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Abstract

Noncommutative geometry, an offshoot of string theory, replaces point-
like particles by smeared objects. Applied to wormhole spacetimes, it
has been shown that the noncommutative effects can be implemented
by modifying only the energy momentum tensor in the Einstein field
equations, while leaving the Einstein tensor unchanged. The
implication is that noncommutative-geometry wormholes could be
macroscopic. However, it is shown in this paper that such wormholes
could not be sufficiently massive to exist on a macroscopic scale. The

purpose of this paper is to use f(Q) modified gravity to invoke the

cosmological constant, which, in turn, provides the extra degrees of
freedom to overcome these obstacles, thereby allowing noncommutative-

geometry wormholes to be macroscopic.
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1. Introduction

Wormholes are tunnel-like structures in spacetime that link widely
separated regions of our Universe or different universes altogether. While
wormholes are just as good a prediction of Einstein’s theory as black
holes, they are subject to severe restrictions from quantum field theory.
In particular, holding a wormhole open requires a violation of the null
energy condition, calling for the existence of “exotic matter” [1]. This
violation is more of a practical than conceptual problem, as illustrated by
the Casimir effect [2]: exotic matter can be made in the laboratory. Being
a rather small effect, it is not immediately obvious that it is sufficient for

supporting a traversable wormhole.

Another area dealing with small effects is noncommutative geometry,
an offshoot of string theory, where point-like particles are replaced by
smeared objects, to be discussed further below. For now, it is sufficient to
note that noncommutative-inspired wormholes can be macroscopic in
spite of the small effects. However, as we will see later, such a wormhole
cannot be very massive; we will also recall that a Morris-Thorne
wormhole 1is actually a compact stellar object, suggesting that
noncommutative-geometry wormholes are likely to be microscopic. The

purpose of this paper is to show that by invoking f (Q) modified gravity,

the resulting extra degrees of freedom allow a noncommutative-geometry

wormhole to be macroscopic.

2. Morris-Thorne Wormholes

Wormholes are handles or tunnels in spacetime that connect widely
separated regions of our Universe or different universes altogether. While
there had been some forerunners, the first detailed analysis of humanly
traversable wormholes was carried out by Morris and Thorne [1]. With
the Schwarzschild solution in mind, they proposed the following static

and spherically symmetric line element to model a wormhole spacetime:
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2
ds? = —ezq)(r)dt2 + Lrb(—j + rz(cle2 + sin? qu)z ), (1

L bl
r

using units in which ¢ = G = 1. Here ® = ®(r) is usually referred to as

the redshift function, which must be finite everywhere to prevent the

occurrence of an event horizon. The function b = b(r) is called the shape

function since it determines the spatial shape of the wormhole when
viewed, for example, in an embedding diagram. The spherical surface

r =1y is called the throat of the wormhole. According to Ref. [1], at the
throat, b = b(r) must satisfy the following conditions: b(ry) = ry, b(r) < r
for r > 1y, and b(ry) <1, called the flare-out condition. This condition

can only be satisfied by violating the null energy condition (NEC), which
states that

Toph®kP 2 0 2)

for all null vectors &%, where Typ 1s the energy momentum tensor. As

noted above, matter that violates the NEC is called “exotic” in Ref. [1]. In

particular, for the outgoing null vector (1, 1, 0, 0), the violation becomes
Topk®kP = p + p, < 0. Here, T'; = —p(r) is the energy density, 7" =

py(r) is the radial pressure, and T% = T¢¢ = p,(r) is the lateral

(transverse) pressure. Another requirement is asymptotic flatness:
lim, ., ®() =0 and lim,_,., b(r)/r = 0.

For later reference, we now list the Einstein field equations:

p(r) = — (3)

mm=iﬁ%+%fﬂ6} @



68 PETER K. F. KUHFITTIG

pt(r)=i(1—9][cb”— AL )
r 2r2(r—b)

3. Noncommutative Geometry

In this section, we are going to take a brief look at noncommutative
geometry, which will play a key role in this paper. This geometric
background is based on the realization that coordinates may become
noncommutative operators on a D -brane [3, 4]. A critical feature that is
consistent with the Heisenberg uncertainty principle 1is that
noncommutativity replaces point-like particles by smeared objects [5, 6,
7]. First proposed by H. S. Snyder [8], this feature eliminates the
divergences that normally occur in general relativity. It is shown in Ref.

[6] that this objective can be realized by showing that spacetime can be
encoded in the commutator [x*,x"]=i6", where 6" is an

antisymmetric matrix that determines the fundamental cell discretization
of spacetime in the same way that Planck’s constant 7 discretizes phase

space. Following Refs. [9, 10], we are going to model the smearing using a

so-called Lorentzian distribution of minimal length ﬁ instead of the

Dirac delta function. So the energy density of a static and spherically

symmetric and particle-like gravitational source is given by

myY
p(r) = W\/_z (6)
(r? + y)
The usual interpretation is that the gravitational source causes the mass

m of a particle to be diffused throughout the region of linear dimension

\/? due to the uncertainty.

Since Eq. (6) plays such a critical role in this paper, we need to ensure

its proper application. According to Ref. [6], it is possible to implement
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the noncommutative effects in the Einstein field equations Gy, =

% T“V by modifying only the energy momentum tensor, while leaving
c
the Einstein tensor Gy, intact. As a consequence, the length scales can be

macroscopic, as we will confirm in the next section.

4. The Mass of the Wormhole

Our first task in this section is to confirm that noncommutative-
geometry wormholes can be macroscopic. Our discussion begins with Eqs.

(3) and (6), which immediately yields the total mass-energy M, of a

sphere of radius r:

"o , ,_ 2m 1r 7“\/?
M, = IO o an(r P dr’ = T{tan 1 7, J. (7)

Similarly, for the shape function b = b(r), we have from Eq. (3),

o) = 0

v v 4y

- L tan~! To + r—O] + 19. (8)

N N

Observe that b(ry)=r, and lim,__ b(r)/r = 0. To ensure asymptotic

flatness, we retain the assumption lim,_,,, CID(r) = 0. Following Ref. [11],
we let B = b/ﬁ be the form of the shape function, even though

B(ry) # 0. The reason is that B can be expressed as a function of r/\/?

by a simple algebraic rearrangement:
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.
7 ﬁU Vi
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observe that

Yo o
B —=|=—, (10)
[x/? J V1
the analogue of b(ry) = ry. So the throat radius can be macroscopic. The

line element can be written as

2
ds? = —2®W)g? o I 2962 L gin® 0de?).  (11)

L _ B/ \Y)
r/\y

In view of Eq. (9), this line element represents a wormhole with throat

radius ry / \/? , while retaining asymptotic flatness [11].

Next, let us obtain an estimate of the mass of the wormhole. From Eq.

(6),

mlr) = [ Tl Ml P dr

0

=M tant rﬁ —tan_lr—0+—r0ﬁ . (12)
n Jroor? ey Vo
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Sine m in Eq. (6) represents the mass of a particle, we conclude that the
mass m(r) cannot be very large. It has been shown, however, that Morris-
Thorne wormholes are actually compact stellar objects [12]. The
implication is that noncommutative-inspired wormholes are likely to be
microscopic after all. To retain our macroscopic scale, we will turn to (@)

modified gravity and its consequences. That is the topic of the next

section.

5. Invoking the Cosmological Constant

Attempts to overcome the theoretical and practical problems
confronting Morris-Thorne wormholes have relied heavily on various
modified gravitational theories. A recently proposed modified theory,
called f(Q) gravity, is due to Jimenez et al. [13]. Here @ is the non-

metricity scalar from the field of differential geometry. The action for this

gravitational theory is
1
S = [ 5 H@N=gd"x+ [ £p\- gax*, (13

where f(Q) is an arbitrary function of @, L,, is the Lagrangian density

of matter, and g is the determinant of the metric tensor g,,. Even

though it is a fairly new theory, numerous applications have already been
found; see, for example, [13, 14, 15, 16, 17, 18, 19, 20, 21]. Since we are
primarily interested in wormholes, our focus is necessarily more narrow.
Accordingly, we are going to follow Ref. [14], in part because it uses a

simple but commonly employed form of f(Q): f(Q) = a@ + B [14], where
o and B are free parameters. Since f/(Q) = a constant and f”(Q) = 0,

this produces the Einstein field equations with a cosmological constant
[13]. The corresponding field equations are [14]:
ob’

_ B 14
P54y (14
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pr == [2o0lr - b - ap] - £,
r 2
and

Py = ——[alr® +1)( - b’ + 2r(r - b)®" + )] +
2rd r

Eq. (14) can now be combined with Eq. (6):

mfy _abl),

752 (7‘2 + ,Y)2 7‘2

N ™

Solving for b'(r), we get

and

b(r)—a ro[n2[( ) +Y]

To retain asymptotic flatness, we let p = 0, yielding

<
-
~

_1m
b= L

W n o
2y 20 +v)

alr — b)®”

1B
) —Ea( ) dr’ +1p.

(15)

(16)

(17

(18)

(19)

(20)

Observe that b(ry) = ry, as required. Thanks to the free parameter o
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from f(Q) gravity, the mass of the wormhole, m(r) = J ' p(rUx(r P dr’
0

=%b(r) from Eq. (3), can now be macroscopic. This is our main

conclusion.

6. Summary

Noncommutative geometry replaces point-like particles by smeared
objects, which is consistent with the Heisenberg uncertainty principle.
Although a small effect, wormholes supported by a noncommutative-
geometry background can still have a macroscopic throat size. To explain
this outcome, we recall from Section 3 that the noncommutative effects
can be implemented by modifying only the energy momentum tensor in
the Einstein field equations, while leaving the Einstein tensor intact. It is
shown in this paper that such wormholes cannot have a large enough
mass to exist on a macroscopic scale. However, Morris-Thorne wormholes
are likely to be compact stellar objects, akin to neutron stars, and so

would normally be quite massive. Using f (Q) modified gravity to invoke

the cosmological constant, it is shown that the resulting extra degrees of
freedom enable us to overcome these obstacles, thereby allowing the
wormholes to be sufficiently massive despite the noncommutative-

geometry background.
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