

165 166 167 168 69 170 171 172 173 174 175 176 177 178 179 

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 

This leaves 15 (highlighted) possibilities for congruence modulo 210 of p: 11, 

17, 29, 41, 59, 71, 101, 107, 137, 149, 167, 179, 191, 197 and 209 (or -1 ). The 

central symmetry observed in the table above corresponds to the equality of 

proposition 3.2.1 which gives ( )120 , KKy  as a function of ( )., 210 KKy  

The method is not specific to prime numbers chosen in the above: for any family 

of prime numbers ,
1 nkk PP K  we can identify the congruences eligible for two twin 

prime numbers modulo .2:
1 nkkm PP ×××= K  We observe that –1 and 1 will 

always be prime with m, which ensures that there is always a solution. The symmetry 

of the table above is explained by the fact that, if x and 2+x  are prime with m, the 

same is true for 2−− xm  and .xm −  In particular, since ( )1,1−  is the only fixed 

point of this symmetry, there is always an odd number of possible congruences. 

We can simply prove that no congruence can guarantee the prime property of the 

two numbers: indeed, whatever ( ) xmx
2

1, +  is congruent to x modulo m, and is 

however clearly not prime! 

The counting methods of the preceding sections also make it possible to predict 

the number of possible congruences. Indeed, consider j such that ( )21 ++ jk j  is of 
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the form .3105 +n  A counting can be made using the notation of corollary 3.2.2.2 

for ,2=N  thus restricting to the multiplicity by 3, 5 and 7. The pairs obtained are 

therefore the “twin primes-candidates”, i.e., the set ( )j2∏  of pairs whose two 

coordinates are prime with 2, 3, 5 and 7: 

( ) ( ) ( ) ( ) .222 jjBjj Ψ+−Γ=∏  

According to Property 3.1, we have: 

( ) ( ( ) ) 135
3

4105
12

3

1
1 +=





 +

=




 ++=Γ + n

n
jkj j  

( )

{ }

( )
( )
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⊂
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52
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52
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P jjj
 

( ) ( ) ( )
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 −+
−











 −+
−
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210
2

21
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2
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2

2

52

2

52

2

52

PPP

PPP

PP

PP

PP

PP jjj
 

;223571521 nnnnnnn =+−−−+=  

Finally: 

( ) ( )
( ) ( )

+

++

∅=∅≠
⊂

∅≠
⊂









+

−+
−=Ψ ∑∑ 1

3

,2
1

21

21

212

2

1

1

2101

,
2,12,1

2
KK

jKK

KKK
K

K
K

KKxjk
j

PP

I

����

 

 
( ) ( )

.21
3

1,23105
1

3

2,13105

21

0

21

0 n
xnxn

=





+

−+
+





+

−+
=

PPPP
 

For the last equation, the values of ( )2,10x  and ( )1,20x  calculated using the 

Property 3.2.1 have been used. 
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Thus ( ) .1152221352 +=+−+=∏ nnnnj  This represents an isolated pair 

of twin primes, (5, 7) of indices (1, 2), and 15 congruences modulo 105 for the 

indices that correspond to the pairs previously found. 

Conclusion 

Through simple counting of finite sets of indices of pairs of consecutive 

composite odd numbers, we have highlighted existence of an alternating sum 

convergent to 1, which reflects the fact that there are few twin primes. However, we 

leave open the question of the convergence of the Möbius approximation, as we 

could only prove its boundedness. Finally, we have developed a method which gives 

in particular 15 possibilities modulo 210 for the pairs of twin primes except (3, 5) 

and (5, 7). 
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