Fundamental Journal of Mathematics and Mathematical Sciences Volume 9, Issue 1, 2018, Pages 1-12 This paper is available online at http://www.frdint.com/ Published online January 28, 2018

NECESSARY AND SUFFICIENT CONDITIONS FOR A SPACE TO HAVE A MAXIMAL, PROPER, DENSE, T_i **SUBSPACE**, $i = 1, 2$

CHARLES DORSETT

Department of Mathematics Texas A&M University-Commerce Commerce, Texas 75429 USA e-mail: charles.dorsett@tamuc.edu

Abstract

Within this paper, necessary and sufficient conditions for a space to have a maximal, proper, dense, T_i subspace, $i = 1, 2$, are given and the properties of such subspaces are investigated.

1. Introduction and Preliminaries

In 1936 [10], for a space (X, T) , an externally generated, strongly (X, T) related space, called the T_0 -identification space of (X, T) , was introduced and used to further characterize each of metrizable and pseudometrizable.

© 2018 Fundamental Research and Development International

Keywords and phrases: proper subspaces, dense subspaces, maximal T_1 and T_2 proper subspaces.

²⁰¹⁰ Mathematics Subject Classification: 54B10, 54D10.

Received January 2, 2018; Accepted January 10, 2018

Definition 1.1. Let (X, T) be a space, let R be the equivalence relation on X defined by *xRy* iff $Cl({x}) = Cl({y})$, let X_0 be the set of *R* equivalence classes of *X*, let $N: X \to X_0$ be the natural map, and let $Q(X, T)$ be the decomposition topology on X_0 determined by (X, T) and the map *N*. Then $(X_0, Q(X, Y))$ is the T_0 -identification space of (X, T) .

Theorem 1.1. A space (X, T) is pseudometrizable iff $(X_0, Q(X, Y))$ is *metrizable*.

 T_0 -identification spaces were cleverly created to add T_0 to the externally generated, strongly (X, T) related T_0 -identification space of (X, T) [10], which, when combined with the fact that metrizable and (pseudometrizable and T_0) are equivalent, was used to establish the result above.

The characterization of metrizable given above raised the following questions: What property, if any, together with T_i would be equivalent to T_{i+1} , $i = 0, 1$, respectively?, which led to the introduction and investigation of the R_0 and R_1 separation axioms.

The R_0 separation axiom was introduced in 1943 [9].

Definition 1.2. A space (X, T) is R_0 iff for each closed set *C* and each $x \notin C$, $C \cap Cl({x}) = \emptyset$.

In 1961 [1], the R_0 separation axiom was rediscovered and used to resolve the question above for T_1 and the R_1 separation axiom was introduced and used to resolve the question above for T_2 .

Definition 1.3. A space (X, T) is R_1 iff for *x* and *y* in *X* such that $Cl({x}) \neq$ *Cl*({*y*}), there exist disjoint open sets *U* and *V* such that $x \in U$ and $y \in V$.

Theorem 1.2. *A space is* T_i *iff it is* $(R_{i-1}$ *and* T_{i-1} ; $i = 1, 2$ *, respectively* [1].

In the 1961 paper [1], it was shown that R_1 implies R_0 , which was used with

the result above to show a space is T_2 iff it is $(R_1 \text{ and } T_0)$. Thus the questions of whether T_0 -identification spaces could be used to further characterize R_i and T_{i+1} , $i = 0, 1$, as in the case of pseudometrizable and metrizable given above, arose.

In 1975 [8], T_0 -identification spaces were used to further characterize R_1 and T_2 .

Theorem 1.3. *A space* (X, T) *is* R_1 *iff its* T_0 -*identification space* (X_0, Q) (X, T)) *is* T_2 [8].

Within the paper $[2]$, the metrizable and T_2 properties were generalized to weakly *P*o properties.

Definition 1.4. Let *P* be topological properties such that $Po = (P \text{ and } T_0)$ exists. Then a space (X, T) is weakly Po iff its T_0 -identification space (X_0, Q) (X, T)) has property *P*. A topological property *P*o for which weakly *Po* exists is called a weakly *P*o property [2].

Since for a space, its T_0 -identification space has property T_0 , then, for a topological property *P* for which *P*o exists, a space is weakly *P*o iff its *T*⁰ identification space has property *P*o.

Within the paper [2], it was shown that for a weakly *P*o property *Q*o, a space is weakly Q_0 iff its T_0 -identification space is weakly Q_0 , which led to the introduction and investigation of T_0 -identification *P* properties [4].

Definition 1.5. Let *S* be a topological property. Then *S* is a T_0 -identification *P* property iff both a space and its T_0 -identification space simultaneously shares property *S*.

In the introductory weakly *P*o property paper [2], it was shown that $R_0 =$ weakly (R_0) o = weakly T_1 and that weakly Po is neither T_0 nor "not- T_0 ", where "not-*T*₀" is the negation of *T*₀. The need and use of "not-*T*₀" revealed "not-*T*₀" as

a useful topological property and tool, motivating the inclusion of the long-neglected properties "not-*P*", where *P* is a topological property for which "not-*P*" exists, as important properties for investigation and use in the study of topology. As a result, within a short time period, many new, important, fundamental, foundational, never before imagined properties have been discovered, expanding and changing the study of topology forever.

In past studies of weakly *P*o spaces and properties, for a classical topological property *Q*o, a special topological property *W* was sought such that for a space with property *W*, its *T*⁰ -identification space has property *Q*o, which then implied the initial space has property *W*, with no certainty that such a topological property *W* exists. As given above, the study of weakly *P*o spaces and related properties has been a productive study, but, if the past search process continued, the study of weakly *P*o spaces and properties would continue to be uncertain, tedious, and never ending. To make the process more certain, the question of precisely which topological properties are weakly *P*o properties arose leading to answers in a 2017 paper [4].

Answer 1.1. Let *Q* be a topological property for which both *Q*o and (*Q* and "not- T_0 ") exist. Then Q is a T_0 -identification P property that is weakly Po and $Q =$ weakly $Qo = (Qo \text{ or } (Q \text{ and } \text{``not-}T_0 \text{''}))$ [4].

Answer 1.2. $\{Q \circ | Q \text{ is a } T_0 \text{-identification } P \text{ property}\} = \{Q \circ | Q \text{ is a weakly}\}$ *P*o property} = $\{Q \circ | Q \text{ is a topological property and } Q \circ \text{ exists} \}$ [4].

Thus, major progress was achieved in the study of weakly *P*o and related properties. If *Q* is a topological property for which both *Q*o and (*Q* and "not-*T*⁰ ") exist, Answer 1.1 quickly and easily gives weakly *Q*o. If *Q* is a topological property for which $Q = Q_0$, then $Q = Q_0$ is a weakly Po property, but $Q = Q_0$ is not a *T*0 -identification *P* property or weakly *P*o. Within the paper [4], a topological property *W* that can be both T_0 and "not- T_0 " was shown to exist that is a T_0 identification *P* property that is weakly *P*o such that $W =$ weakly Q_0 , again making the search process certain, but, just knowing such a *W* exists, gave little

insight into the precise, needed topological property *W*, raising the question of whether the known information could somehow be used to more precisely determine *W* for the fixed *Q*o.

The investigation of that question led to the introduction and investigation of *OXTO* subsets and the corresponding subspace for each space (X, T) [5].

Definition 1.6. Let (X, T) be a space and for each $x \in X$, let C_x be the T_0 identification space equivalence class containing *x*. Then *Y* is an *OXTO* is a subset of *X* iff *Y* contains exactly one element from each equivalence class C_x .

Within the paper [5], it was shown that for each *OXTO* subset *Y* of *X*, (Y, T_Y) is homeomorphic to $(X_0, Q(X, T))$. Since, as stated earlier, the T_0 -identification space of each space is T_0 and T_0 is a topological property, then for each *OXTO* subset *Y* of *X* in a space (X, T) , (Y, T_Y) is T_0 . Also, within the paper [5], it was shown that for each topological property Q for which Q_0 exists, a space (X, T) is weakly *Q*o iff for each *OXTO* subset *Y* of *X*, (Y, T_Y) has property *Q*o, which can be, and has been, used to precisely determine weakly *Q*o [5]. Thus, the study of weakly *P*o and weakly *P*o properties has been completely internalized and greatly simplified by the use of *OXTO* subsets and the corresponding subspaces and the earlier results, replacing many, earlier uncertainties with certainties.

As given above, the behavior of R_0 and R_1 in T_0 spaces is long-known raising questions about their behavior in "not- T_0 " spaces. The investigation of those questions again revealed "not-*T*⁰ " as a strong, useful topological tool whose use continued to reveal additional never before imagined properties in the study of topology, including the results below.

Theorem 1.4. *Let* (X, T) *be a space. Then the following are equivalent:* (a) (X, T) is "not- T_0 ", (b) (X, T) has a maximal, proper, dense T_0 subspace, and (c) *for each OXTO subset Y of X*, (Y, T_Y) *is a maximal, proper, dense* T_0 *subspace of* (X, T) [6].

Theorem 1.5. *Let* (X, T) be a "not- T_0 " *space. Then* (X, T) *is* R_0 *iff for each OXTO* subset *Y* of *X*, (Y, T_Y) is a maximal, proper, dense T_1 subspace of (X, T) [6].

Theorem 1.6. *Let* (X, T) *be a* "*not-* T_0 " *space. Then* (X, T) *is* R_1 *iff for each OXTO subset Y of X*, (Y, T_Y) *is a maximal, proper, dense* T_2 *subspace of* (X, T) [6].

The results above raised the following question: Can the results above be extended to all weakly Q_0 and "not- T_0 " properties?, which was resolved in the paper [7].

Definition 1.7. Let (X, T) be a space, let *Y* be a subspace of (X, T) , and let *Q* be a topological property for which Qo exists. Then (Y, T_Y) is a maximal, proper, dense, Q_0 subspace of (X, T) iff (Y, T_Y) is a proper, dense, Q_0 subspace of (X, T) such that for each subspace (Z, T_W) of (X, T) , where *Z* properly containing *Y*, (Z, T_Z) is not *Q*o.

Theorem 1.7. Let (X, T) be a space and let Q be a topological property for *which* Q o *exists*. *Then* (a) *for each OXTO subset Y of X*, (Y, T_Y) *is a maximal*, *proper*, *dense*, *Q*o *subspace of* (*X* , *T*) *iff* (b) (*X* , *T*) *is weakly Q*o *and* "*not*-*T*⁰ ".

Theorem 1.7 can be applied to each of R_0 = weakly T_1 and R_1 = weakly T_2 improving the earlier results given above. However, simple examples can be given of spaces that are T_0 and "not- R_i ", $i = 0, 1$, which have a maximal, proper, dense T_i subspace, $i = 1, 2$, raising the questions: What condition, if any, on a space will be equivalent to the space having a maximal, proper, dense, T_i subspace; $i = 1, 2$? In the work below, those questions are resolved.

2. Necessary and Sufficient Conditions on a Space to Answer the *T*₁ Question

Theorem 2.1. Let (X, T) be a space. Then the following are equivalent: (a) (X, T) has a maximal, proper, dense, T_1 subspace (Y, T_Y) , (b) (X, T) is "not- T_1 " and there exists a proper T_1 subspace (Z, T_Z) of (X, T) such that for each $x \in X \setminus Z$, *there exists a* $y \in Z$ *such that* $x \in Cl({y})$, *and* (c) *there exists a proper* T_1 *subspace* (Z, T_Z) *of* (X, T) *such that for each* $x \in X \setminus Z$ *, there exists a y* ∈ *Z such that* $x \in Cl({y})$.

Proof. (a) implies (b): Since T_1 is a subspace property and (Y, T_Y) is a maximal, proper, T_1 subspace of (X, T) , then (X, T) is "not- T_1 ". Let $Z = Y$. Then (Z, T_Z) is a proper T_1 subspace of (X, T) . Suppose there exists a $x \in X \setminus Z$ such that $x \notin Cl({y})$ for each $y \in Z$. Let $W = Z \cup \{x\}$. Since $(Z, T_Z) = (Y, T_Y)$ is maximal T_1 , then there exist distinct elements *u* and *v* in *W* such that every open set containing *u* contains *v* or every open set containing *v* contains *u*, say every open set containing *u* contains *v*. Since $Z = Y$ and (Y, T_Y) is T_1 , then $u \notin Z$. Thus *u* = *x*, but, then *x* ∈ *X* \ *Cl*({*v*}), which is open and does not contain *v*, which is a contradiction. Thus, for each $x \in X \setminus Z$, there exists a $y \in Z$ such that $x \in Cl({y}).$

Clearly (b) implies (c).

(c) implies (a): Let (Z, T_Z) be a proper T_1 subspace of (X, T) such that for each $x \in X \setminus Z$, there exists a $y \in Z$ such that $x \in Cl({y})$. Let $x \in X \setminus Z$. Let *y* ∈ *Z* such that $x \in Cl({y})$. Then $x \in Cl({y}) \subseteq Cl(Z)$. Hence, $Cl(Z) = X$ and (Z, T_Z) is dense in (X, T) . Let *W* be a subset of *X* that properly contains *Z*. Let *u* ∈ *W* \ *Z*. Let *v* ∈ *Z* such that *u* ∈ *Cl*({*v*}). Then every open set containing *u* contains *v* and (W, T_W) is "not- T_1 ". Hence, (Z, T_Z) is a maximal, proper, dense, T_1 subspace of (X, T) .

Theorem 2.2. Let (X, T) be a space that has a maximal, proper, dense, T_1 *subspace and let Y be a subset of X. Then* (Y, T_Y) *is a maximal, proper, dense,* T_1 *subspace of* (X, T) *iff* (Y, T_Y) *is a proper,* T_1 *subspace of* (X, T) *such that for each* $x \in X \setminus Y$, there exists $a \ y \in Y$ such that $x \in Cl({y})$.

Proof. If (Y, T_Y) is a maximal, proper, dense, T_1 subspace of (X, T) , then, by the argument above (a) implies (b), (Y, T_Y) is a proper T_1 subspace of (X, T) such that for each $x \in X \setminus Y$, there exists a $y \in Y$ such that $x \in Cl({y})$.

If (Y, T_Y) is a proper T_1 subspace of (X, T) such that for each $x \in X \setminus Y$, there exists a $y \in Y$ such that $x \in Cl({y})$, then, by the argument above (c) implies (a), (Y, T_Y) is a maximal, proper, dense, T_1 subspace of (X, T) .

Thus, the condition on a space that is equivalent to the space having a maximal, proper, dense, *T*¹ subspace immediately gives a maximal, proper, dense, *T*¹ subspace of the space.

Theorem 2.3. Let (X, T) be a space and let Y be a subset of X. Then (Y, T_Y) *is a maximal*, *proper*, *dense*, *T*¹ *subspace of* (*X* , *T*) *iff for each subset Z of X that properly contains Y*, (Y, T_Y) *is a maximal, proper, dense, T*₁ *subspace of* (Z, T_Z) .

Proof. Suppose (Y, T_Y) is a maximal, proper, dense, T_1 subspace of (X, T) . Then (Y, T_Y) is a proper, T_1 subspace of (X, T) such that for each $x \in X \setminus Y$, there exists a $y \in Y$ such that $x \in Cl({y})$. Since *Z* properly contains *Y*, then (Y, T_Y) is a proper subspace of (Z, T_Z) . Let *u* and *v* be distinct elements of *Y*. Let *U* and *V* be open sets in *X* such that $u \in U$ and $v \notin U$ and $v \in V$ and $u \notin V$. Then *A* = *U* $\bigcap Z$ and *B* = *V* $\bigcap Z$ are open sets in *Z* such that *u* ∈ *A* and *v* ∉ *A* and *v* ∈ *B* and *u* ∉ *B*. Thus (Y, T_Y) is a T_1 subspace of (Z, T_Z) . Let $z \in Z \setminus Y$. Then *z* ∈ *X* \ *Y* and there exists a *y* ∈ *Y* such that *z* ∈ *Cl*({*y*}). Since Cl_Z ({*y*}) = *Z* ∩ *Cl*({*y*}), then $z \in Cl_Z(\{y\})$. Thus, by the results above, (Y, T_Y) is a maximal, proper, dense, T_1 subspace of (Z, T_Z) .

Conversely, suppose that for each subset *Z* of *X* that properly contains *Y*, (Y, T_Y) is a maximal, proper, dense, T_1 subspace of (Z, T_Z) . Since *X* is a subset of *X* that properly contains *Y*, then (Y, T_Y) is a maximal, proper, dense, T_1 subspace of (X, T) .

Corollary 2.1. *Let* (*X* , *T*) *be a space and let Y be a subset of X such that* (Y, T_Y) is a maximal, proper, dense, T_1 subspace of (X, T) . Then for each subset *Z of X that properly contains Y*, (Z, T_Z) *is* "*not*- T_1 " *and for each subset W of Y*, (W, T_W) *is* T_1 .

3. Necessary and Sufficient Conditions on a Space to Answer the *T*² **Question**

Theorem 3.1. Let (X, T) be a space. Then the following are equivalent: (a) (X, T) has a maximal, proper, dense, T_2 subspace (Y, T_Y) , (b) (X, T) is "not- T_2 " and there exists a proper, T_2 subspace (Z, T_Z) of (X, T) such that for each $x \in X \setminus Z$, there exists $a \, z \in Z$ such that every open set U containing x intersects *every open set V containing z and* $x \in Cl(U \cap V \cap Z)$, *and* (c) *there exists a proper*, T_2 subspace (Z, T_Z) *of* (X, T) such that for each $x \in X \setminus Z$, there exists $a \, z \in \mathbb{Z}$ *such that every open set U containing x intersects every open set V containing z and* $x \in Cl(U \cap V \cap Z)$.

Proof. (a) implies (b): Since T_2 is a subspace property and (Y, T_Y) is a maximal, T_2 subspace of (X, T) , then (X, T) is "not- T_2 ". Let $Z = Y$. Then $(Z, T_Z) = (Y, T_Y)$ is a proper, T_2 subspace of (X, T) . Let $x \in X \setminus Y$ and let $W = Y \cup \{x\}$. Then (W, T_W) is "not- T_2 ". Let *u* and *v* be distinct elements of *W* such that every T_W -open set containing *u* intersects every T_W -open set containing *v*. Then one of u and v is x , for suppose not. Then u and v are in Y and there exist disjoint T_Y -open sets *A* and *B* such that $u \in A$ and $v \in B$. Let *C* and *D* be *T*-open sets such that $A = C \cap Y$ and $B = D \cap Y$. Then $C \cap W$ and $D \cap W$ are T_W -open sets such that $u \in (C \cap W)$ and $v \in (D \cap W)$ and $(C \cap W) \cap (D \cap W) \neq \emptyset$. Since $(C \cap Y)$ and $(D \cap Y)$ are disjoint, then $((C \cap W) \cap (D \cap W)) = \{x\}$. Then $(C \cap D)$ is *T*-open, $((C \cap D) \cap Y) = \emptyset$, and $x \in (C \cap D)$, which implies $x \notin Cl(v)$, which is a contradiction. Thus one of *u* and *v* is *x*, say $u = x$. Then every T_W -open set containing *x* intersects every T_W -open set containing *v*. Let *E* and *F* be *T*-open sets such that $x \in E$ and $v \in F$. Then $(E \cap W)$ and $(F \cap W)$ are T_W -open sets containing *x* and *v*, respectively and $((E \cap W) \cap (F \cap W)) \neq \emptyset$. If $((E \cap W) \cap (F \cap W)) = \{x\},\$ then $((E \cap Y) \cap (F \cap Y)) = \emptyset$ and $x \in (E \cap F),$ which is *T*-open and $((E \cap F) \cap Y) = \emptyset$, which contradicts $Cl(Y) = X$. Thus $((E \cap F) \cap Y) \neq \emptyset$. Then $x \in Cl((E \cap F) \cap Y)$, for suppose not. Then $x \in$ $((E \cap F) \setminus Cl((E \cap F) \cap Y)$, which is *T*-open and misses *Y*, which contradicts $x \in Cl(Y)$.

Clearly (b) implies (c).

(c) implies (a): Let $Y = Z$. Then (Y, T_Y) is a proper, T_2 subspace of (X, T) . Let *W* be a subset of *X* that properly contains *Y*. Let $x \in W \setminus Y$. Then $x \in X \setminus Y$. Let $z \in Y$ such that every *T*-open set *U* containing *x* intersects every *T*-open set *V* containing *z* and $x \in Cl(U \cap V \cap Y)$. Thus $x \in Cl(Y)$. Hence $Cl(Y) = X$ and (Y, T_Y) is dense in (X, T) . Then $U \cap W$ and $V \cap W$ are T_W -open sets containing *x* and *z*, respectively. Since $U \cap V \cap Y \neq \emptyset$, then $U \cap V \cap W = (U \cap W) \cap Y$ $((V \cap W)) \neq \emptyset$. Thus (W, T_W) is "not- T_2 ". Hence, (Y, T_Y) is a maximal, proper, dense, T_2 subspace of (X, T) .

Theorem 3.2. Let (X, T) be a space and let Y be a subset of X. Then (Y, T_Y) *is a maximal, proper, dense,* T_2 *subspace of* (X, T) *iff* (Y, T_Y) *is a proper* T_2 *subspace of* (X, T) *such that for each* $x \in X \setminus Y$ *, there exists a* $z \in Y$ *such that every open set U containing x intersects every open set V containing z and* $x ∈ Cl(U ∩ V ∩ Y)$.

Proof. If (Y, T_Y) is a maximal, proper, dense, T_2 subspace of (X, T) , then, by the argument above (a) implies (b), (Y, T_Y) is a proper T_2 subspace of (X, T) such that for each $x \in X \setminus Y$, there exists a $z \in Y$ such that every open set *U* containing *x* intersects every open set *V* containing *z* and $x \in Cl(U \cap V \cap Y)$.

If (Y, T_Y) is a proper T_2 subspace of (X, T) such that for each $x \in X \setminus Y$, there exists a $z \in Y$ such that every open set U containing x intersects every open set *V* containing *z* and $x \in Cl(U \cap V \cap Y)$, then, by the argument above (c) implies (a), (Y, T_Y) is a maximal, proper, dense, T_2 subspace of (X, T) .

Thus, the condition on a space that is equivalent to the space having a maximal, proper, dense, T_2 subspace immediately gives a maximal, proper, dense, T_2 subspace of the space.

Theorem 3.3. Let (X, T) be a space and let *Y* be a subset of *X*. Then (Y, T_Y) *is a maximal*, *proper*, *dense*, *T*² *subspace of* (*X* , *T*) *iff for each subset Z of X that properly contains Y*, (Y, T_Y) *is a maximal, proper, dense, T*₂ *subspace of* (Z, T_Z) .

Proof. Let (Y, T_Y) be a maximal, proper, dense, T_2 subspace of (X, T) and let *Z* be a subset of *X* that properly contains *Y*. Let $x \in Z \setminus Y$. Then $x \in X \setminus Y$ and there exists a $z \in Y$ such that every open set U containing x intersects every open set *V* containing *z* and $x \in Cl(U \cap V \cap Y)$. Then $U \cap Z$ and $V \cap Z$ are T_Z -open sets containing *x* and *z*, respectively and since $((U \cap W) \cap (V \cap W) \cap Y) =$ $(U \cap V \cap Y) = \phi$, $((U \cap W) \cap (V \cap W)) \neq \phi$ and, since $x \in Cl(U \cap V \cap Y)$, then $x \in Cl_Z((U \cap W) \cap (V \cap W) \cap Y)$.

The converse follows immediately since *X* is a subset of *X* that properly contains *Y*.

Corollary 3.1. *Let* (*X* , *T*) *be a space and let Y be a subset of X such that* (Y, T_Y) is a maximal, proper, dense, T_2 subspace of (X, T) . Then for each subset

Z of X that properly contains Y, (Z, T_Z) *is* "*not-* T_2 " *and for each subset W of Y*, (W, T_W) *is* T_2 .

The results above raise questions about the uniqueness of maximal, proper, dense, T_i subspaces, $i = 1, 2$, which are resolved by the following example.

Example 3.1. Let $X = \{a, b\}$, where *a* and *b* are distinct, and let *T* be the indiscrete topology on *X*. Then each singleton set subspace of (X, T) is a maximal, proper, dense, T_i subspace of (X, T) and maximal, proper, dense, T_i , $i = 1, 2$ are not unique.

References

- [1] A. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly 68 (1961), 886-893.
- [2] C. Dorsett, Weakly *P* properties, Fundamental J. Math. Math. Sci. 3(1) (2015), 83-90.
- [3] C. Dorsett, T_0 -identification *P* and weakly *P* properties, Pioneer J. Math. Math. Sci. 15(1) (2015), 1-8.
- [4] C. Dorsett, Complete characterizations of weakly Po and related spaces and properties, J. Math. Sci.: Adv. Appl. 45 (2017), 97-109.
- [5] C. Dorsett, Additional properties for weakly Po and related properties with an application, J. Math. Sci.: Adv. Appl. 47 (2017), 53-64.
- [6] C. Dorsett, Additional properties and characterizations of T_0 and "not- T_0 ", and each of R_0 , and R_1 in "not- T_0 " spaces, Pioneer J. Math. Math. Sci. 21(1) (2017), 25-36.
- [7] C. Dorsett, Additional properties and characterizations of T_0 , *Q*o, weakly *Q*o and maximal, proper, dense, Qo OXTO subspaces in weakly Qo and "not-T₀" spaces, J. Math. Sci.: Adv. Appl. 49 (2018), 15-28.
- [8] W. Dunham, Weakly Hausdorff spaces, Kyungpook Math. J. 15(1) (1975), 41-50.
- [9] N. Shanin, On separation in topological spaces, C.R. (Doklady) Acad. Sci. URSS (N.S.) 38 (1943), 110-113.
- [10] M. Stone, Applications of Boolean algebras to topology, Mat. Sb. 1 (1936), 765-771.