NECESSARY AND SUFFICIENT CONDITIONS FOR A SPACE TO HAVE A MAXIMAL, PROPER, DENSE, *T*³ **SUBSPACE**

CHARLES DORSETT

Department of Mathematics Texas A&M University-Commerce Commerce, Texas 75429 USA e-mail: charles.dorsett@tamuc.edu

Abstract

Within this paper, necessary and sufficient conditions for a space to have a maximal, proper, dense, T_3 subspace are given and subspaces properties of such spaces are further investigated.

1. Introduction and Preliminaries

In 1936 [9], for a space (X, T) , an externally generated, strongly (X, T) related space, called the T_0 -identification space of (X, T) , was introduced and used to further characterize each of metrizable and pseudometrizable.

Keywords and phrases: proper subspaces, dense subspaces, maximal T_3 subspaces. **Definition 1.1.** Let (X, T) be a space, let R be the equivalence relation on X defined by *xRy* iff $Cl({x}) = Cl({y})$, let X_0 be the set of *R* equivalence classes of

2010 Mathematics Subject Classification: 54B05, 54D10.

Received February 14, 2018; Accepted February 23, 2018

© 2018 Fundamental Research and Development International

X, let $N: X \to X_0$ be the natural map, and let $Q(X, T)$ be the decomposition topology on X_0 determined by (X, T) and the map *N*. Then $(X_0, Q(X, Y))$ is the T_0 -identification space of (X, T) .

Theorem 1.1. A space (X, T) is pseudometrizable iff $(X_0, Q(X, T))$ is *metrizable*.

 T_0 -identification spaces were cleverly created to add T_0 to the externally generated, strongly (X, T) related T_0 -identification space of (X, T) [9], which, when combined with the fact that metrizable and (pseudometrizable and T_0) are equivalent, was used to establish the result above.

The characterization of metrizable and pseudometrizable given above using T_0 identification spaces raised the question: What other properties P not necessarily T_0 and $(P$ and T_0), if any, would behave in the same manner as pseudometrizable and metrizable = (pseudometrizable and T_0)?, which led to the introduction and investigation of weakly *P*o properties in 2015 [1].

Definition 1.2. Let *P* be topological properties such that $Po = (P \text{ and } T_0)$ exists. Then a space (X, T) is weakly Po iff its T_0 -identification space (X_0, Q) (X, T)) has property *P*. A topological property *P*o for which weakly *Po* exists is called a weakly *P*o property [1].

Since for a space, its T_0 -identification space has property T_0 , then, for a topological property *P* for which *P*o exists, a space is weakly *P*o iff its *T*⁰ identification space has property *P*o.

Within the paper [1], it was shown that for a weakly *P*o property *Q*o, a space is weakly Q_0 iff its T_0 -identification space is weakly Q_0 , which led to the introduction and investigation of T_0 -identification *P* properties [2].

Definition 1.3. Let *S* be a topological property. Then *S* is a T_0 -identification *P*

property iff both a space and its T_0 -identification space simultaneously shares property *S*.

In the introductory weakly *P*o property paper [1], it was shown that weakly *P*o is neither T_0 nor "not- T_0 ", where "not- T_0 " is the negation of T_0 . The need and use of "not-*T*₀" revealed "not-*T*₀" as a useful, powerful topological property and tool, motivating the inclusion of the long-neglected properties "not-*P*", where *P* is a topological property for which "not-*P*" exists, as important properties for investigation and use in the study of topology. As a result, within a short time period, many new, important, fundamental, foundational, never before imagined properties and examples have been discovered, expanding and changing the study of topology forever.

In past studies of weakly *P*o spaces and properties, for a classical topological property *Q*o, a special topological property *W* was sought such that for a space with property *W*, its *T*⁰ -identification space has property *Q*o, which then implies the initial space has property *W*, with no certainty that such a topological property *W* exists. As given above, the study of weakly *P*o spaces and related properties has been a productive study, but, if the past search process continued, the study of weakly *P*o spaces and properties would continue to be uncertain, tedious, and never ending. To make the process more certain, the question of precisely which topological properties are weakly *P*o properties arose leading to answers in a 2017 paper [3].

Answer 1.1. Let *Q* be a topological property for which both *Q*o and (*Q* and "not- T_0 ") exist. Then *Q* is a T_0 -identification *P* property that is weakly *P*o and $Q =$ weakly $Qo = (Qo \text{ or } (Q \text{ and } "not-T₀"))$ [3].

Answer 1.2. $\{Q \circ | Q \text{ is a } T_0 \text{-identification } P \text{ property}\} = \{Q \circ | Q \circ \text{ is a weakly}\}$ *P*o property} = { Q o| Q is a topological property and Q o exists} [3].

Thus, major progress was achieved in the study of topology, weakly *P*o, and related properties. If *Q* is a topological property for which both *Q*o and (*Q* and "not- T_0 ") exist, Answer 1.1 quickly and easily gives weakly Q_0 . If Q is a topological property for which $Q = Q_0$, then $Q = Q_0$ is a weakly Po property, but $Q = Q$ ^o is not a T_0 -identification *P* property or weakly *P*o. Within the paper [3], a topological property *W* that can be both T_0 and "not- T_0 " was shown to exist that is a *T*0 -identification *P* property that is weakly *P*o such that *W* = weakly *Q*o, again making the search process certain, but, just knowing such a *W* exists, gave little insight into the precise, needed topological property *W*, raising the question of whether the known information could somehow be used to more precisely determine *W* for the fixed *Q*o.

The investigation of that question led to the introduction and investigation of *OXTO* subsets and the corresponding subspace for each space (X, T) [4].

Definition 1.4. Let (X, T) be a space and for each $x \in X$, let C_x be the T_0 identification space equivalence class containing *x*. Then *Y* is an *OXTO* subset of *X* iff *Y* contains exactly one element from each equivalence class C_x .

Within the paper [4], it was shown that for a space (X, T) , for each *OXTO* subset *Y* of *X*, (Y, T_Y) is homeomorphic to $(X_0, Q(X, T))$. Since, as stated earlier, the T_0 -identification space of each space is T_0 and T_0 is a topological property, then for each *OXTO* subset *Y* of *X* in a space (X, T) , (Y, T_Y) is T_0 . Also, within the paper [4], it was shown that for each topological property *Q* for which *Q*o exists, a space (X, T) is weakly Qo iff for each *OXTO* subset *Y* of (X, T) , (Y, T_Y) has property Q o, which can be, and has been, used to precisely determine weakly *Q*o [4]. Thus, the study of weakly *P*o and weakly *P*o properties has been completely internalized and greatly simplified by the use of *OXTO* subsets and the corresponding subspaces, and the earlier results, replacing many, earlier uncertainties with certainties.

The continued investigation of weakly *P*o properties, "not-*T*⁰ ", and *OXTO* subsets and subspaces of a space led to the definition and unexpected results below.

Theorem 1.2. *Let* (X, T) *be a space. Then the following are equivalent: (a)*

 (X, T) *is* "*not-T*^o", (b) (X, T) *has a maximal, proper, dense* T_0 *subspace, and (c) for each OXTO subset Y* of X , (Y, T_Y) *is a maximal, proper, dense* T_0 subspace *of* (X, T) [5].

Definition 1.5. Let (X, T) be a space, let *Y* be a subspace of (X, T) , and let *Q* be a topological property for which Q o exists. Then (Y, T_Y) is a maximal, proper, dense, *Q*o subspace of (X, T) iff (Y, T_Y) is a proper, dense, *Q*o subspace of (X, T) such that for each subspace (Z, T_W) of (X, T) , where *Z* properly containing *Y*, (Z, T_Z) is "not- *Q*o" [6].

Theorem 1.3. Let (X, T) be a space and let Q be a topological property for *which* Q_0 *exists. Then* (a) *for each OXTO subset Y* of *X*, (Y, T_Y) *is a maximal*, *proper*, *dense*, *Q*o *subspace of* (*X* , *T*) *iff* (b) (*X* , *T*) *is weakly Q*o *and* "not-*T*⁰ " [6].

The results above raised questions about necessary and sufficient conditions, if any, for a space to have a maximal, proper, dense, T_i subspace, $i = 1, 2$, which were resolved in the paper [7], raising the question of necessary and sufficient conditions, if any, for a space to have a maximal, proper, dense, T_3 subspace.

The regular and T_3 separation axioms were introduced in 1921 [10].

Definition 1.6. A space (X, T) is regular iff for each closed set C and each $x \notin C$, there exist disjoint open sets *U* and *V* such that $x \in U$ and $C \subseteq V$. A regular T_1 space is denoted by T_3 .

The work in this paper focuses attention on "not- T_3 ", whose definition is given below.

Definition 1.7. A space is "not- T_3 " iff it is "not- T_1 " or "not-regular".

In 2016 [8], it was shown that T_3 is a weakly *P*o property with regular = weakly (regular) $o =$ weakly T_3 . Below Theorem 1.3 is applied to regular and T_3 ,

giving necessary and sufficient conditions in "not- T_0 " spaces for a space to have a maximal, proper, dense, T_3 subspace and the question above for maximal, proper, dense, T_3 subspaces is resolved.

2. Weakly *T*³ **and "not-***T*⁰ **" Spaces and Necessary and Sufficient Conditions on a Space for the Space to have a Maximal, Proper, Dense,** *T*³ **Subspace**

Corollary 2.1. *Let* (X, T) *be a space. Then* (a) *for each OXTO subset Y of* X , (Y, T_Y) is a maximal, proper, dense, T_3 subspace of (X, T) iff (b) (X, T) is $(\text{regular} = \text{weakly} (\text{regular})\text{o}) \text{ and } \text{``not-T}_0 \text{''}.$

Theorem 2.1. Let (X, T) *be a space and let Y be a proper subset of X. Then the following are equivalent*: (a) (*X* , *T*) *has a maximal*, *proper*, *dense*, *T*³ *subspace* (Y, T_Y) , (b) (X, T) *is* "*not-T*₃", (Y, T_Y) *is a proper*, T_3 *subspace of* (X, T) *, and for each* $x \in X \setminus Y$, $W = \{x\} \cup Y$, *and* $C_W(x) = \{y \in W \mid Cl_W(\{x\}) = Cl_W(\{y\})\},\$ *every T*-*open set containing x intersects Y*, $C_W(x)$ *contains at most two elements*, *and* if $C_W(x) = \{x\}$ *and* $\{x\}$ *is not* T_W -*closed*, (W, T_W) *is* "*not*- T_1 " *or* $(\{x\}$ *is T_W* -*closed*, (W, T_W) is T_1 , and there exists a T_W -*closed set C* and a $z \in W \setminus C$ *such that every* T_W -open set containing *z* intersects every T_W -open set containing *C*, *where x* ∈ *C*, *z* ∈ *Y*, *and for each* T_W -*open set A containing z*, *x* ∈ $Cl_W(A)$ *or C* is a T_W -, T_Y -closed set such that for each T_W -open set B containing C, $x \in$ $Cl_W(B)$.

Proof. (a) implies (b): Since (Y, T_Y) is a maximal, proper, T_3 subspace of (X, T) and T_3 is a subspace property, then (X, T) is "not- T_3 " and (Y, T_Y) is a proper, T_3 subspace of (X, T) . If $\{x\}$ is T_W -open, then there exists a *T*-open set *O* containing *x* such that $O \bigcap Y = \emptyset$ and (Y, T_Y) is not dense in (X, T) . Thus $\{x\}$ is not T_W -open. Suppose $C_W(x)$ contains three or more elements. Let *x*, *a*, and *b* be

distinct elements of $C_W(x)$. Then $Cl_W(\lbrace a \rbrace) = Cl_W(\lbrace x \rbrace) = Cl_W(\lbrace b \rbrace)$. Thus $Cl_Y(\lbrace a \rbrace) = Cl_Y(\lbrace b \rbrace)$ and (Y, T_Y) is "not-*T*₀" and hence "not-*T*₁", which is a contradiction. Suppose $C_W(x) = \{x, a\}$, $a \neq x$. Then $Cl_W(\{x\}) = Cl_W(\{a\})$ and (W, T_W) is "not-*T*⁰", which implies (W, T_W) is "not-*T*₁" and thus, "not-*T*₃". Suppose $C_W(x) = \{x\}$ and $\{x\}$ is not T_W -closed. Then (there exists a $y \in Y$ such that $y \in Cl_W(\{x\})$ and $x \notin Cl_W(\{y\})$ or $y \notin Cl_W(\{x\})$ and $x \in Cl_W(\{y\})$ or for all *y* ∈ *Y*, *x* ∉ *Cl_W* ({*y*}) and *y* ∉ *Cl_W* ({*x*}). In either of the first two cases, (*W*, *T_W*) is "not- T_1 " and, thus, (W, T_W) is "not- T_3 ". Thus, consider the third case. Since for each $y \in Y$, $y \notin Cl_W(\{x\})$, then $Cl_W(\{x\}) = \{x\}$. Thus $Y = W \setminus \{x\}$ is $T_W - T_Y$ open and each T_Y -open set is T_W -open. Since (Y, T_Y) is $T_1, x \notin Cl_W(\{y\})$ for all *y* ∈ *Y*, and *y* ∉ $Cl_W(\lbrace x \rbrace)$, for all *y* ∈ *Y*, then (W, T_W) is T_1 . Since (W, T_W) is "not-*T*₃" and *T*₁, then (W, T_W) is "not-regular" and there exists a T_W -closed set *C* and a $z \notin C$ such that every T_W -open set containing *z* intersects every T_W -open set containing *C*. Then $C \subset Y$ and $z \in Y$ or $\{x\} \subset C$ and $z \in Y$ or $C \subseteq Y$ and *z* = *x*. Consider the case that $C \subset Y$ and $z \in Y$. Since (Y, T_Y) is T_3 , there exist disjoint T_W , T_Y -open sets *A* and *B* such that $z \in A$ and $C \subseteq B$, which is a contradiction. Thus $x \in C$ and $z \in Y$ or $C \subseteq Y$ and $z = x$. Consider the case that *x* ∈ *C* and *z* ∈ *Y*. Then *C* = {*x*} or {*x*} is a proper subset of *C*. Consider the case that $C = \{x\}$. Let $A \in T_W$ such that $z \in A$. Then $x \in Cl_W(A)$ since, otherwise, $x \in (B = W \setminus Cl_W(A)) \in T_W$, $z \in A \in T_W$, and $A \cap B = \emptyset$, which is a contradiction. Consider the case that $\{x\}$ is a proper subset of *C*. Let $D = C \bigcap Y$, which is T_Y -closed. Let *A* and *B* be disjoint T_W -, T_Y -open sets such that $z \in A$ and *D* ⊆ *B*. Suppose there exist disjoint T_W -open sets *E* and *F* such that $z \in E$ and *x*∈ *F*. Then $z \in (A \cap E) \in T_W$, $C \subseteq (B \cup F) \in T_W$, and $(A \cap E) \cap (B \cup F)$ = ϕ , which is a contradiction. Thus every T_W -open set containing *z* intersects every *T_W* -open set containing *C* and for each *T_W* -open set *G* containing $z, x \in Cl_W(G)$. Consider the case that $z = x$ and $C \subseteq Y$. Let A be a T_W -open set containing C.

Since every T_W -open set containing *x* intersects every T_W -open set containing *C*, then $x \in Cl_W(A)$.

Clearly (b) implies (c).

(c) implies (a): Since every *T*-open set containing *x* intersects *Y*, then (Y, T_Y) is dense in (X, T) and (Y, T_Y) is a proper, dense, T_3 subspace of (X, T) . If $C_W(x) = \{x, a\}, a \neq x$, then $Cl_W(\{x\}) = Cl_W(\{a\})$ and (W, T_W) is "not-*T*₀" and thus "not- T_1 " and "not- T_3 " and (Y, T_Y) is a maximal, proper, dense, T_3 subspace of (X, T) . If $C_W(x) = \{x\}$ and $\{x\}$ is not T_W -closed, then (W, T_W) is "not- T_1 " and thus "not- T_3 " and (Y, T_Y) is a maximal, proper, dense, T_3 subspace of (X, T) . If $C_W(x) = \{x\}$ and $\{x\}$ is T_W -closed, then (W, T_W) is T_1 and there exists a T_W closed set *C* and a $z \notin C$ such that every T_W -open set containing *z* intersects every T_W -open set containing *C*. Thus (W, T_W) is "not-regular", which implies (W, T_W) is "not- T_3 " and (Y, T_Y) is a maximal, proper, dense, T_3 subspace of (X, T) .

3. An Additional Characterization and Properties of Such Spaces

Theorem 3.1. Let (X, T) be a space and let Y be a proper subset of X. Then (a) (Y, T_Y) is a maximal, proper, dense, T_3 subspace of (X, T) iff (b) for each subset *Z of X that properly contains Y*, (Z, T_Z) *is* "*not-* T_3 " *and each subspace of* (Y, T_Y) is T_3 .

Proof. (a) implies (b): Since (Y, T_Y) is T_3 and T_3 is a subspace property, then each subspace of (Y, T_Y) is T_3 . Since (Y, T_Y) is a maximal, proper, dense, T_3 subspace of (X, T) , then, by definition, for each subset *Z* of *X* that properly contains *Y*, (Z, T_Z) is "not- T_3 ".

(b) implies (a): Since *Y* is a subspace of itself, then (Y, T_Y) is a proper, T_3 subspace of (X, T) and since for each subset *Z* of *X* that properly contains *Y*,

 (Z, T_Z) is "not- T_3 ", then, by definition, (Y, T_Y) is a maximal, proper, dense, T_3 subspace of (X, T) .

Definition 3.1. A space (X, T) has the maximal, proper, dense, T_3 subspace property iff (X, T) has a maximal, proper, dense, T_3 subspace of (Y, T_Y) .

Theorem 3.2. *The maximal*, *proper*, *dense*, *T*³ *subspace property is a topological property*.

Proof. Let (X, T) have the maximal, proper, dense, T_3 subspace property and let $f:(X, T) \to (Z, S)$ be a homeomorphism. Let (Y, T_Y) be a maximal, proper, dense, T_3 subspace of (X, T) . Then $f(Y)$ is a proper subset of *Z* and since T_3 is a topological property and $f_{f(Y)} : (Y, T_Y) \to (f(Y), S_{f(Y)})$ is a homeomorphism, then $(f(Y), S_{f(Y)})$ is a proper, T_3 subspace of (Z, S) . Let $z \in Z \setminus f(Y)$ and let *U* ∈ *S* such that $z \in U$. Let *x* be the unique element of *X* such that $f(x) = z$. Then $x \notin Y$ and $x \in f^{-1}(U) \in T$ and, since (Y, T_Y) is dense in (X, T) , $f^{-1}(U) \cap T$ *Y* ≠ ϕ . Thus *U* $\bigcap f(Y) \neq \phi$ and $(f(Y), S_{f(Y)})$ is dense in (Z, S) . Suppose there exists a subset *W* of *Z* that properly contains $f(Y)$ that is T_3 . Then $f^{-1}(W)$ is a subset of *X* that properly contains *Y* and $(f^{-1}(W), T_{f^{-1}(W)})$ is T_3 , which is a contradiction. Thus for each subset *W* of *Z* that properly contains $f(Y)$, (W, S_W) is "not-*T*₃". Thus $f(Y)$, $(S_{f(Y)})$ is a maximal, proper, dense, *T*₃ subspace of (Z, S) .

Theorem 3.3. *The maximal*, *proper*, *dense*, *T*³ *subspace property is not a subspace property*.

Proof. Let (X, T) have the maximal, proper, dense, T_3 subspace property with maximal, proper, dense, T_3 subspace (Y, T_Y) having two or more elements. Let a and *b* be distinct elements of *Y*, let $Z = \{a\}$, and let $W = \{a, b\}$. Then (Z, T_Z) is a proper, T_3 subspace of (W, T_W) , where (W, T_W) is T_3 and "not-"not- T_3 "". Thus the maximal, proper, dense, T_3 subspace property is not a subspace property.

The following example shows that for a space (X, T) , a maximal, proper, dense, T_3 subspace of (X, T) need not be unique.

Example 3.1. Let $X = \{a, b\}$, where *a* and *b* are distinct, and let *T* be the indiscrete topology on *X*. Then each singleton set subspace of (X, T) is a maximal, proper, dense, T_3 subspace of (X, T) and maximal, proper, dense, T_3 subspaces are not unique.

References

- [1] C. Dorsett, Weakly *P* properties, Fundamental J. Math. Math. Sci. 3(1) (2015), 83-90.
- [2] C. Dorsett, T_0 -identification *P* and weakly *P* properties, Pioneer J. Math. Math. Sci. 15(1) (2015), 1-8.
- [3] C. Dorsett, Complete characterizations of weakly Po and related spaces and properties, J. Math. Sci.: Adv. Appl. 45 (2017), 97-109.
- [4] C. Dorsett, Additional properties for weakly Po and related properties with an application, J. Math. Sci.: Adv. Appl. 47 (2017), 53-64.
- [5] C. Dorsett, Additional properties and characterizations of T_0 and "not- T_0 ", and each of R_0 , and R_1 in "not- T_0 " spaces, Pioneer J. Math. Math. Sci. 21(1) (2017), 25-36.
- [6] C. Dorsett, Additional properties and characterizations of T_0 , Q_0 , weakly Q_0 and maximal, proper, dense, Qo OXTO subspaces in weakly Qo and "not-T₀" spaces, J. Math. Sci.: Adv. Appl. 49 (2018), 15-28.
- [7] C. Dorsett, Necessary and sufficient conditions for a space to have a maximal, proper, dense, T_i subspace, $i = 1, 2$, Fundamental J. Math. Math. Sci. 9(1) (2018), 1-12.
- [8] C. Dorsett, Weakly (regular)o and not-regular properties, and equivalent separation axioms, J. Math. Sci.: Adv. Appl. 41 (2016), 35-41.
- [9] M. Stone, Applications of Boolean algebras to topology, Mat. Sb. 1 (1936), 765-771.
- [10] L. Vietoris, Stetige Mengen, Monatch. Math. 31 (1921), 173-204.