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Abstract 

Noncommutative geometry, an offshoot of string theory, replaces point-

like particles by smeared objects. Applied to wormhole spacetimes, it 

has been shown that the noncommutative effects can be implemented 

by modifying only the energy momentum tensor in the Einstein field 

equations, while leaving the Einstein tensor unchanged. The 

implication is that noncommutative-geometry wormholes could be 

macroscopic. However, it is shown in this paper that such wormholes 

could not be sufficiently massive to exist on a macroscopic scale. The 

purpose of this paper is to use ( )Qf  modified gravity to invoke the 

cosmological constant, which, in turn, provides the extra degrees of 

freedom to overcome these obstacles, thereby allowing noncommutative-

geometry wormholes to be macroscopic. 
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1. Introduction 

Wormholes are tunnel-like structures in spacetime that link widely 

separated regions of our Universe or different universes altogether. While 

wormholes are just as good a prediction of Einstein’s theory as black 

holes, they are subject to severe restrictions from quantum field theory. 

In particular, holding a wormhole open requires a violation of the null 

energy condition, calling for the existence of “exotic matter” [1]. This 

violation is more of a practical than conceptual problem, as illustrated by 

the Casimir effect [2]: exotic matter can be made in the laboratory. Being 

a rather small effect, it is not immediately obvious that it is sufficient for 

supporting a traversable wormhole. 

Another area dealing with small effects is noncommutative geometry, 

an offshoot of string theory, where point-like particles are replaced by 

smeared objects, to be discussed further below. For now, it is sufficient to 

note that noncommutative-inspired wormholes can be macroscopic in 

spite of the small effects. However, as we will see later, such a wormhole 

cannot be very massive; we will also recall that a Morris-Thorne 

wormhole is actually a compact stellar object, suggesting that 

noncommutative-geometry wormholes are likely to be microscopic. The 

purpose of this paper is to show that by invoking ( )Qf  modified gravity, 

the resulting extra degrees of freedom allow a noncommutative-geometry 

wormhole to be macroscopic. 

2. Morris-Thorne Wormholes 

Wormholes are handles or tunnels in spacetime that connect widely 

separated regions of our Universe or different universes altogether. While 

there had been some forerunners, the first detailed analysis of humanly 

traversable wormholes was carried out by Morris and Thorne [1]. With 

the Schwarzschild solution in mind, they proposed the following static 

and spherically symmetric line element to model a wormhole spacetime: 
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using units in which .1== Gc  Here ( )rΦ=Φ  is usually referred to as 

the redshift function, which must be finite everywhere to prevent the 

occurrence of an event horizon. The function ( )rbb =  is called the shape 

function since it determines the spatial shape of the wormhole when 

viewed, for example, in an embedding diagram. The spherical surface 

0rr =  is called the throat of the wormhole. According to Ref. [1], at the 

throat, ( )rbb =  must satisfy the following conditions: ( ) ,00 rrb =  ( ) rrb <  

for ,0rr >  and ( ) ,10 ≤′ rb  called the flare-out condition. This condition 

can only be satisfied by violating the null energy condition (NEC), which 

states that 

 0≥βα
αβ kkT  (2) 

for all null vectors ,αk  where αβT  is the energy momentum tensor. As 

noted above, matter that violates the NEC is called “exotic” in Ref. [1]. In 

particular, for the outgoing null vector ( ),0,0,1,1  the violation becomes 

.0<+ρ=βα
αβ rpkkT  Here, ( )rT t

t ρ−=  is the energy density, =r
rT  

( )rpr  is the radial pressure, and ( )rpTT t== φ
φ

θ
θ  is the lateral 

(transverse) pressure. Another requirement is asymptotic flatness: 

( ) 0lim =Φ∞→ rr  and ( ) .0lim =∞→ rrbr  

For later reference, we now list the Einstein field equations: 
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3. Noncommutative Geometry 

In this section, we are going to take a brief look at noncommutative 

geometry, which will play a key role in this paper. This geometric 

background is based on the realization that coordinates may become 

noncommutative operators on a D -brane [3, 4]. A critical feature that is 

consistent with the Heisenberg uncertainty principle is that 

noncommutativity replaces point-like particles by smeared objects [5, 6, 

7]. First proposed by H. S. Snyder [8], this feature eliminates the 

divergences that normally occur in general relativity. It is shown in Ref. 

[6] that this objective can be realized by showing that spacetime can be 

encoded in the commutator [ ] ,, µννµ θ= ixx  where µνθ  is an 

antisymmetric matrix that determines the fundamental cell discretization 

of spacetime in the same way that Planck’s constant h  discretizes phase 

space. Following Refs. [9, 10], we are going to model the smearing using a 

so-called Lorentzian distribution of minimal length γ  instead of the 

Dirac delta function. So the energy density of a static and spherically 

symmetric and particle-like gravitational source is given by 

 ( )
( )

.
222 γ+π

γ
=ρ

r

m
r  (6) 

The usual interpretation is that the gravitational source causes the mass 

m  of a particle to be diffused throughout the region of linear dimension 

γ  due to the uncertainty. 

Since Eq. (6) plays such a critical role in this paper, we need to ensure 

its proper application. According to Ref. [6], it is possible to implement 
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the noncommutative effects in the Einstein field equations =µνG  

µν
π

T
c

G
4

8
 by modifying only the energy momentum tensor, while leaving 

the Einstein tensor µνG  intact. As a consequence, the length scales can be 

macroscopic, as we will confirm in the next section. 

4. The Mass of the Wormhole 

Our first task in this section is to confirm that noncommutative-

geometry wormholes can be macroscopic. Our discussion begins with Eqs. 

(3) and (6), which immediately yields the total mass-energy γM  of a 

sphere of radius :r  
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Similarly, for the shape function ( ),rbb =  we have from Eq. (3), 
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Observe that ( ) 00 rrb =  and ( ) .0lim =∞→ rrbr  To ensure asymptotic 

flatness, we retain the assumption ( ) .0lim =Φ∞→ rr  Following Ref. [11], 

we let γ= bB  be the form of the shape function, even though 

( ) .00 ≠rB  The reason is that B  can be expressed as a function of γr  

by a simple algebraic rearrangement: 
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observe that 
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the analogue of ( ) .00 rrb =  So the throat radius can be macroscopic. The 

line element can be written as 
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In view of Eq. (9), this line element represents a wormhole with throat 

radius ,0 γr  while retaining asymptotic flatness [11]. 

Next, let us obtain an estimate of the mass of the wormhole. From Eq. 

(6), 
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Sine m  in Eq. (6) represents the mass of a particle, we conclude that the 

mass ( )rm  cannot be very large. It has been shown, however, that Morris-

Thorne wormholes are actually compact stellar objects [12]. The 

implication is that noncommutative-inspired wormholes are likely to be 

microscopic after all. To retain our macroscopic scale, we will turn to ( )Qf  

modified gravity and its consequences. That is the topic of the next 

section. 

5. Invoking the Cosmological Constant 

Attempts to overcome the theoretical and practical problems 

confronting Morris-Thorne wormholes have relied heavily on various 

modified gravitational theories. A recently proposed modified theory, 

called ( )Qf  gravity, is due to Jimenez et al. [13]. Here Q  is the non-

metricity scalar from the field of differential geometry. The action for this 

gravitational theory is 

 ( ) ,
2

1 44 ∫∫ −+−= dxgxdgQfS mL  (13) 

where ( )Qf  is an arbitrary function of ,Q  mL  is the Lagrangian density 

of matter, and g  is the determinant of the metric tensor .µνg  Even 

though it is a fairly new theory, numerous applications have already been 

found; see, for example, [13, 14, 15, 16, 17, 18, 19, 20, 21]. Since we are 

primarily interested in wormholes, our focus is necessarily more narrow. 

Accordingly, we are going to follow Ref. [14], in part because it uses a 

simple but commonly employed form of ( ):Qf  ( ) β+α= QQf  [14], where 

α  and β  are free parameters. Since ( ) =′ Qf  a constant and ( ) ,0=′′ Qf  

this produces the Einstein field equations with a cosmological constant 

[13]. The corresponding field equations are [14]: 
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Eq. (14) can now be combined with Eq. (6): 
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To retain asymptotic flatness, we let ,0=β  yielding 
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Observe that ( ) ,00 rrb =  as required. Thanks to the free parameter α  



NONCOMMUTATIVE-GEOMETRY WORMHOLES IN … 

 

73 

from ( )Qf  gravity, the mass of the wormhole, ( ) =rm ( ) ( ) rdrr
r

r
′′π′ρ∫

2
4

0

 

( )rb
2

1
=  from Eq. (3), can now be macroscopic. This is our main 

conclusion. 

6. Summary 

Noncommutative geometry replaces point-like particles by smeared 

objects, which is consistent with the Heisenberg uncertainty principle. 

Although a small effect, wormholes supported by a noncommutative-

geometry background can still have a macroscopic throat size. To explain 

this outcome, we recall from Section 3 that the noncommutative effects 

can be implemented by modifying only the energy momentum tensor in 

the Einstein field equations, while leaving the Einstein tensor intact. It is 

shown in this paper that such wormholes cannot have a large enough 

mass to exist on a macroscopic scale. However, Morris-Thorne wormholes 

are likely to be compact stellar objects, akin to neutron stars, and so 

would normally be quite massive. Using ( )Qf  modified gravity to invoke 

the cosmological constant, it is shown that the resulting extra degrees of 

freedom enable us to overcome these obstacles, thereby allowing the 

wormholes to be sufficiently massive despite the noncommutative-

geometry background. 
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