NECESSARY AND SUFFICIENT CONDITIONS FOR A SPACE TO HAVE A MAXIMAL, PROPER, DENSE, T₃ SUBSPACE

CHARLES DORSETT

Department of Mathematics Texas A&M University-Commerce Commerce, Texas 75429 USA e-mail: charles.dorsett@tamuc.edu

Abstract

Within this paper, necessary and sufficient conditions for a space to have a maximal, proper, dense, T_3 subspace are given and subspaces properties of such spaces are further investigated.

1. Introduction and Preliminaries

In 1936 [9], for a space (X, T), an externally generated, strongly (X, T) related space, called the T_0 -identification space of (X, T), was introduced and used to further characterize each of metrizable and pseudometrizable.

Definition 1.1. Let (X, T) be a space, let *R* be the equivalence relation on *X* defined by *xRy* iff $Cl(\{x\}) = Cl(\{y\})$, let X_0 be the set of *R* equivalence classes of Keywords and phrases: proper subspaces, dense subspaces, maximal T_3 subspaces.

2010 Mathematics Subject Classification: 54B05, 54D10.

Received February 14, 2018; Accepted February 23, 2018

© 2018 Fundamental Research and Development International

X, let $N : X \to X_0$ be the natural map, and let Q(X, T) be the decomposition topology on X_0 determined by (X, T) and the map *N*. Then $(X_0, Q(X, Y))$ is the T_0 -identification space of (X, T).

Theorem 1.1. A space (X, T) is pseudometrizable iff $(X_0, Q(X, T))$ is metrizable.

 T_0 -identification spaces were cleverly created to add T_0 to the externally generated, strongly (X, T) related T_0 -identification space of (X, T) [9], which, when combined with the fact that metrizable and (pseudometrizable and T_0) are equivalent, was used to establish the result above.

The characterization of metrizable and pseudometrizable given above using T_0 identification spaces raised the question: What other properties *P* not necessarily T_0 and (*P* and T_0), if any, would behave in the same manner as pseudometrizable and metrizable = (pseudometrizable and T_0)?, which led to the introduction and investigation of weakly *P*o properties in 2015 [1].

Definition 1.2. Let *P* be topological properties such that $Po = (P \text{ and } T_0)$ exists. Then a space (X, T) is weakly *Po* iff its T_0 -identification space $(X_0, Q(X, T))$ has property *P*. A topological property *Po* for which weakly *Po* exists is called a weakly *Po* property [1].

Since for a space, its T_0 -identification space has property T_0 , then, for a topological property *P* for which *P*o exists, a space is weakly *P*o iff its T_0 -identification space has property *P*o.

Within the paper [1], it was shown that for a weakly *P*o property *Q*o, a space is weakly *Q*o iff its T_0 -identification space is weakly *Q*o, which led to the introduction and investigation of T_0 -identification *P* properties [2].

Definition 1.3. Let S be a topological property. Then S is a T_0 -identification P

property iff both a space and its T_0 -identification space simultaneously shares property S.

In the introductory weakly *P*o property paper [1], it was shown that weakly *P*o is neither T_0 nor "not- T_0 ", where "not- T_0 " is the negation of T_0 . The need and use of "not- T_0 " revealed "not- T_0 " as a useful, powerful topological property and tool, motivating the inclusion of the long-neglected properties "not-*P*", where *P* is a topological property for which "not-*P*" exists, as important properties for investigation and use in the study of topology. As a result, within a short time period, many new, important, fundamental, foundational, never before imagined properties and examples have been discovered, expanding and changing the study of topology forever.

In past studies of weakly *P*o spaces and properties, for a classical topological property Qo, a special topological property *W* was sought such that for a space with property *W*, its T_0 -identification space has property Qo, which then implies the initial space has property *W*, with no certainty that such a topological property *W* exists. As given above, the study of weakly *P*o spaces and related properties has been a productive study, but, if the past search process continued, the study of weakly *P*o spaces and properties would continue to be uncertain, tedious, and never ending. To make the process more certain, the question of precisely which topological properties are weakly *P*o properties arose leading to answers in a 2017 paper [3].

Answer 1.1. Let Q be a topological property for which both Q o and (Q and "not- T_0 ") exist. Then Q is a T_0 -identification P property that is weakly P o and Q = weakly Q o = (Q o or (Q and "not- T_0 ")) [3].

Answer 1.2. $\{Qo | Q \text{ is a } T_0 \text{ -identification } P \text{ property}\} = \{Qo | Qo \text{ is a weakly} Po \text{ property}\} = \{Qo | Q \text{ is a topological property and } Qo \text{ exists}\}$ [3].

Thus, major progress was achieved in the study of topology, weakly P_0 , and related properties. If Q is a topological property for which both Q_0 and (Q and "not- T_0 ") exist, Answer 1.1 quickly and easily gives weakly Q_0 . If Q is a

topological property for which Q = Qo, then Q = Qo is a weakly *Po* property, but Q = Qo is not a T_0 -identification *P* property or weakly *Po*. Within the paper [3], a topological property *W* that can be both T_0 and "not- T_0 " was shown to exist that is a T_0 -identification *P* property that is weakly *Po* such that W = weakly *Qo*, again making the search process certain, but, just knowing such a *W* exists, gave little insight into the precise, needed topological property *W*, raising the question of whether the known information could somehow be used to more precisely determine *W* for the fixed *Qo*.

The investigation of that question led to the introduction and investigation of *OXTO* subsets and the corresponding subspace for each space (X, T) [4].

Definition 1.4. Let (X, T) be a space and for each $x \in X$, let C_x be the T_0 -identification space equivalence class containing x. Then Y is an *OXTO* subset of X iff Y contains exactly one element from each equivalence class C_x .

Within the paper [4], it was shown that for a space (X, T), for each *OXTO* subset *Y* of *X*, (Y, T_Y) is homeomorphic to $(X_0, Q(X, T))$. Since, as stated earlier, the T_0 -identification space of each space is T_0 and T_0 is a topological property, then for each *OXTO* subset *Y* of *X* in a space (X, T), (Y, T_Y) is T_0 . Also, within the paper [4], it was shown that for each topological property *Q* for which *Q*o exists, a space (X, T) is weakly *Q*o iff for each *OXTO* subset *Y* of (X, T), (Y, T_Y) has property *Q*o, which can be, and has been, used to precisely determine weakly *Q*o [4]. Thus, the study of weakly *P*o and weakly *P*o properties has been completely internalized and greatly simplified by the use of *OXTO* subsets and the corresponding subspaces, and the earlier results, replacing many, earlier uncertainties with certainties.

The continued investigation of weakly *P*o properties, "not- T_0 ", and *OXTO* subsets and subspaces of a space led to the definition and unexpected results below.

Theorem 1.2. Let (X, T) be a space. Then the following are equivalent: (a)

(X, T) is "not- T_0 ", (b) (X, T) has a maximal, proper, dense T_0 subspace, and (c) for each OXTO subset Y of X, (Y, T_Y) is a maximal, proper, dense T_0 subspace of (X, T) [5].

Definition 1.5. Let (X, T) be a space, let Y be a subspace of (X, T), and let Q be a topological property for which Qo exists. Then (Y, T_Y) is a maximal, proper, dense, Qo subspace of (X, T) iff (Y, T_Y) is a proper, dense, Qo subspace of (X, T) such that for each subspace (Z, T_W) of (X, T), where Z properly containing Y, (Z, T_Z) is "not-Qo" [6].

Theorem 1.3. Let (X, T) be a space and let Q be a topological property for which Q_0 exists. Then (a) for each OXTO subset Y of X, (Y, T_Y) is a maximal, proper, dense, Q_0 subspace of (X, T) iff (b) (X, T) is weakly Q_0 and "not- T_0 " [6].

The results above raised questions about necessary and sufficient conditions, if any, for a space to have a maximal, proper, dense, T_i subspace, i = 1, 2, which were resolved in the paper [7], raising the question of necessary and sufficient conditions, if any, for a space to have a maximal, proper, dense, T_3 subspace.

The regular and T_3 separation axioms were introduced in 1921 [10].

Definition 1.6. A space (X, T) is regular iff for each closed set C and each $x \notin C$, there exist disjoint open sets U and V such that $x \in U$ and $C \subseteq V$. A regular T_1 space is denoted by T_3 .

The work in this paper focuses attention on "not- T_3 ", whose definition is given below.

Definition 1.7. A space is "not- T_3 " iff it is "not- T_1 " or "not-regular".

In 2016 [8], it was shown that T_3 is a weakly *P*o property with regular = weakly (regular)o = weakly T_3 . Below Theorem 1.3 is applied to regular and T_3 ,

giving necessary and sufficient conditions in "not- T_0 " spaces for a space to have a maximal, proper, dense, T_3 subspace and the question above for maximal, proper, dense, T_3 subspaces is resolved.

2. Weakly T_3 and "not- T_0 " Spaces and Necessary and Sufficient Conditions on a Space for the Space to have a Maximal, Proper, Dense, T_3 Subspace

Corollary 2.1. Let (X, T) be a space. Then (a) for each OXTO subset Y of X, (Y, T_Y) is a maximal, proper, dense, T_3 subspace of (X, T) iff (b) (X, T) is (regular = weakly (regular)o) and "not- T_0 ".

Theorem 2.1. Let (X, T) be a space and let Y be a proper subset of X. Then the following are equivalent: (a) (X, T) has a maximal, proper, dense, T_3 subspace (Y, T_Y) , (b) (X, T) is "not- T_3 ", (Y, T_Y) is a proper, T_3 subspace of (X, T), and for each $x \in X \setminus Y$, $W = \{x\} \cup Y$, and $C_W(x) = \{y \in W \mid Cl_W(\{x\}) = Cl_W(\{y\})\}$, every T-open set containing x intersects Y, $C_W(x)$ contains at most two elements, and if $C_W(x) = \{x\}$ and $\{x\}$ is not T_W -closed, (W, T_W) is "not- T_1 " or $(\{x\}$ is T_W -closed, (W, T_W) is T_1 , and there exists a T_W -closed set C and a $z \in W \setminus C$ such that every T_W -open set containing z intersects every T_W -open set containing C, where $x \in C$, $z \in Y$, and for each T_W -open set A containing z, $x \in Cl_W(A)$ or C is a T_W -, T_Y -closed set such that for each T_W -open set B containing C, $x \in$ $Cl_W(B)$.

Proof. (a) implies (b): Since (Y, T_Y) is a maximal, proper, T_3 subspace of (X, T) and T_3 is a subspace property, then (X, T) is "not- T_3 " and (Y, T_Y) is a proper, T_3 subspace of (X, T). If $\{x\}$ is T_W -open, then there exists a *T*-open set *O* containing *x* such that $O \cap Y = \phi$ and (Y, T_Y) is not dense in (X, T). Thus $\{x\}$ is not T_W -open. Suppose $C_W(x)$ contains three or more elements. Let *x*, *a*, and *b* be

distinct elements of $C_W(x)$. Then $Cl_W(\{a\}) = Cl_W(\{x\}) = Cl_W(\{b\})$. Thus $Cl_Y(\{a\}) = Cl_Y(\{b\})$ and (Y, T_Y) is "not- T_0 " and hence "not- T_1 ", which is a contradiction. Suppose $C_W(x) = \{x, a\}, a \neq x$. Then $Cl_W(\{x\}) = Cl_W(\{a\})$ and (W, T_W) is "not- T_0 ", which implies (W, T_W) is "not- T_1 " and thus, "not- T_3 ". Suppose $C_W(x) = \{x\}$ and $\{x\}$ is not T_W -closed. Then (there exists a $y \in Y$ such that $y \in Cl_W(\{x\})$ and $x \notin Cl_W(\{y\})$ or $y \notin Cl_W(\{x\})$ and $x \in Cl_W(\{y\})$ or for all $y \in Y$, $x \notin Cl_W(\{y\})$ and $y \notin Cl_W(\{x\})$. In either of the first two cases, (W, T_W) is "not- T_1 " and, thus, (W, T_W) is "not- T_3 ". Thus, consider the third case. Since for each $y \in Y$, $y \notin Cl_W(\{x\})$, then $Cl_W(\{x\}) = \{x\}$. Thus $Y = W \setminus \{x\}$ is T_W -, T_Y open and each T_Y -open set is T_W -open. Since (Y, T_Y) is $T_1, x \notin Cl_W(\{y\})$ for all $y \in Y$, and $y \notin Cl_W(\{x\})$, for all $y \in Y$, then (W, T_W) is T_1 . Since (W, T_W) is "not- T_3 " and T_1 , then (W, T_W) is "not-regular" and there exists a T_W -closed set C and a $z \notin C$ such that every T_W -open set containing z intersects every T_W -open set containing C. Then $C \subset Y$ and $z \in Y$ or $\{x\} \subset C$ and $z \in Y$ or $C \subseteq Y$ and z = x. Consider the case that $C \subset Y$ and $z \in Y$. Since (Y, T_Y) is T_3 , there exist disjoint T_W -, T_Y -open sets A and B such that $z \in A$ and $C \subseteq B$, which is a contradiction. Thus $x \in C$ and $z \in Y$ or $C \subseteq Y$ and z = x. Consider the case that $x \in C$ and $z \in Y$. Then $C = \{x\}$ or $\{x\}$ is a proper subset of C. Consider the case that $C = \{x\}$. Let $A \in T_W$ such that $z \in A$. Then $x \in Cl_W(A)$ since, otherwise, $x \in (B = W \setminus Cl_W(A)) \in T_W, \quad z \in A \in T_W, \text{ and } A \cap B = \phi, \text{ which is a}$ contradiction. Consider the case that $\{x\}$ is a proper subset of C. Let $D = C \cap Y$, which is T_Y -closed. Let A and B be disjoint T_W -, T_Y -open sets such that $z \in A$ and $D \subseteq B$. Suppose there exist disjoint T_W -open sets E and F such that $z \in E$ and $x \in F$. Then $z \in (A \cap E) \in T_W$, $C \subseteq (B \cup F) \in T_W$, and $(A \cap E) \cap (B \cup F)$ $= \phi$, which is a contradiction. Thus every T_W -open set containing z intersects every T_W -open set containing C and for each T_W -open set G containing $z, x \in Cl_W(G)$. Consider the case that z = x and $C \subseteq Y$. Let A be a T_W -open set containing C.

CHARLES DORSETT

Since every T_W -open set containing x intersects every T_W -open set containing C, then $x \in Cl_W(A)$.

Clearly (b) implies (c).

(c) implies (a): Since every *T*-open set containing *x* intersects *Y*, then (Y, T_Y) is dense in (X, T) and (Y, T_Y) is a proper, dense, T_3 subspace of (X, T). If $C_W(x) = \{x, a\}, a \neq x$, then $Cl_W(\{x\} = Cl_W(\{a\})$ and (W, T_W) is "not- T_0 " and thus "not- T_1 " and "not- T_3 " and (Y, T_Y) is a maximal, proper, dense, T_3 subspace of (X, T). If $C_W(x) = \{x\}$ and $\{x\}$ is not T_W -closed, then (W, T_W) is "not- T_1 " and thus "not- T_3 " and (Y, T_Y) is a maximal, proper, dense, T_3 subspace of (X, T). If $C_W(x) = \{x\}$ and $\{x\}$ is T_W -closed, then (W, T_W) is T_1 and there exists a T_W closed set *C* and a $z \notin C$ such that every T_W -open set containing *z* intersects every T_W -open set containing *C*. Thus (W, T_W) is "not-regular", which implies (W, T_W) is "not- T_3 " and (Y, T_Y) is a maximal, proper, dense, T_3 subspace of (X, T).

3. An Additional Characterization and Properties of Such Spaces

Theorem 3.1. Let (X, T) be a space and let Y be a proper subset of X. Then (a) (Y, T_Y) is a maximal, proper, dense, T_3 subspace of (X, T) iff (b) for each subset Z of X that properly contains Y, (Z, T_Z) is "not- T_3 " and each subspace of (Y, T_Y) is T_3 .

Proof. (a) implies (b): Since (Y, T_Y) is T_3 and T_3 is a subspace property, then each subspace of (Y, T_Y) is T_3 . Since (Y, T_Y) is a maximal, proper, dense, T_3 subspace of (X, T), then, by definition, for each subset Z of X that properly contains Y, (Z, T_Z) is "not- T_3 ".

(b) implies (a): Since Y is a subspace of itself, then (Y, T_Y) is a proper, T_3 subspace of (X, T) and since for each subset Z of X that properly contains Y,

 (Z, T_Z) is "not- T_3 ", then, by definition, (Y, T_Y) is a maximal, proper, dense, T_3 subspace of (X, T).

Definition 3.1. A space (X, T) has the maximal, proper, dense, T_3 subspace property iff (X, T) has a maximal, proper, dense, T_3 subspace of (Y, T_Y) .

Theorem 3.2. The maximal, proper, dense, T_3 subspace property is a topological property.

Proof. Let (X, T) have the maximal, proper, dense, T_3 subspace property and let $f: (X, T) \to (Z, S)$ be a homeomorphism. Let (Y, T_Y) be a maximal, proper, dense, T_3 subspace of (X, T). Then f(Y) is a proper subset of Z and since T_3 is a topological property and $f_{f(Y)}: (Y, T_Y) \to (f(Y), S_{f(Y)})$ is a homeomorphism, then $(f(Y), S_{f(Y)})$ is a proper, T_3 subspace of (Z, S). Let $z \in Z \setminus f(Y)$ and let $U \in S$ such that $z \in U$. Let x be the unique element of X such that f(x) = z. Then $x \notin Y$ and $x \in f^{-1}(U) \in T$ and, since (Y, T_Y) is dense in (X, T), $f^{-1}(U) \cap$ $Y \neq \phi$. Thus $U \cap f(Y) \neq \phi$ and $(f(Y), S_{f(Y)})$ is dense in (Z, S). Suppose there exists a subset W of Z that properly contains f(Y) that is T_3 . Then $f^{-1}(W)$ is a subset of X that properly contains Y and $(f^{-1}(W), T_{f^{-1}(W)})$ is T_3 , which is a contradiction. Thus for each subset W of Z that properly contains f(Y), (W, S_W) is "not- T_3 ". Thus $f(Y), (S_{f(Y)})$ is a maximal, proper, dense, T_3 subspace of (Z, S).

Theorem 3.3. The maximal, proper, dense, T_3 subspace property is not a subspace property.

Proof. Let (X, T) have the maximal, proper, dense, T_3 subspace property with maximal, proper, dense, T_3 subspace (Y, T_Y) having two or more elements. Let a and b be distinct elements of Y, let $Z = \{a\}$, and let $W = \{a, b\}$. Then (Z, T_Z) is a proper, T_3 subspace of (W, T_W) , where (W, T_W) is T_3 and "not-"not- T_3 ". Thus the maximal, proper, dense, T_3 subspace property is not a subspace property.

The following example shows that for a space (X, T), a maximal, proper, dense, T_3 subspace of (X, T) need not be unique.

Example 3.1. Let $X = \{a, b\}$, where *a* and *b* are distinct, and let *T* be the indiscrete topology on *X*. Then each singleton set subspace of (X, T) is a maximal, proper, dense, T_3 subspace of (X, T) and maximal, proper, dense, T_3 subspaces are not unique.

References

- [1] C. Dorsett, Weakly P properties, Fundamental J. Math. Math. Sci. 3(1) (2015), 83-90.
- [2] C. Dorsett, T₀-identification P and weakly P properties, Pioneer J. Math. Math. Sci. 15(1) (2015), 1-8.
- [3] C. Dorsett, Complete characterizations of weakly Po and related spaces and properties, J. Math. Sci.: Adv. Appl. 45 (2017), 97-109.
- [4] C. Dorsett, Additional properties for weakly Po and related properties with an application, J. Math. Sci.: Adv. Appl. 47 (2017), 53-64.
- [5] C. Dorsett, Additional properties and characterizations of T_0 and "not- T_0 ", and each of R_0 , and R_1 in "not- T_0 " spaces, Pioneer J. Math. Math. Sci. 21(1) (2017), 25-36.
- [6] C. Dorsett, Additional properties and characterizations of T₀, Qo, weakly Qo and maximal, proper, dense, Qo OXTO subspaces in weakly Qo and "not-T₀" spaces, J. Math. Sci.: Adv. Appl. 49 (2018), 15-28.
- [7] C. Dorsett, Necessary and sufficient conditions for a space to have a maximal, proper, dense, T_i subspace, i = 1, 2, Fundamental J. Math. Math. Sci. 9(1) (2018), 1-12.
- [8] C. Dorsett, Weakly (regular)o and not-regular properties, and equivalent separation axioms, J. Math. Sci.: Adv. Appl. 41 (2016), 35-41.
- [9] M. Stone, Applications of Boolean algebras to topology, Mat. Sb. 1 (1936), 765-771.
- [10] L. Vietoris, Stetige Mengen, Monatch. Math. 31 (1921), 173-204.