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Abstract 

We study odd numbers through a straightforward indexing. We focus in 

particular on odd prime and composite numbers and their distribution. 

With a counting argument, we calculate the limit of two sums and 

compare their convergence rate. 

Introduction 

All prime numbers greater than 3 are of the form 16 −m  or .16 +m  This 

condition is obviously not sufficient to characterize them, and we propose to study in 

this article the distribution of composite numbers among them. By counting 

arguments, we will calculate the limit of a particular alternating sum. 

1. Indices of Composite Odd Numbers: The Set W 

Let us recall here some of the notations from [1]. 
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1. I is the set of odd integers greater than 1, i.e.: 

{ }N∈+== kkNI k ;32  

with k the index of odd number ;kN  

2. P is the set of odd prime numbers, primes will also be enumerated in 

ascending order ...,...,,,3 10 nppp =  with ......,,,0 10 nqqq =  their respective 

indices; 

3. C is the set of composite odd integers greater than 1, i.e.: 

{ ( ) }.,,\ abNIbaINPIC kk =∈∃∈==  

The function INkf k ∈∈ aN:  is bijective. The inverse function is :1−f  

.
2

3−
=∈ k

k

N
kIN a  The inverse image of C is called W: 

( ) { }.1 CNkCfW k ∈∈== −
N  

It is reminded that the function 

( ) ( ) ( ) jnjnkjnk j ++=×∈ 32*,: aNN  

is a surjection on W. In other words, W is the (non-disjoint) union of the sets 

{ ( )} .*N∈= njj nkW  

Finally, the remarkable indices are the indices of the form ( ) +=+ 2
21 jjk j  

,36 +j  they correspond to the indices of odd squares. 

1.1. Partitioning the set of odd numbers 

Every odd prime number greater than 3 is of the form 16 −m  or .16 +m  Thus, 

the indices of odd prime numbers greater than 3 must be, respectively, of the form 

13 +n  and .23 +n  This means that the index of an odd number x is a multiple of 3 

if and only if x itself is as well. 
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Definitions 1.1. 

1. For all ,N∈j  the interval jI  is defined by: 

[ ][ ]

[[ ( ) ( )]]






+++

=

=

+

.

otherwise.2,11

0,if11,0

1 jkjk

j

I

jj

j  

2. Let the unit ( )jU  be the size of ,jI  i.e.: 

( ) 120 =U  and for all ( ) .84,0 +=> jjUj  

3. The counting interval ( )jID  is: 

( ) [[ ( )]] .2,0

0

1 U
j

q

qjD IjkjI

=

+ =+=  

The size of a set E is noted .E  

The former union equal to ( )jID  being clearly disjoint, we easily deduce the 

following equality: 

( ) ( ) ( ) .12102128412

0 1

2
1∑ ∑

= =

+ ++=++=++==

j

q

j

q

jD jjjkqqUjI  

2. Indices of the form 13 +n  and 23 +n  

2.1. The set A of odd number indices and B of composite odd number indices 

Definition 2.1.1. Let ( )jA  be the set of indices in ( )jID  that are not multiple 

of 3: 

( ) { ( ) }.03mod ≠∈= jjIjjA D  

Let also ( )jB  be the indices among them corresponding to composite numbers: 
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( ) ( ) .WjAjB I=  

Property 2.1. A remarkable index cannot be of the form .13 +n  

More precisely, ( )




 =

=+

otherwise.2

3,mod0if0

3mod1

j

jk j  

Proof. We have ( ) ,3mod3621
22

jjjjk j −=++=+  which yields the 

result. 

Corollary 2.1. ( )jA  is always even. 

Proof. We deduce from Property 2.1 that ( )jAn ∈+ 13  if and only if 23 +n  

( ).jA∈  There are therefore as many numbers congruent to 1 as 2 modulo 3 in the set 

( ).jA  Thus, its size must be even. 

2.2. Prime number indices 

We adopt the usual notation ( )xπ  for the number of primes not greater than x. 

We will also note ( )jπ  for the number of indices corresponding primes not greater 

than ( ) ,52
2+j  i.e., the elements in ( ).jA  Thus, by definition: ( ) =π′ j  

(( ) ) 252
2 −+π j  as 2 and 3 must be removed. 

Property 2.2. We have the following equality: 

( ) ( ) ( ) .jBjAj −=π′  

Proof. As every odd number is either prime or composite, it is immediate that 

( ) ( )jBjA \  is the set of prime number indices in ( ),jA  and the result follows. 

3. Counting ( )jA  and ( )jB  

We will now proceed to counting the sets defined in the previous section. 
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3.1. Counting ( )jA  

We start with a helpful lemma: 

Lemma 3.1. Let *N∈n  and X be set of consecutive integers (or range), the 

size of which is a multiple of n. Then: 

[ ][ ] { ( ) } .mod1,0
n

XR
RnxXxnR

⋅
=∈∈−⊂∀  

Proof. We take *N∈n  and [ ][ ]1,0 −⊂ nR  fixed, and we proceed by induction 

on .X  

The result is obviously true for .∅=X  Suppose now that it is also true for any 

range X of size an ( ).0≥a  Let X be a range of size ( ) ,1 na +  and 0x  be its smallest 

element. Let us then define 0X  and X ′  by: 

[[ ]],1, 000 −+= nxxX  

.\ 0XXX =′  

It is straightforward that nX =0  and ,anX =′  therefore it follows from the 

induction hypothesis that 

{ ( ) } { ( ) } .modmod 0 n

XR
RnxXxRnxXx

′⋅
+∈∈=∈∈  

But 0X  is a range of n consecutive integers, thus each congruence class appears 

exactly once, from which we conclude that { ( ) } .mod0 RRnxXx =∈∈  This 

proves the lemma. 

For a number ,R∈x  we will note  x  its integral part, which is also the 

number of positive integers not greater than x. 

Property 3.1. For all ,N∈j  we have: 
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( ) ( ( ) .12
3

2
1 



 ++= + jkjA j  

Proof. On one hand, if ( ) ,23mod21 =++ jk j  the result follows directly from 

the previous lemma. On the other hand, we know that otherwise ( )21 ++ jk j  has to 

be a multiple of 3, therefore ( ) ( )jAjk j ∉++ 21  and the same lemma applied to 

[[ ( ) ]]12,0 1 −++ jk j  yields: 

( ) ( )( ).2
3

2
1 += + jkjA j  

We deduce that in all cases: 

( ) ( )( ) .12
3

2
1 



 ++= + jkjA j  

Corollary 3.1. We have the following asymptotic expansion: 

( ) ( ).1
3

20

3

4 2 OjjjA ++=  

In particular: 

( ) .
3

4
~ 2jjA  

3.2. Counting ( )jB  

3.2.1. The inclusion-exclusion principle 

We remind that W is the union of the sets jW  of indices corresponding to 

composite odd multiples of .32 +j  In particular: 

( ( )) ( ( )).\ 0 jIWjIWB DDj II=  

Let ( ).jIWx DI∈  Thus, ( ) ,5232
2+≤+ jx  and 32 +x  is a composite number, 

so it admits at least one odd prime factor not greater than .52 +j  There are 
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( ) ( ) 1521 −+π=+π ′′ jj  such primes (2 is excluded but not 3). We deduce that: 

( ) ( )
( )

.

0

U II

j

k

DqkD jIWjIW

π ′′

=

=  

Furthermore, we may involve more prime numbers without changing the result. We 

deduce that more generally: 

( ) ( ) ( ) .,

0

U II

N

k

DqkD jIWjIWjN

=

=π ′′≥∀  

The inclusion-exclusion principle implies that the size of jB  verifies: 

 ( ) ( ) ( )
[[ ]] { }

.1,

0,,,0

1∑
≠∅≠⊂ ∈

−














−=π ′′≥∀

KKNK

D

Kk

qk
K

j jIWBjN II  (1) 

Definition 3.2.1. Let lk,  be the indices of two odd numbers, we note lk*  for 

the index of their product. We verify that: 

( ).132* +++= lkkllk  

We know that the product of integers is associative and commutative. This implies 

that *  has these properties too. 

For a set of any integers { },1 niiK K=  we note .**1 niik qqq L=  This 

definition is non-ambiguous because *  is associative. Furthermore, we can rewrite 

(1) as: 

 ( ) ( ) ( )
[[ ]] { }

.1,

0,,,0

1∑
≠∅≠⊂

−−π ′′≥∀

KKNK

Dq
K

j jIWBjN
K

I   (2) 

Taking N sufficiently large, all indices of square-free odd numbers between 5 and 

( )2
52 +j  appear in the sum above, while all the indices greater than ( )21 ++ jk j  

yield no contribution to the sum (because if ( ),21 +> + jkq j  obviously Dq IW I  
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( ) ).0=j  We deduce a third version of (2) using the function of Möbius (see [2]), 

as we observe that ( ) ( ) :321 +µ=− K
K

q  

 ( ) ( )

( )

∑
+

=

+

+µ−=

2

1

1

.32

jk

k

Dkj

j

jIWkB I  (3) 

3.2.2. Calculation of the cardinality of ( )jIW Dk I  

Once again we start with a useful counting lemma: 

Lemma 3.2. For all ,*, N∈mn  the number of multiples of n between 1 and n 

is equal to: 

[[ ]] .,1




=

n

m
nm ZI  

Proof. We take *,N∈n  and we proceed by induction on m. For ,1=m  the 

result is trivially true. Suppose that for a given value of *,N∈m  we have 

[[ ]] .,1




=

n

m
nm ZI  Then, if 1+m  is not a multiple of n, we have: 

[[ ]] [[ ]] .
1

,11,1




 +

=




==+

n

m

n

m
nmnm ZZ II  

On the other hand, if 1+m  is a multiple of n, we deduce: 

[[ ]] [[ ]] .
1

1,111,1




 +

=




+=+=+

n

m

n

m
nmnm ZZ II  

In all cases, we manage to show that the property is inductive, which yields the result. 

Property 3.2.2. Let k be an index. We have the following: 

( )
( )

.
32

21









+

−+
=

+

k

kjk
jIW

j
Dk I  

Proof. Let .N∈x  Then ( ) kxknkxnWx k >⇔++=∈∃⇔∈ 32,*N  and 
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( ) ( ).32 kxk −+  Therefore, ( ) ( ) kjkkxjIWx jDk −+≤−≤⇔∈ + 21 1I  and 

( ) ( ).32 kxk −+  So ( ) ( ( )) [[ ( ) ]]III kjkkjIWjIW jDkDk −+=−= + 2,1 1  

( ) .32 Z+k  

The result then follows from Lemma 3.2. 

Corollary 3.2.2. If ,32 += kn  we may also write: 

( )
( )

.
2

52
2








 −+
=

n

nj
jIW Dk I  

Proof. Indeed, we recall that by definition of the remarkable index, ( ) =+ 2
52 j  

( ) .322 1 +++ jk j  Thus the result follows. 

Definition 3.2.2. We now note ∏ ∈
=

Kn nK pp  the odd number indexed by 

.Kq  The Property 3.2.3 gives two expressions for :jB  

Property 3.2.3. 

( )
( )

{ }
[[ ( ) ]]

,
2

52
1

,0
0,

2
1∑

π ′′⊂
≠∅≠











 −+
−= −

jK
KK

K

KK
j p

pj
B  

( )
( )

( )

.
32

2
32

2

1

1
1

∑
+

=

+
+










+

−+
+µ−=

jk

k

j
j

j

k

kjk
kB  

Proof. It stems from (2) and (3), to which we apply Property 3.2.2 and its 

corollary. 

Remark. In the first expression, we may group the terms by the size of K, which 

leads to a further expression with an alternating sum: 

( )
( )

( )
( )

( )

[[ ( ) ]]

.
2

52
1

2

52

,0

2

2

1

1

2





























 −+
−+

























 −+
= ∑∑∑

π ′′⊂
=

π ′′

=

−
π ′′

= jK
nK

K

K

j

n

n
j

k k

k
j p

pj

p

pj
B  
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3.2.3. Asymptotic expansion of jB  

The prime number theorem [3], demonstrated independently by Hadamard and 

de la Vallée Poussin in 1896, is an important result on the asymptotic expansion of 

the number of prime numbers. It states that for :+∞→x  

( )
( )

.
ln

~
x

x
xπ  

Property 3.2.4. We have the following asymptotic expansion: 

( ) ( )
.

lnln

2

3

4
22

2











+−=

j

j
o

j

j
jB j  

Proof. Property 2.2 gives ( ).jAB jj π′−=  Corollary 3.1 gives a very 

precise asymptotic expansion of .jA  From the prime number theorem, we also 

deduce that ( ) (( ) )
( )

.
ln

2
~252

2
2

j

j
jx −+π=π′  Thus we conclude. 

Remark. Even with the known refinements of the prime number theorem, it is 

not possible to improve the result in ( ),jO  let alone ( ).1O  

3.3. A special alternate series equivalent to jB  

In this section, we focus on another equivalent of .jB  

A naive manipulation of the formula derived from Property 3.2.3: 

( )
( )

( )
( )

( )

[[ ( ) ]] 



























 −+
−+

























 −+
= ∑∑∑

π ′′⊂
=

π ′′

=

−
π ′′

= jK
nK

K

K

j

n

n
j

k k

k
j p

pj

p

pj
B

,0
2

52
1

2

52
2

2

1

1

2

 

would consist in summing asymptotic equivalents of each term of the sum, which 

would lead to an expression without integral parts: 
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( )
( )

[[ ( ) ]]

( )

.
1

1
1

2~
2

1 2

1

,0

j
pp

B

j

k K

j

n

n

k
j

jK
nK



















−+∑ ∑∑
π ′′

=

π ′′

=

−

π ′′⊂
=

 

However, we must be careful that, as the number of terms in the sum is not bounded, 

this approach is not mathematically valid. We may however show using Eulerian 

products that the result is correct. 

Property 3.3.1. The coefficient 

( )
( )( )

∑ ∑
π ′′

=

π ′′

=
−+=

j

k

j

nk
j p

c
1 2

1
1

[[ ( ) ]]∑ π ′′⊂
=

jK
nK

kp,0

1
 

converges to 32  when .+∞→j  

Proof. Euler (see [4]) proved the divergence of the series of the reciprocals of 

the primes: 

.
1∑ +∞=
ip

 

As ,
1

~
1

1ln
ii pp









−−  the limit comparison test shows that: 

.
1

1ln −∞=







−∑

ip
 

Therefore, using the exponential function: 

.0
1

1 =







−∏

ip
 

By developing the finite version of the product above, our alternating sum almost 

appears: 

( )
.

...

111
1

1
1

1000 n

n

nji ji

n

i i

n

i
i pppppp

−
+−+−=








− ∑∑∏

≤<≤==

L  
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Remember that jc  is equal to: 

( )
.

...

111

0

1

01 n

n

nji ji

n

i i ppppp

+

≤<≤=

−
+−− ∑∑ L  

The limit of the former being zero, the latter therefore converges to the sum of the 

terms removed, i.e., .32311lim =−=jc  

Corollary 3.3.1. We deduce that: 

( )
( )

[[ ( ) ]]

( )

.
1

1
1

2~
2

1 2

1

,0

j
pp

B

j

k K

j

n

n

k
j

jK
nK



















−+∑ ∑∑
π ′′

=

π ′′

=

−

π ′′⊂
=

 

Furthermore: 

( )
( )

[[ ( ) ]]

( )

( )
[[ ( ) ]]

( )

.
1

1
3

21
1

1

1

1

1 2

1

,1,0 

















−=−+= ∑ ∑∑ ∑∑
π ′′

=

−
π ′′

=

π ′′

=

−

π ′′⊂
=

π ′′⊂
=

j

n K

n
j

k K

j

n

n

k
j

jK
nK

jK
nK

ppp
c  

Proof. Property 3.3.1 shows that ,32~jc  and Property 3.2.4 implies ~jB  

.34 2j  Thus, 
2

.2~ jcB jj  which proves the first part of the corollary. The 

second part is an alternative expression of jc  obtained by isolating every term 

containing 3 in the sum: 

( ) ( )

( )
[[ ( ) ]]
∑∑∑

π ′′⊂
=

−
π ′′

=

π ′′

=

−+
jK

nK

K

n
j

n

j

k
k pp

,0

1
1

1 1

11

 

( )

( )
( )

[[ ( ) ]]

( )
( )

[[ ( ) ]]
∑∑∑∑∑

π ′′⊂

∈
=

π ′′⊂
=

π ′′

=

−
π ′′

=

−
π ′′

=

−+−+=
jK

K
nK

jK
nK

K

j

n

n

K

j

n

n
j

k k ppp
,0

0

,1

1
1

1
1

1

2

1

2

1

1
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( )
( )

[[ ( ) ]]

.
1

1
1

1

,11

1

0


















−⋅







−= ∑∑

π ′′⊂
=

π ′′

=

−

jK
nK

K

j

n

n

pp
 

The last equality is obtained writing ,.0 kk ppp =  for any K containing 0. 

3.4. Another interesting limit 

We get a similar result for the Möbius version of jB  in Subsection 3.2.3: 

Property 3.3.2. 

( )
.

3

2

12

12

2

=
+

+µ−∑
+∞

=n
n

n
 

Proof. The prime number theorem is the equivalent to the following (see [5]): 

( )
.0

1

=
µ∑

+∞

=n
n

n
 

The even terms 
( )

n

n

2

2µ
 are undesirable, but we note that ( )n2µ  is non-zero only if n 

is odd, in which case ( ) ( ).2 nn µ−=µ  Let 
( )

∑ =

µ
=

N

nN n

n
S

1
 and 

( )
.

12

121

0∑
−

= +

+µ
=

N

nN n

n
T  We have: 

( ) ( ) ( )
.

22 2

odd

2

2

even

4

odd

4

4
N

N

n

Nn

N

n

Nn

n

Nn

N

T
T

n

n
T

n

n

n

n
S −=

µ
−=

µ
+

µ
= ∑∑∑

≤≤≤

 

It follows that if a is a cluster point of ( ) aT N 2,2  is necessarily a cluster point of 

( ),NT  as NS4  converges to 0. But the difference NN TT −+1  converges also to 0, 

which yields that the cluster points of ( )NT2  and ( )NT  are the same, and that they 

form a range A, with the property .2 AaAa ∈⇒∈  
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All that remains is to prove that ( )NT  is bounded, which will yield that A is 

necessarily equal to { },0  and that ( )NT  converges to 0. 

To this end, we need to extend Property 3.2.3: 

( )
( )

( )

.
32

2
32

2

1

1
1

∑
+

=

+
+










+

−+
+µ=

Jk

k

j
j

j

k

kjk
kB  

Indeed, we notice that every odd number greater than one is a multiple of at least one 

odd prime, which yields: 

{ } .1
2

1

2

12
2...,,3,112...,,5,3

0








+





−

+
=+

+∞

= k
k

k p

n
pn U  

Thus, using the inclusion-exclusion formula: 

( )






+

++
+µ−=∈∀ ∑

=
12

1
12,

1
k

kn
knn

n

k

N  

which is equivalent to: 

( ) .
12

1
121,

0






+

++
+µ=∈∀ ∑

=
k

kn
kn

n

k

N  

The following inequality follows from neglecting the integer parts (as the first and the 

last terms are already integers, the error is at most ):1−n  

( ) .
12

1
122,*

0

n
k

kn
knn

n

k

≤
+

++
+µ≤+−∈∀ ∑

=

N  

Finally, as 1
12

1
<

+

+

k

k
 for all :0>k  

( )
.2

12

12
,*

0

<
+

+µ
∈∀ ∑

=

n

k
k

k
n N  
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This proves the boundedness of .NT  

Eventually, from 
( )

,0
12

12
0

=
+

+µ
∑

∞+

=n n

n
 it is easy to deduce that: 

( )
.

3

2

3

1
1

12

12

2

=−=
+

+µ−∑
+∞

=n
n

n
 

Remark. From the relationship ,
224
N

NN

T
TS −=  we can conversely deduce 

that if NT  converges, so does ,NS  which proves the convergence of NT  is 

equivalent to the prime number theorem. 

3.5. Convergence rate comparison 

The sum in Property 3.3.2 contains fewer terms than that of Property 3.3.1, and 

terms are summed in a different order. These two convergence results are therefore 

not equivalent. In this last part, we will empirically compare the behavior of these 

two sums with that of jB  and its asymptotic expansion given directly by the prime 

number theorem (Property 3.2.4). 

To make everything comparable, we will normalize all these quantities so that 

they represent approximate proportions of the composite numbers among odd 

numbers non-multiple of 3. 

We define 4 sequences: 

1. ,jjj ABp =  the exact proportion; 

2. 
( )

,
ln2

3
1

j
a j −=  the approximate proportion to order 1 (or Hadamard 

approximation); 

3. 

( )
( )

[[ ( )]]

( )

∏∑∑
π ′′

=

=

π ′′⊂

π ′′

=

−








−−=−=

j

k
k

nk

jK K

j

n

n
j pp

e

1,11

1 1
11

1
1  
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the Euler approximation. 

4. 
( )( )

,
32

32

2

3 2

1

1∑
+

=

+

+
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m  the Möbius approximation. 

In the graph below, we set the squares ( )2
52 +j  on the x-axis (with a logarithmic 

scale), and on the corresponding proportions jjj eap ,,  and jm  on the y-axis: 

 

The result suggests that the Euler approximation is the best of the three, whereas 

the Möbius approximation converges much faster to 1 than the others, which also 

makes it a poorer approximation. We also observe that it is the least monotonous and, 

in terms of complexity, the one that requires most operations (its expression requires 

to compute the Möbius function of every number between 1 and ( ) ,52
2+j  i.e., a 

full factorization for all square-free numbers). 

4. Conclusion 

With some simple counting arguments applied to finite sets of composite odd 

numbers (via their indices), two harmonic sums appeared naturally. We proved their 

convergence which is also the illustration of the fact there are asymptotically almost 

as many composite odd numbers as odd numbers - the sums were shown to be 

approximations of the exact ratio. One of these convergences was also proven to be 

equivalent to the prime number theorem. An empirical discussion of the quality of 

these approximations suggests that there is however a profound difference between 
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the two. 
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