ON SOLUTIONS OF INTEGRO QUASI-DIFFERENTIAL

EQUATIONS IN L^p-SPACES

SOBHY EL-SAYED IBRAHIM

Department of Mathematics Faculty of Basic Education Public Authority of Applied Education and Training (PAAET & KFAS) Kuwait e-mail: Sobhyelsayed_55@hotmail.com

Abstract

A general quasi-differential expression τ of order *n* with complex coefficients and its formal adjoint τ^+ are considered in the space $L^p_w(a, b)$. In the case of one singular end-point and under suitable conditions on the function F(t, y), we show that all solutions of a general integro quasi-differential equation $[\tau - \lambda I]y(t) = wF(t, y)$, $(\lambda \in \mathbb{C})$ are in $L^p_w(a, b) \cap L^\infty(a, b)$ for all $\lambda \in \mathbb{C}$ provided that all solutions of the homogeneous differential equations $(\tau - \lambda I)u = 0$ and $(\tau^+ - \overline{\lambda}I)v = 0$ are in $L^p_w(a, b) \cap L^\infty(a, b)$.

© 2017 Fundamental Research and Development International

Keywords and phrases: quasi-differential expressions, Shin-Zettl matrix, L^p -spaces, quasiderivatives and their adjoints, regular and singular end-points, integro quasi-differential equations, boundedness of L^p -solutions.

²⁰¹⁰ Mathematics Subject Classification: 34B05, 34B24, 47A10, 47E05.

Received July 29, 2017; Accepted August 29, 2017

SOBHY EL-SAYED IBRAHIM

1. Introduction

Wong et al. [14-17] considered the problem that all solutions of a perturbed linear differential equation belong to $L^2(0, b)$ assuming the fact that all solutions of the unperturbed equation possess the same property. For an ordinary linear differential equations with real coefficients and under suitable conditions on the function *F*, they showed that all solutions of the equation

$$\tau[y] - \lambda wy = wF(t, y), \quad (\lambda \in \mathbb{C}) \text{ on } [0, b), \tag{1.1}$$

are in $L^2_w(0, b)$ provided that all those of the equations

$$(\tau - \lambda I)u = 0$$
 and $(\tau^+ - \overline{\lambda}I)v = 0$, $(\lambda \in \mathbb{C})$ (1.2)

are in $L^2_w(0, b)$.

In [7-9], Ibrahim extends their results for a general quasi-differential expression τ of arbitrary order *n* with complex coefficients, and considered the property of boundedness of solutions of a general integro quasi-differential equations.

Our objective in this paper is to extend the results in [6-9] and [14-18] to a general integro quasi-differential equations with their solutions in the space $L^p_w(a, b), p \ge 2$. Also, we show in the case of one singular endpoint and under suitable conditions on the integrand function F that all solutions of the general integro quasi-differential equation (1.1) are in $L^p_w(a, b) \cap L^\infty(a, b)$ provided that all solutions of the homogeneous integro quasi-differential equations in (1.2) are in $L^p_w(a, b) \cap L^\infty(a, b)$.

2. Quasi-differential Operators on L^p -spaces

We deal, throughout this paper, with a quasi-differential expression τ of an arbitrary order *n* defined by a Shin-Zettl matrix in the L^p -space. The left-hand endpoint of the interval I = [a, b) is assumed to be regular but the right-hand end-point may be either regular or singular.

First, we define the L^p -space.

Let \mathbb{K} denote either \mathbb{R} , the field of real numbers, or \mathbb{C} , the field of complex numbers. For some positive integers *n* and *m*, let $\mathbb{M}_{n,m}$ denote the vector space of $n \times m$ matrices with \mathbb{K} -valued entries and GL_m the subset of $\mathbb{M}_m := \mathbb{M}_{m,m}$ consisting of all non-singular matrices. For $A \in \mathbb{M}_{n,m}$, let A^T denote the transpose and A^* the adjoint, i.e., the complex conjugate transpose of *A*.

If A is a subset of $\mathbb{M}_{n,n}$ and I is an interval, B(I, A) denotes the set of Lebesgue measurable maps of I into A and $AC_{loc}(I, A)$ the set of locally absolutely continuous maps. Measurable maps are regarded as equal if they are equal almost everywhere on I. Further we define

$$L^{p}(I, A) \coloneqq \{ y \in B(I, A) \mid |y|^{p} \text{ is Lebesgue-integrable} \},$$
$$\|y\|_{p,I} \coloneqq \left(\int_{I} |y|^{p} \right)^{\frac{1}{p}} \text{ for all } y \in L^{p}(I, A) \text{ and } p \in [1, \infty),$$
$$L^{\infty}(I, A) \coloneqq \{ y \in B(I, A) \mid y \text{ is essential bounded} \},$$
$$\|y\|_{\infty,I} \coloneqq \text{ess sup}_{x \in I} |y(x)| \text{ for all } y \in L^{\infty}(I, A),$$
$$L^{p}_{loc}(I, A) \coloneqq \{ y \in B(I, A) \mid y \mid K \in L^{p}(K, A) \text{ for all compact subinterval } K \text{ of } I, p \in [1, \infty) \}.$$

If $r \in [1, \infty)$, then $r' \in [1, \infty)$ is always chosen such that $\frac{1}{r} + \frac{1}{r'} = 1$. We always assume that $p, q \in [1, \infty)$. If $L^p \coloneqq L^p(I, \mathbb{K}^s)$ for some positive integer *s*, then $(L^p)^* = L^{p'}$ for $p \in [1, \infty)$ and L^1 is a subspace of $(L^\infty)^*$, where (.)* denotes the complex conjugate transpose. We refer to [5] for more details.

Let *I* be an interval with end-points *a*, *b* ($-\infty \le a < b \le \infty$), let *n*, *s* be positive integers and *p*, *q* \in [1, ∞). The quasi-differential expressions are defined in terms of

a Shin-Zettl matrix $Z_{n,s}^{p,q}(I)$ on an interval *I*.

Definition 2.1 [5, 12]. The set $Z_{n,s}^{p,q}(I)$ of Shin-Zettl matrices on *I* consists of matrices are defined to be the sets of all lower triangular matrices $F = \{f_{j,k}\}$ of the form

$$F = \begin{pmatrix} f_{0,1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ f_{n,1} & \cdots & f_{n,n+1} \end{pmatrix}$$

whose entries are complex-valued functions on I which satisfy the following conditions:

$$f_{0,1} \in L^p_{loc}(I, \mathbb{M}_s) \text{ and } f_{n,n+1} \in L^{q'}_{loc}(I, \mathbb{M}_s), \quad f_{j,k} \in L^p_{loc}(I, \mathbb{M}_s)$$

for all $1 \le j \le n$ and $1 \le k \le \min\{j+1, n\}, \quad f_{j, j+1}(x) \in GL_s$
for all $0 \le j \le n$ and $x \in I$. (2.1)

For $F \in Z_{n,s}^{p,q}(I)$, we define \tilde{F} as the $(n \times n)$ matrix obtained from F by removing the first row and the last column, i.e.,

$$\widetilde{F} = \begin{pmatrix} f_{1,1} & f_{1,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ f_{n-1,1} & f_{n-1,2} & \cdots & f_{n-1,n} \\ f_{n,1} & f_{n,2} & \cdots & f_{n,n} \end{pmatrix}.$$

Definition 2.2 [5]. For $\tilde{F} \in Z_{n,n}^{p,q}(I)$, the quasi-derivatives associated with \tilde{F} are defined by

$$y_{\tilde{F}}^{[0]} \coloneqq y_{\tilde{F}},$$

$$y_{\tilde{F}}^{[j]} \coloneqq (f_{j, j+1})^{-1} \left\{ \left(y_{\tilde{F}}^{[j-1]} \right)' - \sum_{k=1}^{j} f_{j,k} y_{\tilde{F}}^{[k-1]} \right\}, (1 \le j \le n-1),$$

$$y_{\tilde{F}}^{[n]} \coloneqq \left\{ \left(y_{\tilde{F}}^{[n-1]} \right)' - \sum_{k=1}^{n} f_{j,k} y_{\tilde{F}}^{[k-1]} \right\},$$
(2.2)

where the prime ' denotes differentiation.

The quasi-differential expression $\tau_{\widetilde{F}}$ associated with \widetilde{F} is given by:

$$\tau_{\tilde{F}}[.] := i^n y_{\tilde{F}}^{[n]}, \, (n \ge 2), \tag{2.3}$$

this being defined on the set:

$$V(\tau_{\widetilde{F}} := \{ y_{\widetilde{F}} : y_{\widetilde{F}}^{[j-1]} \in AC_{loc}(I, \mathbb{K}^n), 1 \le j \le n \},\$$

where $AC_{loc}(I, \mathbb{K}^n)$ denotes the set of functions which are locally absolutely continuous on every compact subinterval of *I*.

For
$$y \in V(\tau_{\widetilde{F}})$$
, we define $Q_{\widetilde{F}} y := \begin{pmatrix} y_{\widetilde{F}}^{[0]} \\ \vdots \\ y_{\widetilde{F}}^{[n-1]} \end{pmatrix}$.

Clearly the maps $\tau_{\widetilde{F}}: V(\tau_{\widetilde{F}}) \to B(I, \mathbb{K}^n)$ and $Q_{\widetilde{F}}: V(\tau_{\widetilde{F}}) \to AC_{loc}(I, \mathbb{K}^n)$ are linear.

In analogy to the adjoint and the transpose of a matrix, there are two different "(formal) adjoint" of a quasi-differential expression τ , we refer to [2-5] and [7-10] for more details.

In the following, we always assume that $\tilde{F} \in Z_{n,n}^{p,q}$ and $\tau_{\tilde{F}} \coloneqq \tau_{p,q}$. The formal adjoint $\tau_{p,q}^+$ of $\tau_{p,q}$ is defined by the matrix \tilde{F}^+ given by

$$\widetilde{F}^+ = -J_n^{-1}\widetilde{F}^* J_n, \qquad (2.4)$$

where \tilde{F}^* is the conjugate transpose of \tilde{F} and J_n is the non-singular $(n \times n)$ matrix

$$J_n = ((-1)^j \delta_{j,n+1-k})_{\substack{1 \le j \le n \\ 1 \le k \le n}}$$
(2.5)

δ being the Kronecker delta. If $\tilde{F}^+ = f_{j,k}^+$, then it follows that

$$f_{j,k}^{+} = (-1)^{j+k+1} \overline{f}_{n-k+1,n-j+1}.$$
(2.6)

The quasi-derivatives associated with the matrix \tilde{F}^+ in $Z_{n,n}^{p,q}(I)$ are therefore

$$y_{+}^{[0]} \coloneqq y,$$

$$y_{+}^{[j]} \coloneqq (\overline{f}_{n-j,n-j+1})^{-1} \left\{ \left(y_{+}^{[j-1]} \right)' - \sum_{k=1}^{j} (-1)^{j+k+1} \overline{f}_{n-k+1,n-j+1} y_{+}^{[k-1]} \right\}, \quad (2.7)$$

$$y_{+}^{[n]} \coloneqq \left\{ \left(y_{+}^{[n-1]} \right)' - \sum_{k=1}^{n} (-1)^{n+k+1} \overline{f}_{n-k+1,1} y_{+}^{[k-1]} \right\},$$

$$\tau_{q',p'}^{+}[.] \coloneqq i^{n} y_{+}^{[n]} (n \ge 2) \text{ for all } y \in V(\tau_{q',p'}^{+}), \quad (2.8)$$

$$V(\tau_{q',p'}^+) \coloneqq \{ y : y_+^{[j-1]} \in AC_{loc}(I, \mathbb{K}^n), 1 \le j \le n \}.$$
(2.9)

Note that: $(\tilde{F}^+)^+ = \tilde{F}$ and so $(\tau_{q',p'}^+)^+ = \tau_{p,q}$. We refer to [2-5], [7-10] and [19, 20] for a full account of the above and subsequent results on a quasi-differential expressions.

For $u \in V(\tau_{p,q}), v \in V(\tau_{q',p'}^+)$ and $\alpha, \beta \in I$, we have Green's formula

$$\int_{\alpha}^{\beta} \{ \overline{v} \tau_{p,q}[u] - u \overline{\tau_{q',p'}^{+}[v]} \} dx = [u, v](\beta) - [u, v](\alpha),$$
(2.10)

where

$$[u, v](x) = i^{n} \left(\sum_{r=0}^{n-1} (-1)^{r+n+1} u^{[r]} v_{+}^{\overline{[n-r-1]}} \right) (x)$$
$$= (-i)^{n} (Q_{\widetilde{F}}^{T} u J_{n \times n} Q_{\widetilde{F}} \overline{v}(x))$$

$$= (-i)^{n} (u, u^{[1]}, ..., u^{[n-1]}) J_{n \times n} \begin{pmatrix} \overline{v} \\ \vdots \\ \overline{v}_{+}^{[n-1]} \end{pmatrix} (x), \qquad (2.11)$$

see [2-5], [7-10] and [19]. Let $w: I \to \mathbb{R}$ be a non-negative weight function with $w \in L^1_{loc}(I)$ and w > 0 (for almost all $x \in I$). Then $H^r = L^r_w(I, \mathbb{K}^n)$ denotes the Hilbert function space of equivalence classes of Lebesgue measurable functions such that

$$\|y\|_{r,I} \coloneqq \left(\int_{I} |y|^{r} w\right)^{\frac{1}{r}} \text{ for all } y \in L^{r}\left(I, \widetilde{F}\right) \text{ and } r \in [1, \infty).$$
(2.12)

The equation

$$\tau_{p,q}[u] - \lambda w u = 0, \ (\lambda \in \mathbb{C}) \text{ on } I,$$
(2.13)

is said to be *regular* at the left end-point $a \in \mathbb{R}$, if for all $X \in [a, b)$,

$$a \in \mathbb{R}, \quad w, f_{j,k} \in L^{1}[a, X], \quad j, k = 1, 2, ..., n,$$

otherwise (2.13) is said to be *singular* at *a*. If (2.13) is regular at both end-points, then it is said to be regular; in this case we have

$$a, b \in \mathbb{R}, \quad w, f_{j,k} \in L^{1}[a, b], \quad j, k = 1, 2, ..., n.$$
 (2.14)

We shall be concerned with the case when a is a regular end-point of the equation (2.13), the end-point b being allowed to be either regular or singular. Note that, in view of (2.6), an end-point of I is regular for (2.13), if and only if it is regular for the equation

$$\tau_{p,q}^+[v] - \overline{\lambda}wv = 0, \, (\lambda \in \mathbb{C}) \text{ on } I.$$
(2.15)

3. L^p_w -Solutions

In this section, we shall be concerned with L^p_w -solutions of the integro quasi-

differential equations, and we denote for $\tau_{p,q}$ by τ and $\tau_{p,q}^+$ by τ^+ .

Denote by $S(\tau)$ and $S(\tau^+)$ $S(\tau^+)$ the sets of all solutions of the equations

$$[\tau - \lambda_0 I] u = 0, \quad (\lambda_0 \in \mathbb{C})$$
(3.1)

and

$$[\tau^+ - \overline{\lambda}_0 I] v = 0, \quad (\lambda_0 \in \mathbb{C}), \tag{3.2}$$

respectively. Let $\varphi_j(t, \lambda)$, j = 1, 2, ..., n be the solutions of the homogeneous equation $[\tau - \lambda I]u = 0$, $(\lambda \in \mathbb{C})$ satisfying

$$\varphi_{j}^{[k-1]}(t_{0}, \lambda) = \delta_{k, r+1}$$
 for all $t_{0} \in [a, b)$, $(j, k = 1, 2, ..., n)$

for fixed t_0 , $a < t_0 < b$. Then $\varphi_j(t, \lambda)$ is continuous in (t, λ) for 0 < t < b, $|\lambda| < \infty$, and for fixed t it is entire in λ . Let $\varphi_k^+(t, \lambda)$, k = 1, 2, ..., n denote the solutions of the adjoint homogeneous equation $[\tau^+ - \overline{\lambda}I]v = 0$, $(\lambda \in \mathbb{C})$ satisfying:

$$(\varphi_k^+)^{[r]}(t_0, \lambda) = (-1)^{k+r} \delta_{k, n-r}$$
 for all $t_0 \in [0, b)$,

(k = 1, 2, ..., n; r = 0, 1, ..., n - 1). Suppose a < c < b, by [3], [7-9] and [12-16], a solution of the equation

$$[\tau - \lambda I]u = wf, \quad (\lambda \in \mathbb{C}), \quad f \in L^1_w(a, b)$$
(3.3)

satisfying u(c) = 0 is given by

$$\varphi(t, \lambda) = \left(\frac{\lambda - \lambda_0}{i^n}\right) \sum_{j, k=1}^n \xi^{jk} \varphi_j(t, \lambda) \int_a^t \overline{\varphi_k^+(s, \lambda)} f(s) w(s) ds,$$

where $\varphi_k^+(t, \lambda)$ stands for the complex conjugate of $\varphi_k(t, \lambda)$ and for each j, k, ξ^{jk} is constant which is independent of t, λ (but does depend in general on t_0).

The next lemma is a form of the variation of parameters formula for a general quasi-differential equation is given by the following Lemma.

Lemma 3.1. Suppose $f \in L^1_w(0, b)$ locally integrable function and $\varphi(t, \lambda)$ is the solution of the equation (3.3) satisfying:

$$\varphi^{[r]}(t_0, \lambda) = \alpha_{r+1} \text{ for } r = 0, 1, ..., n-1, t_0 \in [a, b)$$

Then

$$\varphi(t, \lambda) = \sum_{j=1}^{n} \alpha_j(\lambda) \varphi_j(t, \lambda_0) + ((\lambda - \lambda_0) / i^n)$$
$$\times \sum_{j, k=1}^{n} \xi^{jk} \varphi_j(t, \lambda_0) \int_a^t \overline{\varphi_k^+(s, \lambda_0)} f(s) w(s) ds$$
(3.4)

for some constants $\alpha_1(\lambda), \alpha_2(\lambda), ..., \alpha_n(\lambda) \in \mathbb{C}$, where $\varphi_j(t, \lambda_0)$ and $\varphi_k^+(t, \lambda_0)$, j, k = 1, 2, ..., n are solutions of the equations (3.1) and (3.2), respectively, ξ^{jk} is a constant which is independent of t.

Lemma 3.2 [13] (Gronwall's inequality). Let u(t) and v(t) be two real-valued functions defined, non-negative and $u, v \in L^1(t_0, t)$ for $t > t_0$, and if

$$u(t) \le c + \int_{t_0}^t u(s)v(s)ds, \ c > 0,$$

for some positive constant c, then

$$u(t) \le c \exp\left(\int_0^t v(s)ds\right). \tag{3.5}$$

Lemma 3.3. Suppose that for some $\lambda_0 \in \mathbb{C}$ all solutions of the equations (3.1) and (3.2) are in $L^2_w(a, b)$. Then all solutions of the equations in (1.2) are in $L^2_w(a, b)$ for every complex number $\lambda \in \mathbb{C}$.

Proof. The proof is similar to that in [8, Lemma 3.5].

Lemma 3.4. If all solutions of the equation $[\tau - \lambda_0 w]_u = 0$ are bounded on [a, b) and $\varphi_k^+(t, \lambda_0) \in L^1_w(a, b)$ for some $\lambda_0 \in \mathbb{C}$, k = 1, ..., n. Then all solutions

of the equation $[\tau - \lambda w]u = 0$ are also bounded on [a, b) for every complex number $\lambda \in \mathbb{C}$.

Lemma 3.5. Suppose that for some complex number $\lambda_0 \in \mathbb{C}$ all solutions of the equation (3.1) are in $L^p_w(a, b)$ and all solutions of (3.2) are in $L^q_w(a, b)$. Suppose $f \in L^p_w(a, b)$, then all solutions of the equation (3.3) are in $L^p_w(a, b)$ for all $\lambda \in \mathbb{C}$.

Proof. Let $\{\varphi_1(t, \lambda_0), ..., \varphi_n(t, \lambda_0)\}, \{\varphi_1^+(s, \lambda_0), ..., \varphi_n^+(s, \lambda_0)\}$ be two sets of linearly independent solutions of the equations (3.1) and (3.2), respectively. Then for any solutions $\varphi(t, \lambda)$ of the equation $[\tau - \lambda I]\varphi = wf$, $(\lambda \in \mathbb{C})$ which may be written as follows

$$[\tau - \lambda_0 w] \varphi = (\lambda - \lambda_0) w \varphi + w f$$

and it follows from (3.4) that

$$\varphi(t, \lambda) = \sum_{j=1}^{n} \alpha_{j}(\lambda)\varphi_{j}(t, \lambda_{0}) + \frac{1}{i^{n}} \sum_{j,k=1}^{n} \xi^{jk}\varphi_{j}(t, \lambda_{0})$$
$$\times \int_{a}^{t} \overline{\varphi_{k}^{+}(t, \lambda_{0})} [(\lambda - \lambda_{0})\varphi(s, \lambda) + f(s)]w(s)ds, \qquad (3.6)$$

for some constants $\alpha_1(\lambda)$, $\alpha_2(\lambda)$, ..., $\alpha_n(\lambda) \in \mathbb{C}$. Hence

$$\begin{aligned} |\varphi(t,\lambda) &\leq \sum_{j=1}^{n} (|\alpha_{j}(\lambda)| |\varphi_{j}(t,\lambda_{0})|) + \sum_{j,k=1}^{n} |\xi^{jk}| |\varphi_{j}(t,\lambda_{0})| \\ &\times \int_{a}^{t} \overline{\varphi_{k}^{+}(t,\lambda_{0})} [|\lambda-\lambda_{0}| |\varphi(s,\lambda)| + |f(s)|] w(s) ds. \end{aligned}$$
(3.7)

Since $f \in L^p_w(a, b)$ and $\varphi^+_k(., \lambda_0) \in L^q_w(a, b)$ for some $\lambda_0 \in \mathbb{C}$, then $\varphi^+_k(., \lambda_0)f \in L^1_w(a, b)$ for some $\lambda_0 \in \mathbb{C}$ and k = 1, ..., n. Setting

$$C_{j}(\lambda) = \sum_{j,k=1}^{n} |\xi^{jk}| \int_{a}^{t} \left| \overline{\varphi_{k}^{+}(s,\lambda_{0})} \right| |f(s)| w(s) ds, \quad j = 1, 2, ..., n,$$
(3.8)

then

$$\begin{aligned} |\varphi(t,\lambda)| &\leq \sum_{j=1}^{n} (|\alpha_{j}(\lambda)| + C_{j}(\lambda))|\varphi_{j}(t,\lambda_{0})| + |\lambda - \lambda_{0}| \\ &\times \sum_{j,\,k=1}^{n} |\xi^{jk}| |\varphi_{j}(t,\lambda_{0})| \int_{a}^{t} \left|\overline{\varphi_{k}^{+}(s,\lambda_{0})}\right| |\varphi(s,\lambda)| w(s) ds. \end{aligned}$$
(3.9)

On application of the Cauchy-Schwartz inequality to the integral in (3.9), we get

$$\begin{aligned} |\varphi(t,\lambda)| &\leq \sum_{j=1}^{n} (|\alpha_{j}(\lambda)| + C_{j}(\lambda))|\varphi_{j}(t,\lambda_{0})| \\ &+ |\lambda - \lambda_{0}|\sum_{j,k=1}^{n} |\xi^{jk}| ||\varphi_{j}(t,\lambda_{0})| \\ &\times \left(\int_{a}^{t} \left|\overline{\varphi_{k}^{+}(t,\lambda_{0})}\right|^{q} w(s) ds\right)^{\frac{1}{q}} \left(\int_{a}^{t} |\varphi(s,\lambda)|^{p} w(s) ds\right)^{\frac{1}{p}}. \end{aligned} (3.10)$$

From the inequality $(u + v)^p \le 2^{(p-1)}(u^p + v^p)$, it follows that

$$\begin{split} |\varphi(t,\lambda)|^{p} &\leq 2^{2(p-1)} \sum_{j=1}^{n} (|\alpha_{j}(\lambda)| + C_{j}(\lambda))^{p} |\varphi_{j}(t,\lambda_{0})|^{p} \\ &+ 2^{2(p-1)} |\lambda - \lambda_{0}|^{p} \sum_{j,k=1}^{n} |\xi^{jk}|^{p} |\varphi_{j}(t,\lambda_{0})|^{p} \\ &\times \left(\int_{a}^{t} \left| \overline{\varphi_{k}^{+}(t,\lambda_{0})} \right|^{q} w(s) ds \right)^{\frac{p}{q}} \left(\int_{a}^{t} |\varphi(s,\lambda)|^{p} w(s) ds \right). \tag{3.11}$$

By hypothesis there exist positive constant K_0 and K_1 such that

$$\|\varphi_j(t,\lambda_0)\|_{L^p_w(a,b)} \le K_0 \text{ and } \|\overline{\varphi_k^+(s,\lambda_0)}\|_{L^q_w(a,b)} \le K_1,$$
 (3.12)

j, k = 1, 2, ..., n. Hence

$$\begin{split} |\varphi(t,\,\lambda)|^{p} &\leq 2^{2(p-1)} \sum_{j=1}^{n} (|\alpha_{j}(\lambda)| + C_{j}(\lambda))^{p} |\varphi_{j}(t,\,\lambda_{0})|^{p} \\ &+ 2^{2(p-1)} K_{1}^{p} |\lambda - \lambda_{0}|^{p} \sum_{j,\,k=1}^{n} |\xi^{jk}|^{p} |\varphi_{j}(t,\,\lambda_{0})|^{p} \end{split}$$

$$\times \left(\int_{a}^{t} |\varphi(s, \lambda)|^{p} w(s) ds \right).$$
(3.13)

Integrating the inequality in (3.13) between *a* and *t*, we obtain

$$\int_{0}^{t} |\varphi(s,\lambda)|^{p} w(s) ds \leq K_{2} + \left(2^{2(p-1)} |\lambda-\lambda_{0}|^{p} \sum_{j,k=1}^{n} |\xi^{jk}|^{p}\right)$$
$$\times \int_{a}^{t} |\varphi_{j}(s,\lambda_{0})|^{p} \left(\int_{a}^{s} |\varphi(x,\lambda)|^{p} w(x) dx\right) w(s) ds, \quad (3.14)$$

where

$$K_{2} = 2^{2(p-1)} K_{0}^{p} \sum_{j=1}^{n} (|\alpha_{j}(\lambda)| + C_{j}(\lambda))^{p}.$$
(3.15)

Now, on using Gronwall's inequality, it follows that

$$\int_{0}^{t} |\varphi(s,\lambda)|^{p} w(s) ds \leq K_{2}$$

$$\exp\left(2^{2(p-1)} K_{1}^{p} |\lambda-\lambda_{0}|^{p} \sum_{j,k=1}^{n} |\xi^{jk}|^{p} \int_{a}^{t} |\varphi_{j}(s,\lambda_{0})|^{p} w(s) ds\right). \quad (3.16)$$

Since, $\varphi_j(t, \lambda_0) \in L^p_w(a, b)$ for some $\lambda_0 \in \mathbb{C}$ and for j = 1, ..., n, then $\varphi(t, \lambda) \in L^p_w(0, b)$ for all $\lambda \in \mathbb{C}$.

Remark. Lemma 3.5 also holds if the function f is bounded on [a, b).

Lemma 3.6. Let $f \in L^p_w(0, b)$. Suppose for some $\lambda_0 \in \mathbb{C}$:

(i) All solutions of $(\tau^+ - \overline{\lambda}I)\phi^+ = 0$ are in $L^q_w(a, b)$.

(ii) $\varphi_j(t, \lambda_0)$, j = 1, ..., n are bounded on [a, b).

Then all solutions $\varphi(t, \lambda)$ of the equation (3.3) are in $L^p_w(a, b)$ for all $\lambda \in \mathbb{C}$.

4. L_w^p -boundedness

In this section, we shall consider the question of determining conditions under which all solutions of the equation (1.1) are in $L^p_w(a, b) \cap L^\infty(a, b)$.

Suppose there exist non-negative continuous functions k(t) and h(t) on $[a, b), a < b \le \infty$ such that the function F(t, y) in (1.1) satisfies:

$$|F(t, y)| \le k(t) + h(t)|y(t)|^{\sigma}$$
 for $t \ge 0, -\infty < y(t) < \infty$, (4.1)

for some $\sigma \in [0, 1]$; see [1, 8] and [18-19].

In the sequel, we shall require the following nonlinear integral inequality which generalizes those integral inequalities used in [1], [7-9], and [13-18].

Lemma 4.1 (cf. [8, 17]). Let u(t) and v(t) be two non-negative functions, locally integrable on the interval I = [a, b]. Then the inequality

$$u(t) \le c + \int_0^t v(s)u^{\sigma}(s)dx, \quad c > 0,$$

for $0 \le \sigma < 1$, implies that

$$u(t) \le \left(c^{(1-\sigma)} + (1-\sigma)\int_0^t v(s)ds\right)^{\frac{1}{(1-\sigma)}}.$$
(4.2)

In particular, if $v(s) \in L^{1}(a, b)$, then (4.2) implies that u(t) is bounded.

Theorem 4.2. Suppose that F satisfies (4.1) with $\sigma = 1$, and that

- (i) $S(\tau) \cup S(\tau^+) \subset L^{\infty}(0, b)$ for some $\lambda_0 \in \mathbb{C}$,
- (ii) k(t) and $h(t) \in L^1_w(0, b)$ for all $t \in [a, b)$.

Then all solutions $\varphi(t, \lambda)$ of the equation (1.1) are bounded on [a, b) for all $\lambda \in \mathbb{C}$.

Proof. Note that (4.1) and Lemma 3.6 implies that all solutions are defined on

[*a*, *b*); see [2, Chapter 3], [7-9] and [13] and let { $\varphi_1(t, \lambda_0)$, $\varphi_2(t, \lambda_0)$, ..., $\varphi_n(t, \lambda_0)$ }, { $\varphi_1^+(s, \lambda_0)$, { $\varphi_2^+(s, \lambda_0)$, ..., $\varphi_n^+(s, \lambda_0)$ } be two sets of linearly independent solutions of the equations (3.1) and (3.2), respectively, and let $\varphi(t, \lambda)$ be any solution of (1.1) on [*a*, *b*), then by Lemma 3.1, we have

$$\begin{split} \varphi(t,\,\lambda) &= \sum_{j=1}^{n} \alpha_{j}(\lambda) \varphi_{j}(t,\,\lambda_{0}\,) + \frac{1}{i^{n}} (\lambda - \lambda_{0}\,) \sum_{j,\,k=1}^{n} \xi^{jk} \varphi_{j}(t,\,\lambda_{0}\,) \\ &\times \int_{a}^{t} \overline{\varphi_{k}^{+}(s,\,\lambda_{0}\,)} F(s,\,y) w(s) ds. \end{split}$$

Hence

$$\begin{aligned} |\varphi(t,\lambda)| &\leq \sum_{j=1}^{n} |\alpha_{j}(\lambda)| |\varphi_{j}(t,\lambda_{0})| + |\lambda-\lambda_{0}| \sum_{j,k=1}^{n} |\xi^{jk}| |\varphi_{j}(t,\lambda_{0})| \\ &\times \int_{a}^{t} \left| \overline{\varphi_{k}^{+}(s,\lambda_{0})} \right| \langle k(s) + h(s) |\varphi_{j}(s,\lambda)| \rangle w(s) ds. \end{aligned}$$

$$(4.3)$$

Since $k(s) \in L^1_w(a, b)$ and $\varphi^+_k(s, \lambda_0) \in L^\infty_w(a, b), k = 1, 2, ..., n$ for some $\lambda_0 \in \mathbb{C}$, we have $\varphi^+_k(s, \lambda_0)k(s) \in L^1_w(a, b)$ for some $\lambda_0 \in \mathbb{C}$. Setting

$$C_{j} = |\lambda - \lambda_{0}| \sum_{j,k=1}^{n} |\xi^{jk}| \int_{a}^{t} |\overline{\varphi_{k}^{+}(s,\lambda_{0})}| k(s)w(s)ds, \quad j = 1, 2, ..., n.$$
(4.4)

Then

$$\begin{aligned} |\varphi(t,\lambda)| &\leq \sum_{j=1}^{n} (C_{j} + |\alpha_{j}(\lambda)|) |\varphi_{j}(t,\lambda_{0})| \\ &+ |\lambda - \lambda_{0}| \sum_{j,k=1}^{n} |\xi^{jk}| |\varphi_{j}(t,\lambda_{0})| \\ &\times \int_{0}^{t} \left| \overline{\varphi_{k}^{+}(t,\lambda_{0})} \right| h(s) |\varphi(s,y)| w(s) ds. \end{aligned}$$

$$(4.5)$$

By hypothesis, there exist positive constants K_0 and K_1 such that

$$|\varphi_j(t,\lambda_0)| \le K_0$$
 and $|\overline{\varphi_k^+(t,\lambda_0)}| \le K_1$ for all $t \in [0, b)$,

j, k = 1, ..., n. Hence

$$\begin{aligned} |\varphi(t,\lambda_0)| &\leq K_0 \sum_{j=1}^n (C_j + |\alpha_j(\lambda)|) + K_0 K_1 |\lambda - \lambda_0| \\ &\times \sum_{j,\,k=1}^n |\xi^{jk}| \int_0^t h(s) |\varphi(s,\lambda)| w(s) ds. \end{aligned}$$
(4.6)

Applying Gronwall's inequality to (4.6) and using (ii), we deduce that $|\varphi(t, \lambda)|$ is finite and hence the result.

Theorem 4.3. Suppose that F satisfies (4.1) with $\sigma = 1$, and that

(i) S(τ) ∪ S(τ⁺) ⊂ L_w[∞](a, b) for some λ₀ ∈ C,
(ii) k(t) and h(t) ∈ L_w^q(a, b) for all t ∈ [a, b).

Then all solutions $\varphi(t, \lambda)$ of the equation (1.1) are in $L^p_w(a, b)$ for all $\lambda \in \mathbb{C}$.

Proof. The proof follows on applying the Cauchy-Schwartz inequality for the integral in (4.5) as:

$$\int_{a}^{t} \left| \overline{\varphi_{k}^{+}(t, \lambda_{0})} \right| h(s) \left\| \varphi(s, \lambda) \right| w(s) ds$$

$$\leq \left(\int_{a}^{t} \left| \overline{\varphi_{k}^{+}(s, \lambda_{0})} \right|^{q} \left| h(s) \right|^{q} w(s) ds \right)^{\frac{1}{q}} \left(\int_{a}^{t} \left| \varphi(s, \lambda) \right|^{p} w(s) ds \right)^{\frac{1}{p}}, \quad (4.7)$$

and hence the result. We refer to [1] and [16] for more details.

Corollary 4.4. Suppose that |F(t, y)| = h(t)|y(t)|, $S(\tau) \subset L^p_w(a, b)$, $S(\tau^+) \subset L^q_w(a, b)$ for some $\lambda_0 \in \mathbb{C}$ and $h(t) \in L^p_w(a, b)$ for some $p \ge 2$, $t \in [a, b)$. Then all solutions $\varphi(t, \lambda)$ of the equation (1.1) are in $L^p_w(a, b)$ for all $\lambda \in \mathbb{C}$.

Corollary 4.5. Suppose that for some $\lambda_0 \in \mathbb{C}$, $S(\tau) \subset L^p_w(0, b)$, $S(\tau^+) \subset L^q_w(a, b)$ and $k(t) \in L^p_w(a, b)$. Then all solutions of the equations $[\tau - \lambda w]\varphi$ = wk are in $L^p_w(a, b)$ for every complex number $\lambda \in \mathbb{C}$. Next, for considering (4.1) with $0 \le \sigma < 1$, we have the following.

Theorem 4.6. Suppose that F(t, y) satisfies (4.1) with $0 \le \sigma < 1$, $S(\tau) \bigcup S(\tau^+)$

$$\subset L^{\alpha}_{w}(a, b), \alpha \geq 2$$
 for some $\lambda_{0} \in \mathbb{C}$ and that

(i) $k(t) \in L^{\alpha}_{w}(a, b)$ for all $t \in [a, b)$,

(ii)
$$h(t) \in L_w^{\alpha/(\alpha-1-\sigma)}(a, b)$$
 for all $t \in [a, b)$.

Then all solutions $\varphi(t, \lambda)$ of the equation (1.1) are in $L^{\alpha}_{w}(a, b), \alpha \geq 2$ for all $\lambda \in \mathbb{C}$.

Proof. For $0 \le \alpha < 1$, the proof is the same up to (1.1). In this case (4.5) becomes

$$\begin{aligned} |\varphi(t,\lambda)| &\leq \sum_{j=1}^{n} (C_j + |\alpha_j(\lambda)|) |\varphi_j(t,\lambda_0)| + |\lambda - \lambda_0| \\ &\times \sum_{j,\,k=1}^{n} |\xi^{jk}| |\varphi_j(t,\lambda_0)| \int_a^t \left| \overline{\varphi_k^+(s,\lambda_0)} h(s) |\varphi(s,\lambda)|^\sigma w(s) ds. \end{aligned}$$
(4.8)

Applying the Cauchy-Schwartz inequality to the integral in (4.8) we get

$$\int_{0}^{t} \left| \overline{\varphi_{k}^{+}(s, \lambda_{0})} \right| h(s) \| \varphi(s, \lambda) \|^{\sigma} w(s) ds,$$

$$\leq \left(\int_{a}^{t} \left| \overline{\varphi_{k}^{+}(s, \lambda_{0})} \right|^{\mu} |h(s)|^{\mu} w(s) ds \right)^{\frac{1}{\mu}} \left(\int_{a}^{t} |\varphi(s, \lambda)|^{\alpha} w(s) ds \right)^{\frac{\sigma}{\alpha}}, \tag{4.9}$$

where $\mu = \alpha/(\alpha - \sigma), \alpha \ge 2$. Since $\varphi_k^+(t, \lambda_0) \in L_w^{\alpha}(a, b)$ for some $\lambda_0 \in \mathbb{C}$, k = 1, 2, ..., n and $h(s) \in L_w^{\alpha/(\alpha - 1 - \sigma)}(a, b)$ by hypothesis, then we have $\varphi_k^+(t, \lambda_0|h(t)|) \in L_w^{\mu}(a, b)$, for some $\lambda_0 \in \mathbb{C}, k = 1, 2, ..., n$. Using this fact and (4.9), we obtain

$$|\varphi(t,\lambda)| \leq \sum_{j=1}^{n} (C_j + |\alpha_j(\lambda)|)\varphi_j(t,\lambda_0)| + K_0|\lambda - \lambda_0|$$

$$\times \sum_{j,k=1}^{n} |\xi^{jk}| ||\phi_{j}(t,\lambda_{0})| \left(\int_{a}^{t} |\phi(s,\lambda)|^{\alpha} w(s) ds \right)^{\frac{\sigma}{\alpha}}, \quad (4.10)$$

where $K_0 = \|\varphi_k^+(t, \lambda_0)h(t)\|_{\mu}, \|.\|_{\mu}$ denotes the norm in $L_w^{\mu}(a, b)$. The inequality

$$(u+v)^{\alpha} \le 2^{(\alpha-1)}(u^{\alpha}+v^{\alpha})$$

implies that

$$\begin{split} |\varphi(t,\lambda)|^{\alpha} &\leq 2^{2(\alpha-1)} \sum_{j=1}^{n} \left(C_{j}^{\alpha} + |\alpha_{j}(\lambda)|^{\alpha} \right) |\varphi_{j}(t,\lambda_{0})|^{\alpha} + 2^{2(\alpha-1)} K_{0}^{\alpha} \\ &\times |\lambda - \lambda_{0}|^{\alpha} \sum_{j,\,k=1}^{n} |\xi^{jk}|^{\alpha} |\varphi_{j}(t,\lambda_{0})|^{\alpha} \left(\int_{a}^{t} |\varphi(s,\lambda)|^{\alpha} w(s) ds \right)^{\sigma}. \end{split}$$
(4.11)

Setting $K_1 = \int_a^t |\varphi_j(t, \lambda_0)|^{\alpha} w(s) ds$ for some $\lambda_0 \in \mathbb{C}$, j = 1, ..., n and integrating (4.11), we obtain

$$\int_{0}^{t} |\varphi(t,\lambda)|^{\alpha} w(s) ds \leq K_{2} + 2^{2(\alpha-1)} K_{0}^{\alpha} |\lambda-\lambda_{0}|^{\alpha} \\ \times \sum_{j,\,k=1}^{n} |\xi^{jk}|^{\alpha} \int_{a}^{t} |\varphi_{j}(s,\lambda_{0})|^{\alpha} \left[\left(\int_{a}^{s} |\varphi(x,\lambda)|^{\alpha} w(x) dx \right)^{\sigma} \right] w(s) ds, \qquad (4.12)$$

where $K_2 = 2^{2(\alpha-1)} \sum_{j=1}^{n} (C_j^{\alpha} + |\alpha_j(\lambda)|^{\alpha}) K_1.$

An application of Lemma (4.1) for $0 \le \sigma < 1$ and of Gronwall's inequality to (4.12) for $\sigma = 1$, yields the result.

Theorem 4.7. Suppose that F satisfies (4.1) with $0 \le \sigma < 1$, $S(\tau) \bigcup S(\tau^+) \subset L^{\alpha}_w(0, b) \cap L^{\infty}(a, b), \alpha \ge 2$ for some $\lambda_0 \in \mathbb{C}$ and that

Then all solutions $\varphi(t, \lambda)$ of the equation (1.1) are in $L^{\alpha}_{w}(a, b) \cap L^{\infty}(a, b)$ for all

 $\lambda \in \, \mathbb{C}.$

Proof. Since $S(\tau) \cup S(\tau^+) \subset L^{\alpha}_w(a, b) \cap L^{\infty}(a, b)$ for some $\lambda_0 \in \mathbb{C}$, then $\varphi_j(s, \lambda_0) \in L^p_w(a, b)$ and $\varphi^+_k(t, \lambda_0) \in L^q_w(a, b)$, j, k = 1, ..., n for every $p, q \ge 2$ and for some $\lambda_0 \in \mathbb{C}$.

First, suppose that $h(t) \in L^p_w(a, b)$ for some $p, 1 \le p \le 2$. Setting

$$K_0 = \|\varphi_j(t, \lambda_0)\|_{\infty}$$
 and $K_1 = \|\overline{\varphi_k^+(s, \lambda_0)}\|_{\infty}$, $j, k = 1, 2, ..., n$, (4.13)

we have from (4.8),

$$\begin{aligned} |\varphi(t,\,\lambda)| &\leq K_0 \sum_{j=1}^n (C_j + |\alpha_j(\lambda)|) + K_0 K_1 |\lambda - \lambda_0| \\ &\times \sum_{j,\,k=1}^n |\xi^{jk}| \int_a^t h(s) |\varphi(s,\,\lambda)|^\sigma w(s) ds. \end{aligned}$$

Since $h(t) \in L^p_w(a, b)$ for some $p, 1 \le p \le 2$, then Lemma 4.1 together with Gronwall's inequality implies that $\varphi(t, \lambda) \in L^\infty(a, b)$ for all $\lambda \in \mathbb{C}$, i.e., there exists a positive constant K_2 such that

$$|\varphi(t,\lambda)| \le K_2 \text{ for all } \lambda \in \mathbb{C}, t \in [a,b].$$
 (4.14)

From (4.8) and (4.14), we obtain

$$|\varphi(t, \lambda)| \le K_0 \sum_{j=1}^n (C_j + |\alpha_j(\lambda)| + K_3) |\varphi_j(t, \lambda_0)|$$

for an appropriate constant K_3 . Since $\varphi_j(t, \lambda_0) \in L^2_w(a, b)$ for some $\lambda_0 \in \mathbb{C}$, this proves $\varphi(t, \lambda) \in L^p_w(a, b)$ for all $\lambda \in \mathbb{C}$, $1 \le p \le 2$.

Next, suppose that $h(t) \in L^p_w(a, b)$ for some $p, 2 . Define <math>q \ge 2$ by

$$\frac{1}{q} = \frac{\alpha - \sigma}{\alpha} - \frac{1}{p}$$

(which is possible because of the restriction on q).

Thus $\varphi_j(t, \lambda_0)\varphi_k^+(s, \lambda_0) \in L_w^q(a, b)$ and $\varphi_k^+(s, \lambda_0)h(t) \in L_w^\mu(a, b)$, $\mu = \frac{\alpha}{\alpha - \sigma}, \quad \alpha \ge 2; \quad j, k = 1, ..., n$. Repeating the same argument from (4.8) to (4.12) in the proof of Theorem 4.6, we obtain that $\varphi(t, \lambda) \in L_w^\alpha(a, b)$. Returning to (4.9), we find that the integral on the left-hand side is bounded, which implies by (4.8) that

$$|\varphi(t,\lambda)| \leq \sum_{j=1}^{n} (C_j + |\alpha_j(\lambda)| + K_3) |\varphi_j(t,\lambda_0)|$$

for an appropriate constant K_3 . Since $\varphi_j(t, \lambda_0) \in L^{\infty}(a, b)$, this completes the proof. We refer to [1], [7-9] and [17, 19] for more details.

Acknowledgement

I am grateful to the PAAET and KFAS in Kuwait for supporting the scientific researches and encouragement to the researchers.

References

- R. P. Agarwal, A note on Grace and Lalli, s paper, J. Math. Anal. Appl. 86 (1982), 471-475.
- [2] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Oxford University Press, 1987.
- [3] W. N. Everitt, The number of integrable-square solutions of products of differential expressions, Proc. Royal Soc. of Edinburgh 76A (1977), 215-226.
- [4] W. N. Everitt and D. Race, Some remarks on linear ordinary quasi-differential expressions, Proc. London Math. Soc. 54(3) (1987), 300-320.
- [5] H. Frentzen, Quasi-differential operators in L^p spaces, Bull. London Math. Soc. 31(3) (1999).
- [6] S. R. Grace and B. S. Lalli, Asymptotic behavior of certain second order integrodifferential equations, J. Math. Anal. Appl. 76 (1980), 84-90.

SOBHY EL-SAYED IBRAHIM

- [7] S. E. Ibrahim, Boundedness for solutions of general ordinary quasi-differential equations, J. Egypt. Math. Soc. 2 (1994), 33-44.
- [8] S. E. Ibrahim, On L_w^2 -quasi derivatives for solutions of perturbed general quasidifferential equations, Czech. Math. J. 49(124) (1999), 877-890.
- [9] S. E. Ibrahim, On the boundedness of solutions for products of quasi-integro differential equations, IJMMS 10(16) (2003), 639-659.
- [10] S. E. Ibrahim, On the boundary conditions for products of general quasi-differential operators in direct sum spaces, IJAM 22(1) (2009), 55-87.
- [11] S. E. Ibrahim, On the product of self-adjoint Sturm-Liouville differential operators in direct sum spaces, J. Inform. Math. Sci. 1 (2012), 93-109.
- [12] S. E. Ibrahim, The regularly solvable operators in L^p spaces, Fundamental J. Math. Math. Sci. 2(1) (2015), 1-28.
- B. S. Lalli, On boundedness of solutions of certain second-order differential equations, J. Math. Anal. Appl. 25 (1969), 182-188.
- [14] J. S. W. Wong, Square integrable solutions of perturbed linear differential equations, Proc. Royal Soc. of Edinburgh 73A (1974/75), 251-254.
- [15] E. H. Yang, On asymptotic behavior of certain second order integro-differential equations, Proc. Amer. Math. Soc. 90 (1984), 271-276.
- [16] E. H. Yang, Asymptotic behavior of certain second order integro-differential equations, J. Math. Anal. Appl. 106 (1985), 132-139.
- [17] A. Zettl, Square integrable solutions of Ly = f(t, y), Proc. Amer. Math. Soc. 26 (1970), 635-639.
- [18] A. Zettl, Perturbation of the limit circle case, Quart. J. Math. Oxford 26(3) (1975), 355-360.
- [19] A. Zettl, The limit point and limit circle cases for polynomials in differential expressions, Proc. Royal Soc. of Edinburgh 72A (1975), 219-224.
- [20] A. Zettl, Formally self-adjoint quasi-differential operators, Rocky Mountain J. Math. 5 (1975), 453-474.