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Abstract 

There is proposed a theoretical description of inertia effect of the heat-

flow direction, which for a finite period of time τ  maintains the same 

after the mean temperature-gradient in the heating system has been 

instantly reversed. Analyzing solutions of the heat equation with 

appropriate initial and boundary conditions the inertia time is shown to be 

proportional of the squared heat-conductor length L, that is its size in the 

temperature-gradient direction, and inversely proportional of the material 

thermal diffusivity .~: 2 ατα L  Numerical estimate made for the heat-

conductor in form of a steel bar is in satisfactory agreement with the 

experimental results. 

Introduction 

Metals, which are good heat-conductors, are often subjected to thermal 

treatments involving stages of both heating and cooling. The temperature-field 



JUMBER KHANTADZE et al. 

 

54 

distribution in a sample produced during the thermal treatment largely determines the 

required functional properties of the material. In some cases, such as hardening of 

steels, the sign of the mean temperature-gradient in the thermal system changes over 

time. 

In the hardening experiments on metal bars, one can frequently see a 

phenomenon, which we can call the heat-flow direction inertia in a sign-reversible 

temperature-gradient [1]. The essence of the effect is as follows. Let one end of the 

bar of length L made from a heat-conductive material (e.g., metal) is in thermal 

contact with a medium (e.g., air) at the temperature 0T  less than the temperature LT ′  

of another medium (e.g., boiling water), in which other end of the bar is placed, 

.0 LTT ′<  If now second end of the bar is quickly cooled by putting it down in a 

medium (e.g., cold water) with a temperature LT ′′  lower than ,, 00 LTTT ′′>  then 

within a finite period τ  heat will be released at the first end, despite the fact that the 

sign of the mean temperature-gradient in the heating system has been instantly 

reversed. 

In this paper, we propose a quantitative description of the heat-flow direction 

inertia effect. Obviously, it is associated with non-stationary thermal process 

occurring in a heat-conductor. For this reason, our consideration will be based on 

analysis of solutions of the non-stationary heat equation for appropriate combinations 

of initial and boundary conditions. 

2. Model 

Let us formulate the basic assumptions simplifying the model of unsteady heat-

flow, which will help clearly imagine the mechanism of inertia of the heat-flow 

direction. 

The first assumption is the 1D heat-flow. In other words, we suppose that the 

cross-section of the heat-conductor is infinite or its lateral surfaces are thermally 

insulated. Of course, in real conditions lateral surfaces of any heat-conductor are 

traversed by certain heat-fluxes, the magnitude and direction of which depend on the 

heat-conductor geometry, as well as the quality of the thermal insulation. But, in a 

bar-shaped sample made from a good heat-conductive material, main stream will still 

be directed along its axis. Attempt to account for lateral heat-flows may well 

complicate the mathematical part of the problem hiding physical mechanism of the 

phenomenon. In 1D approximation, when the heat-flow is directed along the Ox  axis 
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the temperature T of the heat-conducting medium has to be a function of coordinate 

x  and time .),(: txTTt =  The requested temperature-field will be determined by 

the 1D heat equation 
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This is nothing but the heat balance equation written for a heat-conductor with 

no internal heat-sources. Here ( )TT ρ=ρλ=λ ,)(  and )(Tcc =  are the thermal 

conductivity, density and specific heat of the heat-conductor material, respectively. In 

general, these parameters depend on the temperature and, therefore, coordinate and 

time. 

The second assumption is neglecting the mentioned temperature-dependencies. 

Otherwise, the basic equation (1) is nonlinear, what makes very difficult to obtain its 

analytical solutions or even requires numerical solutions. Fortunately, in most of the 

cases for good heat-conductors (metals) these temperature-dependences are weak 

except the region of low temperatures. Thus, the heat equation takes the linear form 
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where the material thermal diffusivity α  is introduced by the ratio 

 .
cρ

λ
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The parameter α  can be considered as a given constant. The initial condition for 

equation (2) is to specify the initial (at the moment )0=t  temperature-distribution 

)0,(xT  in the heat-conductor. It must be supplemented by two boundary conditions 

at heat-conductor ends 0=x  and .Lx =  

 

Figure 1. Schematic representation of bar-shaped heat-conductor. 
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Let L denotes the length of the bar-shaped heat-conductor (Figure 1), ends of 

which are located at the points 0=x  and Lx =  and freely exchange heat with 

adjacent media at temperatures 0T  and ,LT  respectively. We introduce the heat-

transfer coefficient ,Λ  the same for both ends, i.e., for simplicity we assume that 

both thermal contacts to the heat-conductor are identical. This is the third assumption 

of the model greatly simplifying calculations, as well as results analysis. In fact, 

thermal resistances of these two thermal contacts should differ from each other 

because they are placed in different media at different temperatures. However, the 

thermal resistance of a high-quality thermal contact should be small if compared with 

that of the heat-conductor itself. As we shall see below, in this case the parameter Λ  

characterizing contacts falls out of the final relations. The boundary conditions can 

be written as the requirement of the heat-flux continuity at the heat-conductor ends 
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Here we have introduced a length parameter 

 
Λ

λ
=l  (6) 

characterizing the heat-transfer at the heat-conductor ends. It is a virtual thickness of 

the boundary layer between the heat-conductor and adjacent media. As a result, we 

obtain the so-called mixed boundary conditions 
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They are heterogeneous, because in addition to the unknown function ),( txT  

and its partial derivatives with respect to the coordinate xtxT ∂∂ ),(  in their left 

parts they contain non-zero constants also in their right parts. 

The solution procedure of a linear 1D heat equation with homogeneous boundary 

conditions is well known. For this reason, it is advisable to transform the function 

),( txT  to the new unknown function ),( txΘ  determined by the heat equation with 
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homogeneous boundary conditions. This can be done adding the linear term 
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Applying the substitution (9) in boundary conditions (7) and (8), we can see that they 

are transformed to the homogeneous forms 
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while the initial condition takes the following form: 
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As for the new unknown function, it will satisfy the equation of same form 
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since the linear heat equation contains only the first-order partial derivative with 

respect to time and second-order partial derivative with respect coordinate: both of 

these operations vanish the term distinguishing ),( txT  from ),( txΘ  

The solution of the equation (13) with initial condition (12) and the 

homogeneous boundary conditions (10) and (11) is known (see, e.g., [2]). It is given 

by the following infinite series: 
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form a complete set of orthogonal functions containing parameters ,mβ  the positive 

roots of the transcendental equation 
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Parameters mβ  are numbered in ascending order of their numerical values. 

Parameters mc  denote coefficients of this series expansion 

lLlL

d

d

c

m
L

m

L

m

m

/2

2

),(

)0,(),(

222

0

2

0

++β
=

ξβξϕ

ξΘξβϕξ

=

∫

∫
 

.
)()0,(

sincos 0

0

0















β

−
−

−ξ







 ξβ
+

ξβ
βξ× ∫ l

LTT

L

TT

Ll

L

L
d

m

L

L

mm
m  (17) 

Thus, the solution of the original problem is 
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Now, to obtain the final expression one requires computation the integral containing 

)0,(xT  function and determining the mβ  values for the heat-conductor under the 

consideration. 

Terms standing separately from the series describe the monotone, namely, linear 

variations in the static temperature-field when moving from point 0=x  to point 

.Lx =  Series describes oscillating coordinate-dependence, which however vanishes 

over the time. Therefore, after a sufficiently long period, ,22
mLt αβ>>  in the heat-

conductor a steady temperature-field distribution will be achieved. 

3. First Stage: Initial Heating 

In the first stage of the heat-flow process, temperature LT ′  of the medium 

adjacent to the Lx =  end of the heat-conductor is higher than that of the 0=x  end 
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.: 00 LTTT ′<  Let at 0=t  the heat-conductor is in thermal equilibrium with the 

medium at lower temperature. Then, the initial condition takes the form: 

.)0,( 0TxT =  This assumption greatly simplifies solving the heat equation 
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After a sufficiently long period, the non-monotonic terms of this solution vanish 

and the temperature-distribution in the heat-conductor achieves its steady-state 

corresponding to the linear increase in temperature with increasing coordinate 
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The temperatures achieved on the heat-conductor ends, respectively, are 
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Thus, at the point 0=x  temperature will be higher than that of the adjacent media 

,0T  but mandatory lower the average temperature 2)( 0 LTT ′+  of two media 

adjacent the heat-conductor ends. As for temperature at the point ,Lx =  it will be 

lower than that of the adjacent media ,LT ′  but mandatory higher the average 

temperature 2)( 0 LTT ′+  of two media. Consequently, <∞< ),0(0 TT  

.),(2)( 0 LL TLTTT ′<∞<′+  

The steady heat-flux in the heat-conductor equals to 
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The minus sign indicates that the heat-flow is opposite to the Ox  axis direction, i.e., 

heat releases at the 0=x  end. 
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4. Second Stage: Instantaneous Cooling 

In the second stage of the heat-flow process, temperature LT ′′  of the medium 

adjacent to the Lx =  end of the heat-conductor becomes lower than that of the 

0=x  end .: 00 LTTT ′′>  Initial moment of this stage, i.e., moment of the 

instantaneous cooling the bar end, should be counted after the steady heat-flow is 

achieved in the first stage. Therefore, the initial condition is obtained from equation 

(20) replacing :0=→∞= tt  
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It leads to the following temperature-field distribution in the heat-conductor: 
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This implies that the heat-flux at the point 0=x  at certain moment of the time τ=t  

will be 
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Here are two components positive and negative. Thanks to the latter in the initial 

period the total heat-flux can remain negative. 

It is natural to assume that ,1>>lL  i.e., neglect the thermal resistance of a 

thermal contact to the heat-conductor in comparison with that of the heat conductor 

itself. In addition, we can note that terms of the series vanish very rapidly with 

increasing index .m  Therefore, this series can be approximated by its first term. 

Further, note that according to the equation (16), in these conditions .1 π≈β  Then, 

for a period 
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the ratio of the output and input heat-fluxes at the 0=x  end will be greater than 1. 
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Since LTT ′<0  and ,0 LTT ′′>  the argument of the logarithmic function in the 

expression (27) exceeds 1 and, consequently, this estimate is always meaningful. 

5. Conclusion 

Thus, the magnitude of the heat-flow direction inertia effect is determined by the 

thermal characteristics of the heat-conductor material, its geometry, as well as the 

conditions of heat exchange with the environment. Namely, the inertia time is 

proportional of the squared heat-conductor length L, that is its size in the 

temperature-gradient direction, and inversely proportional of the material thermal 

diffusivity .~: 2 ατα L  Its dependence on temperature differences between 

adjacent media is relatively weak, logarithmic. It is natural that as the average 

temperature-gradient at stages of heating and cooling increases the inertia time, 

respectively, increases or decreases. 

Make numerical estimate for the carbon steel bar of length cm10≈L  with the 

room temperature thermal diffusivity of .scm14.0 2≈α  Let the ambient 

temperature is equal to room temperature K2980 ≈T  and temperatures of adjacent 

media on the steps of heating and cooling equal, respectively, temperatures of water 

boiling K373≈′
LT  and freezing K.273≈′′

LT  Using the formula (27), we get 

s,150≈τ  which is in agreement with the order of magnitude of thermal inertia 

periods observed experimentally in such heat-conductors. 

If the above analyzed phenomenon is called the direct effect, one can easily 

imagine the reverse effect of the heat-flow direction inertia, when the initially cooled 

heat-conductor end is heated instantly, but for a finite period the cold end still 

absorbs the heat. Obviously, both the direct and reverse effects of the heat-flow 

direction inertia occur regularly in such technological processes as surface hardening, 

hot rolling, tubes broaching, etc. For this reason, it seems appropriate that these 

effects be accounted in elaboration of heat treatment technologies for metals and 

alloys. 
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