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Abstract 

In the present paper, we use the flat Friedmann-Lemaitre-Robertson-

Walker metric describing a spatially homogeneous and isotropic 

universe to derive the cosmological redshift distance in a way which 

differs from that which can be found in the astrophysical literature. 

We use the co-moving coordinate er  (the subscript e  indicates 

emission) for the place of a galaxy which is emitting photons and ar  

(the subscript a  indicates absorption) for the place of an observer 

within a different galaxy on which the photons - which were traveling 

through the universe - are absorbed. Therefore the real physical 

distance - the way of light - is calculated by ( ) ( ) .0 eea rtartaD −=  Here 

means ( )0ta  the today’s ( )0t  scale parameter and ( )eta  the scale 

parameter at the time of emission ( )et  of the photons. Nobody can 

doubt this real travel way of light: The photons are emitted on the co-
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moving coordinate place er  and are then traveling to the co-moving 

coordinate place .ar  During this traveling the time is moving from et  

to 0t  ( )0tte ≤  and therefore the scale parameter is changing in the 

meantime from ( )eta  to ( ).0ta  

Using this right way of light, we calculate some relevant classical 

cosmological equations (effects) and compare these theoretical results 

with some measurements of astrophysics. As one result, we get, e.g., the 

today’s Hubble parameter ( ).Mpcskm34.620 ≈aH  This value is 

smaller than the Hubble parameter ( )Mpcskm66.67Planck,0 ≈H  

resulting from Planck 2018 data [12] which is discussed in the 

literature. 

1. Introduction 

The current cosmological standard model assumes the correctness of 

Einstein’s field equations (EFE) containing the cosmological term Λ  

 µνµνµν Λ−
π

= gT
c

G
G

4

8
 (1) 

and solves this with the help of the Friedmann-Lemaitre-Robertson-

Walker metric (FLRWM) 
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which is suitable for the description of a homogeneous and isotropic 

universe evolving over time. 

The solutions found by solving the EFE are the Friedmann equations 

(FE) 
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µνG  is the Einstein tensor, G  the gravitational constant, µνT  the energy-
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momentum tensor and Λ  the cosmological constant that Einstein added 

to his original field equations, but later discarded. With 1,0 +=ε  or 1−  

the constant of curvature was introduced and ,r  ϑ  and ϕ  are spherical 

polar coordinates. The time-dependent scale parameter was designated 

with ( )ta  and its time derivatives with points above. P  is the pressure of 

matter and ρ  is its density. 

Both FE together lead to the law of conservation of energy 

 ,0323 =+ρ a
dt

d
Pca

dt

d
 (4) 

which for pressure less matter then turns into a law of conservation of 

mass because of :0=P  

 023 =ρca
dt

d
    or    const.3 =∝ρ Ma     because of    .

3a

M
∝ρ  (5) 

This mass M  contains all matter that is gravitationally effective in the 

universe. In practice, due to the existence of the conservation law, only 

the first of the two Friedmann equations (3) is usually used. 

1.1. Simplifying assumptions 

The application of the theoretical standard cosmology to the 

measured data of the observational cosmology shows that the universe is 

flat. For this reason, the curvature constant ε  is negligible. We agree 

with this finding, whereby the FLRWM and the FE simplify to 

 ( )[ ( )]222222222 sin ϕϑ+ϑ+−= ddrdrtadtcds  (2a) 

and 

 ,
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respectively. 
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The standard cosmology uses the following density parameters i,0Ω  

( )Λ= ,, RMi  for the different types of matter that may exist in the 

universe 

,
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3 −×≈
π

≡ρ
G
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k  (6) 

and determines their values using measurement data from observing 

cosmology. With M,0ρ  today’s density (first index 0) of the non-

relativistic matter was introduced and R,0ρ  describes the today’s density 

of the relativistic matter, e.g., radiation ( ).index R  A today’s density 

Λρ ,0  is assigned to the cosmological constant Λ  and the today’s so-called 

critical density is defined with ,,0 kρ  which - neglecting the cosmological 

constant - corresponds to an equilibrium between kinetic energy 

( )0=dtda  and potential energy of gravitation. 0H  is today’s Hubble 

parameter. The dimensionless parameter h scales the Hubble parameter. 

The evaluation of the measurement data using standard cosmology 

shows that today’s quotient of MR ,0,0 ρρ  being 

 4
5

,0

,0
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≈
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Ω

Ω

M
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 (6a) 

is very small, which is why today’s radiation density R,0ρ  can be 

neglected compared to today’s non-relativistic matter density .,0 Mρ  We 

make use of this knowledge when deriving the redshift distance. 

In the following, we also neglect the mathematical possible 

cosmological constant .Λ  The comparison of the redshift distance derived 
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here with measurement results shows in retrospect that this additional 

parameter is not required. As a result, the EFE are returned to their 

historically original form and the FE takes on the simpler form 

 .
3

8
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a

a&
 (3b) 

2. Derivation of Cosmological Relevant Relations 

2.1. Previews 

From the requirement of homogeneity it follows that all extra-galactic 

objects remain at their coordinate location r  in the course of the temporal 

development of the universe, i.e., the coordinate distance between 

randomly selected galaxies does not change over time, the galaxies rest in 

this coordinate system. For this reason, 0=dtdr  applies to them. 

This does not apply to the freely moving photons in the universe: 

They detach themselves from a galaxy at a certain point in time at a 

certain coordinate location, and are then later absorbed at a completely 

different coordinate location. In addition, the time-dependent scale 

parameter ( )ta  changes between the two points in time which stretches 

all real physical distances if a cosmic expansion exists. 

Here we introduce the designation er  (the subscript e  indicates 

emission of light) for the coordinate location of the light-emitting galaxy 

and name the coordinate location of the galaxy in which the observer 

resides ar  (the subscript a  indicates absorption of light). In the 

Euclidean space ( )0=ε  considered here, both variables mark the 

coordinate distance from the coordinate origin .0=r  The constant 

coordinate distance between the two galaxies is therefore calculated to be 

,ea rr −  if we assume that the galaxy of the observer is more depart from 

the coordinate origin as the light-emitting galaxy. The light should 
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therefore move from the inside to the outside within a spherical assumed 

mass distribution (outgoing photons), which serves as a simple model for 

the universe (using the FLRWM, it is quite easy to arrange that all 

directions are of a radial kind). 

Due to the measurable expansion of the universe, we know that in the 

course of cosmic evolution all physical distances over the time-dependent 

scale parameter ( )ta  being stretched according to the FE (3b). 

Then the conservation law for the product of the density of matter 

( )tρ  and the cube of the scale parameter ( )ta  

 Aa =ρ 3  (7) 

also applies. This means that A  is a constant which essentially 

corresponds to the mass of the visible part of the universe (here called the 

Friedmann sphere). Because of =A  constant, Eq. (7) can also be written 

as 

 ( ) ( ) ( ) ( ) ,33
00

3
0

3
0 eeee aatattatA ρ=ρ=ρ=ρ=  (8) 

where eρ  and 0ρ  denote the densities of the universe and ea  and 0a  are 

the scale parameters at two different times et  (time point of emission) 

and 0t  (today’s time point of absorption), respectively. Using Eq. (7) the 

FE (3b) yields 

 .
3

8
2

a

B

a

AG

dt
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=

π
=






  (9) 

With B  another constant was introduced which just summarizes other 

constants. Using the law of mass conservation (7) means also that the 

mass of the universe which is inside a Friedmann sphere with the current 

“radius” ( )ta  is responsible for the expansion. This applies to all points of 

time. “Radius” (in quoted marks) was written here because ( )ta  does not 
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have the meaning of a real physical radius. Only the product of the co-

moving radial coordinate r  and the scale parameter ( )ta  has this 

significance, as we shall see immediately. 

For a galaxy resting in the coordinate system of the FLRWM, the real 

physical distance from the coordinate origin becomes calculated to 

 ( ) ( ) ( ) ,

10
2

rta

r

dr
tatR

r

=
ε−

= ∫  (10) 

if 0=ε  is considered. The co-moving coordinate r  does not depend on 

time for galaxies. 

The physical distance of the light-emitting galaxy from the coordinate 

origin at time et  is, therefore, 

 ( ) ( ) ,eeeeee rartatR ≡=  (11) 

while for the analog distance of the galaxy containing the observer at the 

same time 

 ( ) ( ) ,aeaeea rartatR ≡=  (12) 

applies. The physical distance of both galaxies at the time et  is, therefore, 

 ( ) ( ).eaeeeaeee rrararaDtD −=−==  (13) 

For the distance between both cosmic objects at a later time - means 

today’s time here - ett >0  then applies 

 ( ) ( ).00000 eaea rrararaDtD −=−==  (14) 

However, both distances mentioned above are worthless for the 

computation of cosmological relevant relations, since the emitted photons 

make their way to the observer, which has to be calculated in accordance 

with 
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 .0 eea raraD −=  (15) 

To see this, imagine a photon that detaches itself at the time 0tte <  from 

the emitting galaxy at the coordinate ,er  where the scale parameter at 

this time has the value .ea  After the photon has moved freely through 

the universe, it will arrive at the coordinate point ,ar  the place of the 

observer within another galaxy, at time ,0t  with the scale parameter at 

that time being .0a  Thus, the photon does not travel the path described 

by Eq. (13) nor by Eq. (14). The real distance traveled by the photon is 

always greater than any one of these distances. This must be taken into 

account when deriving the redshift distance. 

The real physical light path is illustrated by the green line in Figure 

1: 

 

Figure 1. Real physical light path. 

These remarks may be sufficient as a preliminary to the now 

following derivation of the redshift distance. 
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2.2. The redshift distance 

We now want to investigate which equation results for the redshift 

distance (corresponding to the photon path), which depends on the 

redshift ,z  if the integral 

 
( )∫∫ +=

0t

t

r

r e

a

e

ta

cdt
dr  (16) 

is used. This integral results for 0=ε  when the line element ds  is set 

equal to zero in the FLRWM (2a) and radial ( )0=ϕ=ϑ  outgoing photons 

are considered. Eq. (16) describes the motion of photons in the universe 

traveling from the coordinate er  to the coordinate .ar  

During the travel time of the photons, the scale parameter changes 

from ea  to .0a  If the time differential is replaced using the FE (9), 

follows from Eq. (16) 

 .

0

∫∫ =

a

a

r

r e

a

e

a

da

B

c
dr  (17) 

After the execution of the integral, we get 

 ( ).
2

0 eea aa
B

c
rr −=−  (18) 

Here we multiply both sides with 0a  and at the same time we extract the 

root of 0a  from the parenthesis: 

 .1
2

0

23
000 








−=−

a

a
a

B

c
rara e
ea  (19) 

On the left side of Eq. (19) is not yet the real path traveled by the photon, 

but the today’s physical distance of the two galaxies involved. 
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We now introduce the redshift. To this end, we recall the simple 

relation between the scale parameters at two different times et  and 0t  

and the redshift z  

 z
a

a

e

+= 10     or    
( )za

ae

+
=

1

1

0
 (20a, b) 

and also 

 ( ) .10 eaza +=  (20c) 

If Eq. (20b) is inserted into Eq. (19), the result is 

 .
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1
1

2 23
000 









+
−=−

z
a

B

c
rara ea  (21) 

Next, all unknown variables have to be eliminated from Eq. (21). First, 

we use the conservation law (8) in connection with Eq. (9) to eliminate 0a  

on the right side of Eq. (21). The result is 

 ,
1

1
1

3

8

2

0
00 









+
−

ρπ
=−

zG

c
rara ea  (22) 

where 0ρ  describes today’s mass density of the universe. 

For further derivation of the redshift distance, we now take into 

consideration the Eq. (20c) 

 ( ) 








+
−

ρπ
=+−

zG

c
razra eea

1

1
1

3

8

2
1

0
0  (23) 

to use then the light path D  introduced by Eq. (15) 

 Drara aee −= 0  (15a) 

to get 
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The further calculation results from suitable step-wise putting outside 

the brackets and summarization 

 ( ) ( ) 
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





+
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ρπ
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and 
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respectively. 
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Now we put ara0  outside the brackets on the right side of Eq. (27), which 

results in 
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We introduce aa raR 00 =  as an abbreviation for the present physical 

location of the observer and solve Eq. (28) for D  

 
( )

.
1

1
1

3

8

2

1
0

0

0



















+








+
−

ρπ+
= z

zG
R

c

z

R
D

a

a  (29) 



STEFFEN HAASE 

 

12 

As a further abbreviation, we use 
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 (30) 

resulting in 
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1
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,;

0

0
00 





+









+
−

β+
=β z

zz

R
RzD a

a  (31) 

The redshift distance D  is, therefore, a function of z  and the two 

parameters aR0  and ,0β  which both can be determined by fitting the 

equation to the astrophysical measurements. 

The name 0β  was chosen for the second parameter because it is a 

today’s quotient of two velocities, where the denominator is the speed of 

light named .c  

The literature does not know the parameter .0β  It results from the 

non-zeroing of ar  for the observer or of 0≠er  for the observed galaxy. 

For ,10 =β  the simpler equation results 

 ( )
( )

.
1

1
11,;

23000












+
−==β

z
RRzD aa  (31a) 

The expansion of Eq. (31) for small redshifts z  leads to 

 .1
2

1
0

0
zRD a








+

β
≈  (32) 

If this equation is solved for z  and then multiplied by ,c  the result is 

 .

1
2

1 0

0

aR

Dc
cz









+

β

≈  (33) 
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That is how we find today’s Hubble parameter 

 .

1
2

1
0

0

0

a

a

R

c
H









+

β

=  (34) 

The Hubble parameter also depends on the speed quotient 0β  introduced 

above and is in this form valid only for small redshifts because of the 

series expansion. This means that this aH0  is only valid locally. 

For parameter ,10 =β  we get 

 .
3

2

0
0

a
a R

c
H =  (34a) 

The reciprocal of this is the Hubble time for :10 =β  

 .
2

3 0
0 c

R
t a
H a

=  (34b) 

We now give another expression for 01 β  

 ,
1

2

3

8

2

0
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β
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a

a

R

R

G
R

c
 (35) 

which results from the Eq. (7) and Eq. (8) 
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3

4 3
00

33
00

3
aaa RraArM ρ

π
=ρ

π
=

π
=  (36) 

With ,2 2cMGRs =  the Schwarzschild radius of mass M  of the 

Friedmann sphere was introduced for pure formal reason. It does not play 

the same role here as it does within the Schwarzschild metric. 

For ,210 =β  we get .0 sa RR =  In this case we could believe that 

every observer is on the surface of a black hole (corresponds to the 
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Friedmann sphere) and that he always looks into a black hole while 

observing. For a galaxy located in the center of the Friedmann sphere, an 

observer would measure an infinitely large redshift. Overall, that could 

be logical. 

For ,10 =β  40 sa RR =  would result and the speed 0V  would be 

exactly identical to the speed of light .c  

The mass M  contains all gravitational effective components of the 

visible universe: .∑= iMM  These can also be different energy 

components ,iE  to which, according to Einstein’s energy-mass 

relationship ,2cEM ii =  masses iM  can be assigned. In addition, with 

M  as the total mass, mass components that are invisible to us (perhaps 

only so far) are taken in to consideration. 

With the help of Eq. (35), the Eq. (31) can be rewritten as 
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( )
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1
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,; 00
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+
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RRzD

s

aa
sa  (31b) 

If the comparison with the measurement data shows ,10 =β  we would 

get 
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In this case, we immediately see that the total mass M  of the Friedmann 

sphere goes directly into the equation in the form of the formally 

introduced Schwarzschild radius .sR  Therefore, it can be used as a scale 

of cosmological distances. 

Figure 2 shows the redshift distance (31) normalized to the distance 

aR0  for various values of the parameter .0β  

 

Figure 2. Redshift distance for different values of the parameter .0β  

The curvature of the curves is a direct consequence of the Friedmann 

equation. 

For ,10 =β  the distance aRD 0=  is achieved for .∞=z  

As a reminder: aR0  is today’s distance of the observer from the origin 

of the coordinate system, who is placed on the surface of “his” Friedmann 

sphere. 
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The comparison of Eq. (31b) with a Hubble diagram thus determines 

the current radius aa raR 00 =  of the Friedmann sphere (today’s physical 

location of the observer) and its Schwarzschild radius .sR  

Overall, each observer is located on the surface of all imaginable 

Friedmann spheres around him (for each viewing direction a Friedmann 

sphere with the radius aR0  belongs). The extragalactic objects (placed on 

)err =  observed by him then all lie according to their redshift z  on a 

radial line somewhere between the observer (placed on )arr =  and the 

center of the Friedmann sphere ( ).0=r  

The physical radius aR0  of the Friedmann sphere changes with time 

and forms a limit of visibility. Outside of every imaginable Friedmann 

sphere there is also mass, which, however, does not contribute to the 

gravitational events within the Friedmann sphere. 

It should be mentioned that the conceivable Friedmann spheres 

naturally at least partially overlap. 

An increasing limit distance aR0  decreases with time the velocity 0V  

introduced above, because sR  is a constant. Because Eq. (31) describes 

the physical behavior of photons in the universe, the velocity 0V  in Eq. 

(30) could be interpreted as an effective speed of light *0c  

 .
23

8

2 *0
0

00
0 c

R

RcGR
V

a

sa ≡=
ρπ

=  (30a) 

This velocity changes according to aR0  or 0ρ  over the time and has for 

us as today’s observers - because of very probable 10 =β  - just the value 

of the vacuum velocity c  that we can measure today. 

If this interpretation is correct, the effective speed of light *c  was 

infinitely large at the beginning of the expansion of the universe, because 
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at that time the Friedmann sphere was infinitely small and respectively 

its matter density was infinitely large. There is therefore no problem with 

speeds, which are apparently greater than today’s speed of light, when 

looking into the universe. 

If we consider today’s Hubble parameter (34) obtained above for small 

redshifts as a definition, we can write the redshift distance via 

 







−=

β
12

1

000 aaHR

c
 (34a) 

also like this 
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
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







+
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






−

+
= z

zR

R

z

R
RRzD

a

Ha
Ha  (31d) 

The quotient aHc 0  is called the Hubble radius HR  in the literature. For 

this distance, the escape speed by definition reaches the speed of light if it 

is assumed that a linear Hubble law is valid for all distances, which is - of 

course - an approximation. The Eq. (31d) is therefore only valid for small 

redshifts how Eq. (34a). 

2.3. The magnitude-redshift relation 

The magnitude-redshift relation is given by the definition of the 

apparent magnitude m  

 .log5
0

100
a

a R

D
mm =−  (37) 

Here an apparent limit magnitude am0  was introduced for ,0aR  which 

also changes with time. Substituting Eq. (31) into Eq. (37) then provides 

the sought magnitude-redshift relation 
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The two free parameters am0  and 0β  can be determined by direct 

comparison with a magnitude-redshift diagram. 

For ,10 =β  the following simple equation results 

 ( )
( )

.
1

1
1log5; 023100 aa m

z
mzm +













+
−=  (38a) 

For comparison, reference is made here to Eq. (50) from Subsection 4.2, 

which is known from the literature. 

2.4. The angular size-redshift relation 

This relation results in for large distances over 
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δ
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In this equation ϕ  means the measurable angular size and δ  the linear 

size of the observed extra-galactic object. 

Using ,10 =β  we get 
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In logarithmic form Eq. (40) becomes to 
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With ,10 =β  we get the simplified equation 
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For comparison, reference is made to Eq. (52) from Subsection 4.2, which 

is known from the literature. 

2.5. The number-redshift relation 

In flat Euclidean space the equation for the light-path sphere 

becomes to 

 .
3

4 3DV
π

=  (42) 

If we introduce the redshift distance via Eq. (31) 
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we get for the number-redshift relation 
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where aN0  means the expected number of objects in the light-path 

sphere aV0  and besides 

 η
π

=η= 3
000 3

4
aaa RVN     and    η= VN  (45a, b) 

applies. With η  the number density was named. In logarithmic form 

results 
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( ) .log1log3 01010 aNz ++−  (46) 

If we here also set ,10 =β  we get 

 ( )
( )

.log
1

1
1log3;log 0102310010 aa N

z
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
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


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For comparison, reference is made to Eq. (53) from Subsection 4.2, which 

is known from the literature. 

3. Comparison with Measurement data of Astrophysics 

The present paper presents a theoretical derivation of the redshift 

distance, which is done without approximations, e.g., small redshifts z  

and is, therefore, mainly of theoretical nature. The essay is therefore a 

theoretical offer to the observing cosmologists. 

Nevertheless, in this section, we will apply the theory presented here 

in detail to some measurement results of observational cosmology, 

whereby we only demonstrate the principle of evaluating the 

measurement data. For this reason, no more detailed error analyzes are 

carried out. We leave that to the experts of observational cosmology. 

The cosmological relevant parameters ,0aR  ,0H  ,0am  FSM  and 

mean values of absolute magnitudes M  (for quasars and radio galaxies) 

given here are, therefore, only to be considered as first approximations. 

In data analysis, we use data that are currently available and that 

are partly a bit older. Every cosmological theory also has to explain these 

older data because they represent actual measurement results and of 

course do not lose their validity over time. 

Of course, we are also aware that a larger number of measured values 

leads to more precise results for the parameters contained in the theory. 

The modern ΛCDM cosmology - as the current standard model - must 
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of course also confirm exactly these measurement results. 

In our comparison between theory and measurement results of 

observational cosmology, we consider the three well known and above 

calculated classical effects of cosmology which by A. R. Sandage et al. 

(1995) [14] are described: magnitude-redshift relation, angular size-

redshift relation and the number-redshift relation. 

3.1. Magnitude-redshift diagram 

The goal of any astrophysical theory is to match the measurement 

results of the astrophysicists as well as possible. We now want to check 

the magnitude of the parameters aR0  and 0β  introduced here. For this 

purpose, the magnitude-redshift diagram according to J. Huchra et al. 

1983 [1] can be used as a first step, as Figure 3 shows: 

 

Figure 3. Magnitude-redshift diagram for 2,260 galaxies according to J. 

Huchra et al. (1983) [1]. Parameter: ,0.10 =β  62.220 ≈am  with a 

standard deviation .53717.0=σ  The black circles are mean values 
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within 52 intervals m∆  of equal size of the apparent magnitude, to which 

the 52 mean values of the associated redshift intervals z∆  have been 

assigned. 

The mean values used for Figure 3 are listed in Table 2 in Subsection 

4.4. 

With this magnitude-redshift diagram, today’s apparent limit 

magnitude 62.220 ≈am  is found for .0.10 =β  

Of course, other parameter combinations are possible. Which value 

pairs really correspond to reality must be determined by the evaluation of 

all astrophysical relations derived here. Here, it is only a matter of 

explaining the principle of the evaluation. 

If we succeed in finding the value of aR0  using am0  (Eq. 37), 

statements can be made about the actual size of the Friedmann sphere 

(FS), its constant mass ,FSM  and consequently its current matter 

density .0ρ  

In addition, we can then immediately deduce from the measured 

redshifts the associated absolute magnitudes of the objects if the 

cosmological redshift is considered as the only possible component of the 

redshift of extragalactic objects. 

The prerequisite for the determination of the parameters mentioned 

is to find at least one extra-galactic object which is located exactly on the 

theoretical curve with the parameter pair 0.10 =β  and 62.220 ≈am  and 

whose absolute magnitude M  is known. For this purpose, the literature 

was reviewed and the following objects were found: 
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Table 1. Some galaxies with known absolute magnitude 

Object [ ]skmcz  ( )cz10log  m  M  reference 

M100 = NGC 4321 1560 3.1931 10.26 9.20−  [2] 

M96 = NGC 3368 899 2.9538 10.32 20−  [3] 

NGC 4571 343 2.5353 12.09 82.18−  [4] 

IC 4182 339 2.5302 9.55 92.19−  [5] 

Mean value object 785.3 2.8950 10.56 91.19−   

Measurements not found in the cited literature were taken from the 

articles by J. Huchra et al. (1983) [1], R.C. Kraan-Korteweg et al. (1979) 

[6] and A. Sandage et al. (1975) [7]. 

Unfortunately, all of these galaxies are not lying on the theoretical 

curve using the pair of parameters used above. But averaging results 

fortunately in an object that is at least very close to the curve, as shown 

in Figure 4: 

 

Figure 4. Magnitude-redshift diagram for the galaxies NGC 4321, NGC 

4571, NGC 3368 and IC 4182. Parameter: ,0.10 =β  62.220 ≈am  with a 
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standard deviation .02909.0=σ  

The absolute magnitude of the mean value object yields 

Mpc206,30 ≈aR  when the equation 

 
1

5
0

0

10
+

−

=

Mm

a

a

R  (47) 

is used. This result provides today’s Hubble parameter ≈aH0  

( )Mpcskm34.62 ⋅  and the associated current Hubble time ≈at0  

9107.15 × years, which fits well with the age of the oldest globular star 

clusters. With ,10 =β  the Schwarzschild radius ≈= aRR 0S 4  

Mpc824,12  results and from this the mass of the Friedmann sphere to 

.g1067.2 56×≈FSM  

If we consider aR0  as the radius of the Friedmann sphere, its current 

mass density results in .cmg1057.6 329
0

−×≈ρ FS  This density is 

actually much higher than today’s radiation density with 

.cmg1080.7 334
0

−×≈ρ R  This actually justifies neglecting the 

radiation density when deriving the redshift distance afterwards. 

Now a few words to the curvature of the theoretical curve for large 

redshifts follow. One of the original goals in finding the right Hubble law 

was the poor consistency of the textbook theory with the magnitude-

redshift diagrams of quasars. Figure 5 shows such a diagram for the 

quasar data according to Véron-Cetty (2003) [8] and the radio galaxy data 

of A. Sandage (1972) [9]. 
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Figure 5. Magnitude-redshift diagram for the mean values of quasars 

(Véron-Cetty, 2003) [8] and radio galaxies (Sandage 1972) [9] in 

comparison with the textbook theory (blue curve) and the theory 

presented here (green curve). Parameter: ,0.10 =β  29.22−≈QM  with 

a standard deviation ,19415.0=σ  24.200 ≈aQm  and Mpc.206,30 ≈aR  

Because the cosmological redshift z  generally only depends on the 

distance (the light path traveled by the photons) of the observed cosmic 

objects [Eq. (31)] but the apparent magnitude m  depends on the light 

path and on the absolute magnitude M  of the objects, the redshift in 

averaging for large data sets is generally to be regarded as primary. For 

this reason, we first formed 45 redshift intervals z∆  for the total number 

of 48,690 quasars, each with an equal number of quasars ( ).1082=n  

This procedure ensures good statistics even for the smallest and largest 

redshifts. 

Corresponding intervals of the apparent magnitude im∆  belong to 

these redshift intervals iz∆  ( ).451 ≤≤ i  We calculated the mean values 
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iz  and im  in both intervals. These mean values are shown in Figure 5 

as yellow squares. The list of mean values can be found as Table 3 in 

Subsection 4.4. 

The curved solid line (green) corresponds to the magnitude-redshift 

relation derived here, which has been adjusted within in the curved area 

with 29.22−≈QM  to the interval mean values of the quasars (yellow 

squares). The straight line drawn (blue) corresponds to the textbook 

theory. It was adapted to the radio galaxies (black triangles). The straight 

dotted line (black) is the best curve through the radio galaxies. The other 

dotted curved line (red) is a best-fit curve only by the averages of the 

quasars, whose equation is also shown in the figure above. 

The quasars with about 29.22−≈QM  on average are slightly 

fainter than the radio galaxies used here for comparison, for which 

8.22−≈RQM  is found. The quasars are, therefore, less absolute bright 

than previously thought. 

It turns out that the average value pairs of 48,690 quasars can be 

described best with .10 =β  This is also the deeper reason why for the 

determination of am0  using the magnitude-redshift diagram according to 

J. Huchra (1993) [1] 10 =β  has been chosen. 

If 10 =β  is accepted as correct, it follows that the current effective 

speed of light *00 cV =  [Eq. (30a)] is exactly equal to the speed of light 0c  

which is measurable today! This result would be immediately obvious. 

The theory presented here is able to explain correctly the average 

locations of the quasars in the magnitude-redshift diagram and to 

eliminate their previously assumed magnitude problem. 

3.2. Angular size-redshift diagram 

We use further the parameter choice 10 =β  and 62.220 ≈am  and 
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consider the angular size-redshift diagram according to K. Nilsson (1993) 

[10], which is shown in Figure 6: 

 

Figure 6. Angular size-redshift diagram according to K. Nilsson et al. 

(1993) [10]. Parameter: ,0.10 =β  ( ) 5
0 1014.6 −×≈δ aR  with a standard 

deviation 00378.0=σ  within the linear part of the curve, 

Mpc206,30 ≈aR  and Mpc.0.197≈δ  No mean values were formed 

making this diagram. 

The result for the quotient .1014.6 5
0

−×≈δ aR  This means an 

average linear size of the objects of Mpc0.197≈δ  if Mpc206,30 ≈aR  is 

assumed. 

The picture shows that the textbook theory for the flat Euclidean 

space [Eq. (52)], the upper curved curve (blue), fits less well with the 

measured values than the theory presented here (green). 

3.3. Number-redshift diagram 

Again we choose 10 =β  and 62.220 ≈am  to evaluate the following 
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number-redshift diagram. 

 

Figure 7. Number-redshift diagram for 48,690 quasars according to M.-

P. Veron-Cetty (2003) [8]. Parameter: 0.10 =β  with a standard deviation 

14564.0=σ  and .690,480 =aN  

The measuring points shown in Figure 7 correspond to the 

summation of the number of quasars within 64 redshift intervals of equal 

size. In Subsection 4.4 (mean value tables) the details are given. 

For the sake of simplicity, 690,480 =aN  has been chosen in this 

figure, which is exactly the number of quasars in the catalog of Véron-

Cetty (2003) [8] for which the redshift is given there. 

The upper curve (blue) again corresponds to the theory for the flat 

Euclidean space from the literature [Eq. (53)], while the lower solid curve 

(green) represents the number-redshift relation derived here. The dotted 

curve (red) is a best-fit curve whose formula is also shown within the 

diagram. 

The theory from the literature expects almost 10 times the number of 
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quasars for large redshifts compared to the theory presented here. That is 

certainly wrong. 

The fact that the theory and the measurement data do not agree 

exactly may be due to the fact that developmental effects could play a role 

(e.g., the existence or nonexistence of temporally first quasars for large 

redshifts and temporally last quasars for small redshifts), but such effects 

have not been considered in the derivation of Eq. (46) given here. 

In addition, it must be assumed that the measurement data are 

incomplete: The measurements probably do not extend far enough into 

the redshift space and some of them certainly do not take into account 

existing quasars in different directions, this means in summery they do 

not cover the whole space. 

4. Additions 

4.1. About the mass of Friedmann sphere 

The cause of the expansion of the universe visible to us as observers is 

its constant mass M  or the time-varying density ( ),tMρ  respectively. It 

ensures that the scale parameter changes over time. To check this 

statement, simply set the matter density in the Friedmann equation to 

zero. 

Every cosmologist, therefore, has to ask himself where exactly this 

mass is located in the universe. He can gain an answer for this by 

borrowing the appropriate ideas from classical non-relativistic Newtonian 

cosmology. There he has to imagine a mass sphere whose radius changes 

over time (e.g., grows). This means that the mass in question is 

completely within this sphere, and it is evenly distributed and remains 

there according to the cosmological principle. In relativistic cosmology, 

the time depend product of scale parameter and coordinate distance 

( ) ( )rtatR =  takes over the role of the physical radius of the mass sphere, 
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and it holds that the entire mass to be considered is inside this sphere 

(Friedmann sphere named here). 

Incidentally, the Friedmann equation of the flat universe looks 

strangely exactly as the equation of the non-relativistic Newtonian 

cosmology. There is no relativity seen in the equation, e.g., in the sense of 

limiting the rate of change dtda  of the scale parameter to the speed of 

light. 

Figure 8 shows the projection of a Friedmann sphere in to the plane 

at time 0t  (today) in which examples of possible places for an observer 

and galaxy observed are drawn. 

 

Figure 8. Friedmann sphere with examples of physical locations of an 

observer and a galaxy. 
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Because of the law of conservation of mass 

 3
00

33
00 3

4

3

4
aa RraM ρ

π
=ρ

π
=  (36a) 

which is used here, we see that aR0  is today’s radius of the Friedmann 

sphere with today’s mass density .0ρ  

An observable galaxy can minimally have the co-moving coordinate 

with .0=er  If a galaxy is placed there, we observe an infinitely large 

redshift for such a galaxy according to our redshift distance. For all other 

locations 0≠er  of an observed galaxy, a smaller redshift is always 

measured. 

Because an infinitely large redshift is always observed for the light 

path ,0aRD =  it can be assumed that in the physical radius 000 raR a =  

of a Friedmann sphere, the co-moving coordinate ar  has the maximum 

possible value 1=r  according to the complete FLRWM. ,0aR  therefore, 

describes the maximum size of the Friedmann sphere, which of course is 

time-dependent. This maximum value of the co-moving and 

dimensionless radial coordinate r  follows from the FLRWM with positive 

curvature 1=ε  and, from our point of view, can theoretically not simply 

be neglected despite the flat space-time assumed for today’s universe. 

Of course, each observer can also, e.g., look in exactly the opposite 

direction to the direction shown (green arrow). In this case, he looks again 

into a Friedmann sphere, which belongs to this direction. For ,0aRD =  

there is also an infinite redshift in this direction. The observer can of 

course also look in any other directions. The observer always looks into 

Friedmann spheres, which of course partially overlap. 

Overall, there is a part of the universe with a spherical radius ,0aR  

that is visible to any observer. A universe thought to be spherical 
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corresponds to at least one sphere with the radius ,2 0aR×  since beyond 

aR0  there is always also mass. Every observer sits on the surface of 

Friedmann spheres. Nevertheless, he can believe that his place is also in 

a center of such a Friedmann sphere. 

If we would put the position of an observer a little outside the 

Friedmann sphere shown in Figure 8, he would find the same situation as 

described above, if the universe would be actually much larger than a 

sphere with the radius aR02 ×  or even infinitely large. 

4.2. About the derivation of the redshift distance in the literature 

In the literature, the observer is usually placed in the coordinate 

origin 0=ar  (see Figure 9). Because of ,0=≥ ae rr  this results in the 

light path simply as .0literature eraD =  This depends only on the co-

moving coordinate location er  of the observed galaxy and on the today’s 

value of the scale parameter .0a  An earlier scale parameter such as ea  

does not play a role in this approach, which we consider as a strong 

limitation of the generality. 

In this case, the photons run inside a mass sphere from the outside to 

the inside, i.e., always towards the origin 0=ar  (incoming photons). Any 

other way of defining literatureD  would be physically nonsense. 
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Figure 9. Observer generally placed on the center of the co-moving 

coordinate system ( ).0=ar  

The calculation analogous to our derivation of the redshift distance 

(see Subsection 2.2) results first in 

( )
( )

( )z

zz
DRazD s +

+−+
=

1

11
,; 00literature   with  .2 0

00
sR

a
aD =  (48) 

We have denoted the index of the maximum distance for which ∞=z  

is reached with 0, because the calculation based on iei raD ,0,literature =  

generally gives the today’s distance between any galaxy i  and any 

observer. 

In the literature, the magnitude distance is indicated with 

 ( ) ,1 literatureDzDm +=  (49) 

whereby with the help of factor ( )z+1  an overall thinning of the number 

of photons due to the enlargement of the spherical area on which the 

radiation hits after its way through the universe and the energy loss due 
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to the redshift is taken into consideration. 

So it results first in 
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00  (50) 

or 
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Here, too, the prefactor is a distance parameter for which can be 

introduced an apparent magnitude. 

If, in a case which is also possible, the observed galaxy (each one 

because there are many; see Figure 10) each placed to its own coordinate 

origin (outgoing photons), the result of calculation - for obvious reasons of 

symmetry - is of course the same redshift distance as above. This can 

easily be checked by means of an elementary calculation. 

 

Figure 10. Observed galaxies ( )2,1=i  each in their own coordinate 

origin ( ).0=eir  
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Therefore, this results for the magnitude-redshift relation in 
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For the angular size-redshift relation we find 
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For the number-redshift relation we get accordingly 
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1log3;log 100literature10  

( ) .log1log3 01010 Nz +++  (53) 

All three equations also result from the well-known Mattig equation 

(1958), if the delay parameter 210 =q  is set there, whereby this 

equation describes a flat universe (see, e.g., Sandage et al. [11]). 

We have used Eq. (51), Eq. (52) and Eq. (53) in the measured value 

diagrams for comparison with the theory presented here. 

4.3. Consideration of the radiation density in the early days of 

cosmological expansion  

When deriving the redshift distance in Subsection 2.2, we neglected 

the relativistic radiation density Rρ  that was originally dominant in the 

early days of the universe. The reason for this is that today, actually for 

several billion years, this density no longer plays a role in the further 

development of the universe over time due to its small value compared to 

the non-relativistic mass density .Mρ  

If this radiation density is taken into account from the start when 
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deriving the redshift distance according to the scheme in Subsection 2.2 

the result is a more complex redshift distance because it then also 

dependent on a further parameter: 

( )RMRMaRM RzD ,0,00 ,,; Ωβ  
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       index 0 : today             index R : radiation           index M : non-relativistic matter 

Here the current density quotient RM,0Ω  is included as a further 

parameter, which takes into account the very early radiation era. For 

today’s radiation density, the designation R,0ρ  was introduced again and 

today’s non-relativistic mass density was named .,0 Mρ  The parameter 

M,0β  corresponds to our parameter 0β  in Eq. (31). 

With the numerical values for today’s density quotient RM,0Ω  

mentioned in Section 1, it can be seen immediately that R,0ρ  or RM,0Ω  

can actually be neglected. 

In addition, when comparing Eq. (54) with the measured values (e.g., 

magnitude-redshift diagram of the quasars), there is no longer any effect 

fitting the measurement curve for a density quotient smaller than 

.01.0,0 ≈Ω RM  

If we set 0,0 =Ω RM  in Eq. (54) - this corresponds to our neglect of 

today’s radiation density R,0ρ  - we get Eq. (31) again. Accordingly, this 

Eq. (31) is actually valid as today’s redshift distance, containing the 
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parameters aR0  and 0,0 β=β M  only. 

4.4. Mean value tables 

We also state here the data sets (mean value formation) used by us 

for the evaluation of cosmological relevant measurement data in order to 

offer a verification option. 

(I) Data set from J. Huchra et al. (1983) [1] 

This data set is limited to 5.14=m  with regard to the apparent 

magnitude. Therefore, we have formed 52 equal intervals of the apparent 

magnitudes and calculated the mean values .m  Then we assigned the 

mean values z  of the redshift to these mean values. The result is shown 

in Table 2. 

Table 2. Averaging for the data set of J. Huchra et al. [1] 

interval z  m  interval z  m  

1 0.02011 14.500 27 0.00415 11.945 

2 0.01891 14.401 28 0.00459 11.835 

3 0.01669 14.301 29 0.00323 11.744 

4 0.01613 14.202 30 0.00386 11.636 

5 0.01500 14.102 31 0.00429 11.548 

6 0.01577 14.001 32 0.00437 11.432 

7 0.01453 13.901 33 0.00246 11.321 

8 0.01290 13.805 34 0.00307 11.241 

9 0.01277 13.704 35 0.00224 11.145 

10 0.01086 13.606 36 0.00191 11.065 

11 0.01122 13.509 37 0.00272 10.926 

12 0.01042 13.410 38 0.00296 10.840 

13 0.00936 13.311 39 0.00383 10.735 

14 0.00792 13.214 40 0.00321 10.650 

15 0.00878 13.127 41 0.00414 10.536 

16 0.00771 13.023 42 0.00431 10.450 

17 0.00739 12.932 43 0.00296 10.325 

18 0.00619 12.845 44 0.00372 10.262 

19 0.00700 12.730 45 0.00164 10.063 
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20 0.00671 12.630 46 0.00306 9.840 

21 0.00612 12.544 47 0.00161 9.630 

22 0.00590 12.445 48 0.00082 9.570 

23 0.00518 12.345 49 0.00150 9.190 

24 0.00454 12.243 50 0.00158 9.030 

25 0.00519 12.133 51 0.00102 8.910 

26 0.00384 12.038 52 0.00077 8.580 

These data were used in making Figure 3. 

(II) Data set of M.-P. Véron-Cetty and P. Véron (2003) [8] 

(IIa) Magnitude-redshift diagram 

Because of the large number of quasars within this data set, we first 

formed 45 redshift intervals with 1,082 quasars each (a total number of 

48,690 quasars) and calculated the corresponding redshift mean values 

.z  We then calculated the associated mean values m  of the apparent 

magnitude. The result is shown in Table 3. 

Table 3. Averaging the data set by M.-P. Véron-Cetty and P. Véron [8] 

interval z  m  interval z  m  

1 0.22781 16.655 24 1.59433 19.718 

2 0.42411 18.131 25 1.63636 19.723 

3 0.54586 18.61 26 1.67718 19.760 

4 0.63882 18.856 27 1.71901 19.669 

5 0.71446 19132 28 1.76149 19.792 

6 0.77836 19.321 29 1.80252 19.715 

7 0.83364 19.463 30 1.84408 19.764 

8 0.88507 19.456 31 1.88573 19.671 

9 0.93860 19.486 32 1.92566 19.703 

10 0.99056 19.515 33 1.96734 19.557 

11 1.04083 19.491 34 2.01270 19.656 

12 1.08687 19.533 35 2.06101 19.702 

13 1.13313 19.564 36 2.10707 19.678 

14 1.17863 19.581 37 2.15417 19.716 

15 1.22118 19.629 38 2.20282 19.638 

16 1.26497 19.629 39 2.25829 19.678 

17 1.30822 19.604 40 2.32477 19.604 
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18 1.35045 19.624 41 2.40868 19.669 

19 1.39277 19.587 42 2.51872 19.741 

20 1.43575 19.686 43 2.67596 19.708 

21 1.47938 19.658 44 2.95107 19.488 

22 1.51873 19.682 45 3.85371 20.147 

23 1.55518 19.687    

These data were used in making Figure 5. 

(IIb) Number-redshift diagram 

To create this diagram, we first formed 64 redshift intervals of equal 

size and then calculated the associated numbers of quasars within these 

z  intervals. The result is shown in Table 4. 

Table 4. Number N  of quasars within redshift intervals of equal size in 

the data set of M.-P. Véron-Cetty and P. Véron [8] 

z-interval 

upper limit 

N z-interval 

upper limit 

N z-interval 

upper limit 

N 

0.1 88 2.3 1,883 4.5 50 

0.2 295 2.4 1,379 4.6 21 

0.3 388 2.5 1,076 4.7 18 

0.4 623 2.6 774 4.8 14 

0.5 805 2.7 626 4.9 15 

0.6 1,031 2.8 454 5 10 

0.7 1,340 2.9 365 5.1 4 

0.8 1,666 3 271 5.2 3 

0.9 2,063 3.1 249 5.3 1 

1 2,065 3.2 187 5.4 0 

1.1 2,271 3.3 150 5.5 1 

1.2 2,376 3.4 81 5.6 1 

1.3 2,491 3.5 45 5.7 0 

1.4 2,556 3.6 44 5.8 1 

1.5 2,542 3.7 91 5.9 1 

1.6 2,834 3.8 87 6 1 

1.7 2,612 3.9 78 6.1 1 

1.8 2,565 4 57 6.2 0 

1.9 2,589 4.1 76 6.3 2 

2 2,620 4.2 72 6.4 1 

2.1 2,283 4.3 65   

2.2 2,276 4.4 56   

These data were used in making Figure 7. 
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