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Abstract 

In this paper, we characterize the pedal pure non-null polygon of a pure 

non-null polygon in Lorentzian plane. In addition, we study the pure 

timelike triangles and the relationships with its orthic triangle. Finally, we 

show a family of convex pure timelike trapezoids whose pedal polygon 

vertices are collinear points. 

1. Introduction 

Archimedes discovered the center of gravity of a triangle, centroid, and he was 
the first to consider the so-called medial triangle, whose vertices are the midpoints of 
the sides of a given triangle, [3]. 
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Orthic triangle is the answer to a famous optimization problem in plane 

geometry, the Fagnano’s Problem, [3]. 

These triangles are only two examples of pedal triangles of a point P with 

respect to a given triangle in Euclidean geometry. 

It is well known that polygons in Lorentzian plane have some properties of their 

own that do not agree with those of Euclidean geometry, [1], [2]. 

The aim of this paper is to characterize the pedal pure non-null polygon of a 

pure timelike polygon as pure spacelike polygon in Lorentzian plane. 

In order to do it, we study the pedal triangles of pure triangles. We show 

relationships between an isosceles pure timelike triangle and its orthic triangle, 

involving angles (middle and not middle), Lorentzian sides and circles. In addition, 

we find a family of convex pure timelike trapezoids whose pedal polygon vertices 

are collinear points. 

2. Preliminaries 

Let x and y be two vectors in the vector space .2R  As it is well known, [1], the 

Lorentzian inner product of x and y is defined by 

., 2211 yxyxyx −=  

Thus, the square 2ds  of an element of arc-length is given by 

.2
2

2
1

2 dxdxds −=  

The space 2R  equipped with this metric is called the bidimensional Lorentzian 

space. We write 2L  instead of ( ).,2 dsR  

We say that a vector 2Lx ∈  is timelike if ,0, <xx  spacelike if 0, >xx  

and null if .0, =xx  The null vectors also said to be lightlike. 
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In ,2L  let ( )0,11 =e  and ( ).1,02 =e  A timelike vector x is future-pointing 

(resp., past-pointing) if ( ).0,,resp.0, 22 >< exex  

Let x be a vector in ,2L  then xxx ,=  is called the Lorentzian norm of x. 

We say that x is orthogonal to y if .0,0, ≠≠= yxyx  

When x and y are future-pointing timelike vectors, the angle α  (oriented or 

unoriented) for x and y satisfies cosh .
.
,

yx
yx

−=α  

Let P be a point in Lorentzian plane and .0>r  The curve ( )2,; rPQPQQ =
→→

 

has two branches, ,−+ CC y  and each of them is called the Lorentzian circle of 

center P and radius r. If ( ),, 21 ppP =  the corresponding equation is ( ) −− 2
11 px  

( ) .22
22 rpx =−  

In classical way, [ ]CBAT ,,  denotes the triangle with vertices A, B, C which 

are non collinear points in Lorentzian plane. According to Birman and Nomizu, [1], 

by a pure timelike triangle, we mean a triangle [ ]CBAT ,,  such that ,,
→→

BCAB  and 

→
AC  are timelike vectors. We will call the middle vertex to the vertex B such that the 

angle lB  between 
→

AB  and 
→

BC  looks more like the exterior angle to Euclid. That is, 

the vertex B is a middle vertex of [ ]CBAT ,,  if 
→

AB  and 
→

BC  have the same 

timelike orientation. 

In [2], for each ,1≥m  it is defined a polygonal path of order m as a set of 

points of the form [ ] ,,,, 12110110 ++ = mmm PPPPPPPPP ∪"∪∪…  with the 

points 2
110 ,,, LPPP m ∈+…  as vertices and the named segments as sides. If the 

polygonal path [ ]110 ,,, +mPPP …  is closed and if no three of its vertices lie on a 

line, then it is called a polygon and it is denoted [ ].,,, 10 mPPP …P  
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A polygon [ ]mPPP ,,, 10 …PP =  is said to be pure spacelike, pure timelike or 

pure lightlike if every side of P is spacelike, timelike or lightlike, respectively. 

Let us recall that the polygon with at most two different vertices is usually 

called a degenerated polygon. In what follows, we will consider non degenerated 

polygons. 

3. Pedal Triangles in Lorentzian Plane 

In similar way to Euclidean geometry, we will define pedal triangles in 

Lorentzian plane. 

Definition. 1 Let [ ]CBATT ,,=  be a triangle in Lorentzian plane, the pedal 

triangle PT  of a point P is the triangle whose vertices ,, BA ′′  and C′  are the 

orthogonal projections of P on the lines that contains the sides AB, BC, and AC, 

respectively. 

 

Figure 1. Pure timelike triangle [ ]CBAT ,,  and its pedal triangle [ ].,, CBATP ′′′  
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3.1. Pedal triangles of pure triangles 

We will characterize the pedal pure triangle of a pure triangle in Lorentzian 
plane. 

Theorem 2. Let [ ]CBATT ,,=  be a triangle and P a point in Lorentzian 

plane. 

(a) If T is pure timelike triangle then its pedal triangle PT  is: 

(i) pure timelike if and only if ,,
→→

APBP  and 
→

CP  are spacelike vectors. 

(ii) pure spacelike if and only if ,,
→→

APBP  and 
→

CP  are timelike vectors.  

(b) If T is pure spacelike triangle then its pedal triangle PT  is: 

(i) pure spacelike if and only if ,,
→→

APBP  and 
→

CP  are timelike vectors. 

(ii) pure timelike if and only if ,,
→→

APBP  and 
→

CP  are spacelike vectors. 

 

Figure 2. Set of points P for which T and PT  are pure timelike triangles. 
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Proof. (a) Without loss of generality, we consider the pure timelike triangle 

[ ]CBATT ,,=  with vertices ( ) ( ) ( ) ,0,,and0,0,, 12121 >==−= accCBaaA  

.0,0,0 212 >>> cca  

We have ( ) ( ) ( ).,and,,,, 22112121 acacACccBCaaAB +−==−=
→→→

 Hence  

( ) ( ) ,, 2
11

2
22

22
1

2
2

2 acacACaaAB −−+=−=
→→

 and .2
1

2
2

2 ccBC −=
→

 

Let x
a
ayLA

1

2: −=  be the line which contains the side AB of T. In order to 

determine the orthogonal projection of P on the line ,, ALA ′  we find the 

perpendicular line to AL  that passes through .,1:,
22

1 →→
+−=′ BPBA

a
x

a
ayLP A  

Then, 
















−=′

→→

→

→→

→
BPBA

AB

a
BPBA

AB

a
A ,,,

2

2

2

1  (1) 

is the intersection of AL  and .AL′  

Analogously, we find :B′  

,,,,
2

2

2

1
















−−=′

→→

→

→→

→
BPBC

BC

c
BPBC

BC

c
B  (2) 

and 

( ),, 21 ccC ′′=′  (3) 

with  

( ) ,,
2

11
1221

2

22
1

→→

→→

−
−+

+
=′ BPAC

AC

accaca
AC

acc  
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 and 

( ) .,
2

22
1221

2

11
2

→→

→→

+
−+

−
=′ BPAC

AC

accaca
AC

acc  

Then, we have 

( ) ,,with,,
2

1

2

1
121

→→

→

→

→

→
+−=′′′=′′ BPBA

AB

a
BC

BC

c
xxxBA  

;,
2

2

2

2
2

→→

→

→

→
−−=′ BPBA

AB

aBC
BC

cx  

( ) ( ) ( ) ( ) ,,with,,
2

1

2

11

2

122122
121

→→

→

→

→→

→
+

−−
+

++
=′′′=′′ BPBC

BC

cAC
AC

ac

AC

cacaacyyyCB  

( ) ( ) ( ) ;,
2

2

2

22

2

122111
2

→→

→

→

→→
+

+−
+

+−
=′ BPBC

BC

cAC
AC

ac

AC

cacaacy  

( ) ( ) ( ) ( ) ,,with,,
2

1

2

11

2

122122
121

→→

→

→

→→

→
+

−−
+

++
=′′′=′′ BPBA

AB

aAC
AC

ac

AC

cacaaczzzCA  

( ) ( ) ( ) .,
2

2

2

22

2

122111
2

→→

→

→

→→
−

+−
+

+−
=′ BPBA

AB

aAC
AC

ac

AC

cacaacz  

Since 

* ( ) ( ),, 2
1

2
2

22

2
1221 pp

BABC

cacaBABA −
+

=′′′′
→→

→→
 then 

→
′′BA  is timelike vector 

(resp., spacelike vector) if and only if ( ),0.,resp,0 2
2

2
1

2
2

2
1 <−>− pppp  is that 
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to say that 
→

BP  is spacelike vector (resp., timelike vector). 

* ( ) ( )[ ] [( ) ( ) ],, 2
22

2
11

22

2
221112 cpcp

BCAC

caccacCBCB −−−
+−−−

=′′′′
→→

→→
 

then 
→
′′CB  is timelike vector (resp., spacelike vector) if and only if ( ) −− 2

11 cp  

( ) ( ( ) ( ) ) ,0.,resp0 2
22

2
11

2
22 <−−−>− cpcpcp  is that to say that 

→
CP  is 

spacelike vector (resp., timelike vector). 

* ( ) ( )[ ] [( ) ( ) ],, 2
22

2
11

22

2
112221 apap

ABAC

acaacaCACA +−−
−++−

=′′′′
→→

→→
 

then 
→
′′CA  is timelike vector (resp., spacelike vector) if and only if ( ) −− 2

11 ap  

( ) ( ( ) ( ) ),0.,resp0 2
22

2
11

2
22 <+−−>+ apapap  is that to say 

→
AP  is 

spacelike vector (resp, timelike vector). 

(b) The condition (b) is followed by symmetry from the condition (a).  

3.2. Pedal triangles of isosceles pure timelike triangles 

We will show same properties of pedal triangles of isosceles pure timelike 

triangles. 

Theorem 3. Let [ ]CBATT ,,=  be an isosceles pure timelike triangle and +C  

the Lorentzian circle in which T is inscribed. 

(i) If P lies in +C  or ,−C  then the vertices ,, BA ′′  and C′  of the pedal triangle 

PT  are collinear points. 

(ii) If PT  is pure timelike triangle, then PT  is isosceles triangle with middle 

vertex .C′  
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When ,, BA ′′  and C′  are collinear points, they determine the so-called Simson 

line. 

 

Figure 3. Simson line. 

Proof. Without loss of generality, we suppose that ( ) ( ),0,0,, 21 =−= BaaA  

and ( ),, 21 aaC =  with .0,0 21 >> aa  Then by (1), (2) and (3), we have 

,,,,
2

2

2

1
















−=′

→→

→

→→

→
BPBA

AB

a
BPBA

AB

a
A  (4) 

,,,,
2

2

2

1
















−−=′

→→

→

→→

→
BPBC

BA

a
BPBC

BA

a
B  (5) 

( )., 21 paC =′  (6) 

(i) Since [ ]CBATT ,,=  is an isosceles pure timelike triangle inscribed           

in ,,, BA+C  and C are points in the Lorentzian circle +C  with center 
















−

=
→

0,
2 1

2

a
BA

D  and radius .
2 1

2

a
BA
→

=ρ  In particular: 
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( ) .2 1
2
1

2
2

22
2

2
1 ρ=−⇒ρ=−ρ+ aaaaa  (7) 

Let ( )21, ppP =  be a point in +C  or in its symmetric branch. Then, 

( ) .2 1
2
1

2
2

22
2

2
1 ρ+=⇒ρ=−ρ+ ppppp  (8) 

(a) If ,02 ≠p  the line L which contains A′  and B′  is 

,
22

: 2211

1

22211

2

1 







ρ
+

+







ρ
+

+−=
papa

a
apapax

p
pyL  

and it is verified that .LC ∈′  

(b) If ,02 =p  then ρ−= 21p  and 

.
2

: 11
ρ

−=
paxL  

Thus .LC ∈′  

(ii) By computing 
→
′′CA  and ,

→
′′BC  we verified that 

→→→
′′=′′+′′ BABCCA  and    

C′  is the middle vertex.  

If H is the orthocenter of T, then HT  is called the orthic triangle. 

Theorem 4. The orthic triangle [ ]ACBTH ′′′= ,,  of an isosceles pure timelike 

triangle [ ]CBATT ,,=  is a pure timelike triangle and satisfies: 

(i) l l l2 cosh cosh cosh .B A AB A B and B C C A AB A
→ → → → →
′ ′ ′ ′ ′ ′= = =  

(ii) If ρ  and ρ′  are the radius of the circles that circumscribe to T and ,HT  

respectively, then .
2
1 ρ=ρ′  
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(iii) l l
l

l
4

4
1cosh cosh cosh 1.

22 cosh

AB
B A and C

AB A ρ

→

→
′ ′ ′= = = −  

Proof. Without loss of generality, we suppose that ( ) ( ),0,0,, 21 =−= BaaA  

and ( ) ,0,0,, 2121 >>= aaaaC  are vertices of an isosceles pure timelike triangle 

[ ].,, CBAT  By computing 








 +
= 0,

1

2
2

2
1

a
aaH  and by (4), (5) and (6), 

( ) ( ) ,
2

,
2
1 2

2
2
1

1

22
2

2
1 






 +

ρ
+

ρ
−=′ aa

a
aaaA  (9) 

( ) ( ) ,
2

,
2
1 2

2
2
1

1

22
2

2
1 






 +

ρ
−+

ρ
−=′ aa

a
aaaB  (10) 

( ).0,1aC =′  (11) 

According to Theorem 2, since ,,
→→

HBHA  and 
→

HC  are spacelike vectors, then HT  is 

a pure timelike triangle. 

(i) Since ,2 2
1

→
=ρ ABa  then 

( ) l l2 22
1 2

1
2 cosh cosh .

ρ
→ → →
′ ′ ′ ′= + ⇒ =

a
B A a a B A AB A B

a
 

Also, 

l
2 cosh .

→ → → →
′ ′ ′ ′ ′ ′= = ⇒ =B C C A a B C AB A  

(ii) By computing, .
2
ρ=ρ′  

(iii) By computing, l l l1cosh cosh .
2

→
′ ′= =B A A

AB
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Since the angle at the middle vertex C′  is equal to one half of the central angle 

for the chord ,AB ′′  [1], then l
4 42 2

2 4
2cosh 1.

2 8 2
AB AB

C ρ
ρ ρ ρ

→ → 
    ′ = − + = −       

  

  

If D is the circumcenter of T, then DT  is called the medial triangle. 

Theorem 5. The medial triangle [ ]BCATTD ′′′= ,,  of an isosceles pure 

timelike triangle [ ]CBATT ,,=  is a pure timelike triangle and satisfies: 

(i) .22

→
→→

→
→

=′′=′′=′′
ABBCCAandACBA  

(ii) l l l l l l.A A C B and C B′ ′ ′= = = =  

(iii) If ρ  and ρ ′′  are the radius of the circles that circumscribe to T and ,DT  

respectively, then .
2
1 ρ=ρ ′′  

Proof. Without loss of generality, we suppose that ( ) ( ),0,0,, 21 =−= BaaA  

and ( ) ,0,0,, 2121 >>= aaaaC  are vertices of an isosceles pure timelike triangle 

[ ].,, CBATT =  

The circumcenter of T is 















−= 0,

2 1

2

a

BA
D  and ,, CA ′′  and B′  are the 

midpoints of the sides AB, AC, and BC, respectively. 

By applying Theorem 2, [ ]BCATTD ′′′= ,,  is a pure timelike triangle. 

The conditions (i), (ii) and (iii) are followed by computing.  
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4. Pedal Polygons of pure non-null Polygons 

Definition 6. Let [ ]mPP ,,0 …PP =  be a polygon in the Lorentzian plane. The 

pedal polygon QP  of a point Q is the polygon whose vertices mPP ′′ ,,0 …  are the 

orthogonal projections of Q on the lines that contains the sides ,,10 …PP  

,and 01 mmm PPPP −  respectively. 

Theorem 7. Let [ ]mPP ,,0 …PP =  be a polygon and Q a point in Lorentzian 

plane. 

(a) If P is pure timelike polygon and 
→→

QPQP m,,0 …  are spacelike vectors 

(timelike vectors, respectively), then the pedal polygon QP  of Q is pure timelike 

(pure spacelike, respectively). 

(b) If P is pure spacelike polygon and 
→→

QPQP m,,0 …  are timelike vectors 

(spacelike vectors, respectively), then the pedal polygon QP  of Q is pure spacelike 

(pure timelike, respectively). 

Proof. This result is obtained by applying Theorem 2 to each of triangles 

[ ] .2,,1,0,,, 21 −=++ miPPPT iii "   

Theorem 8. Let [ ]mPP ,,0 …PP =  be a pure timelike polygon inscribed in a 

Lorentzian circle .C  If Q is a point of C  and ,, 20322110
→→→→

== PPPPPPPP  

,, 21
→
−

→
− = mmmm PPPP…  then the orthogonal projections mPP ′′ ,,0 …  are 

collinear points. 

Proof. This result is obtained by applying Theorem 3 to each of triangles 

[ ] .2,,1,0,,, 21 −=++ miPPPT iii "   
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Theorem 9. Let AB  be a timelike segment. Then there exists a family of convex 

pure timelike trapezoids { [ ]} ,,,, 1≥= nnnn BBAAPI  whose pedal polygons 

vertices are collinear points and such that nI  is contained inside 1+nI  for all n. 

Proof. Let L be the perpendicular line to AB  that passes through the midpoint M of 

.AB  If { },0 MLP −∈  then the pure timelike triangle [ ]BPAT ., 00 =  is an isosceles 

triangle and there exists a Lorentzian circle 1C  for which 0T  is inscribed in .1C  

Let ,, 0PA SS  and BS  be the tangent lines to 1C  at ,, 0PA  and B, respectively. 

If { } { } BAPA SSPSSA ∩∩ == 11 ,0  and { } ,01 BP SSB ∩=  then [ ,, 11 AAPI =  

]BB ,1  is a convex pure timelike trapezoid and the orthogonal projections of 1P  on 

the lines containing the sides of 1I  are points in L. 

Analogously, we determine a succession of points { } 2≥nnP  and construct a 

succession of convex pure timelike trapezoids { [ ]} 2,,, ≥= nnnn BBAAPI  such 

that the orthogonal projections of nP  on the lines containing the sides of nI  are 

points to be in L. Let us note that nI  is contained inside 1+nI  for .1≥n   
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Figure 4. Trapezoids 1I  and .2I  
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