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Abstract 

In this note, we present a simple elementary approximate construction 

of the regular heptagon with ruler and compass. The original idea goes 

back to calculations which I have made during school time in 1967 at 

the age of 14 years. 

1. Introduction 

Approximate constructions of regular polygons date back to ancient 

times, cf. Scriba and Schreiber [6] or Johnson and Pimpinelli [5]. Exact 

constructions of regular polygons with n  vertices with ruler and compass, 

however, are, according to Gauss, only possible if ( ) ,...2 1
1

k
m ppn ⋅⋅⋅= −  
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where N∈km,  and the ip  are pairwise different prime numbers of the 

form 12 += j
ip  with integer ,N∈j  cf. Scriba and Schreiber [6], p. 405. 

Generally the vertices of such polygons in the complex plane are solutions 

of the circle division equation 

( ) .011
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In the case of a regular heptagon the corresponding equation 

0123456 =++++++ xxxxxx  

can be transformed into a more simple cubic equation 

01223 =−−+ zzz  

after division by 3x  and by the substitution 
x

xz
1

+=  (cf. 

Geretschlaeger [2]). With a further substitution 
3

1
−= yz  this leads to 

( ) ,0
27

7

3

7
: 3 =−−= yyyf  

which corresponds to the so called Casus irreducibilis for cubic equations. 

A first simple approximative solution can be obtained by a 

cancellation of the term 3y  giving 0
27

7

3

7
=−− y  with the solution 

9

1
0 −=y  and ( ) ,...001371.0

729

1
0 −=−=yf  i.e., ,

9

4
−=z  which leads 

to the two complex vertices 

.77
99

2
2,1

i
x ±−=  

The accuracy of this solution can be seen here: 
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 ±−=  

....002144.0...999997.0 jm=  

The “first” counterclockwise vertex E  can be constructed by angle 

bisection. For the corresponding angle α  we have ( ) ( )α=−α 2cos1cos2 2  

and hence 

( )
( )

14
6

1

2
9

2
1

2

2cos1
cos =

−
=

α+
=α  

and ( ) ( ) .22
6

1
cos1sin 2 =α−=α  The length L̂  of the first 

counterclockwise chord hence is given by 

( ) ( ( )) ...867629.014318
3

1
cos1sinˆ 22 =−=α−+α=L  

while the exact value is ....867767.0
7

sin2 =





 π

=L  The relative error 

thus amounts to ...%.015905.0−  

A further significant improvement can be achieved by putting 

hy +−=
9

1
0  with ( ) .

3

1

27

62

729

1 32
0 hhhyf +−−−=  Neglecting the 

term 3h  and solving correspondingly ,0
3

1

27

62

729

1 2 =−−− hh  we obtain 

8646
27

1

9

31
+−=h  as the only admissible solution or 

8646
27

1

9

32
0 +−=y  with ( ) 9

0 10...213229.0 −⋅−=yf  and hence 

ix 167558646210
54

1
8646

54

1

18

35
2,1 −±+−=  
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with .106710439934.09999999993.0 87
2,1 ix −

⋅−=  

 

Figure 1. 

The new counterclockwise first chord length now is 

( ) ( ( )) 1538646318
3

1
cos1sinˆ 22 −−=α−+α=L  

...138677674782.0=  
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in comparison with 

...358677674782.0
7

sin2 =





 π

=L  

with a relative error of only %.10...247268.0 8−⋅−  Observe that the 

corresponding approximate vertex 1x  can still be constructed with ruler 

and compass since its real part is given by 

( ) 02225209339.08646
54

1

18

35
1 −=+−=ℜ x  







 π

=−≈
7

4
cos52225209339.0  

which is the correct value. The following figure shows the corresponding 

construction. 
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Figure 2. 

Please observe that there are several possibilities to represent the 

number 8646  as sum of three squares, e.g., 

222222222 8923148231317938318646 ++=++=++=  

.70615853514 222222 ++=++=  

For a judgment of the goodness of approximation imagine that the 

underlying circle has a radius of ,km000,54  then the difference between 

the true and the approximate chord length would be less than .mm1  
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