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Abstract 

We present an analysis of a generalized 4Φ  model for a chain of particles 
along a line subjected to nonlinear an-harmonic self-interaction potentials. 
Several analytical compact and peak like solutions are obtained 
considering appropriated restrictions on their speeds and jump conditions. 
We study their phase trajectories and show the stability conditions for 
each solution. 

1. Introduction 

The recent interest in the phenomenology of the nonlinear waves has sparked a 
resurgence of interests in the physics of classical kink-shaped htan  solutions, bell-

shaped hsec  solutions and also nonclassical soliton solutions like compact bubble 

or kinks waves. These nonlinear wave phenomena are observed in uid dynamics, 
plasma, elastic media, optical bres, DNA, etc. It is well-known that traveling wave 
solutions of various Nonlinear Partial Differential Equations (NPDEs) play crucial 
roles in the study of nonlinear wave phenomena. In this fashion, the nonlinear Klein 
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Gordon equation has been extensively studied using different analytical and 
numerical approaches. Commonly, in those studies the model was analyzed by using 
several kinds of self interaction potentials. For Sine-Gordon like equation, we found 
systematic studies in Scolt et al. [1], Ablowitz et al. [2], Dodd et al. [3], and 
Ablowitz and Clarkson [4]. 

On the other hand after the introduction of an-harmonic terms for the substrate 
potential, suggested the emergence of special type of soliton structures called 
compactons and peakons. For instance, the compact like structures have the quality 
of absence of long tails that characterize classical soliton structures. In many aspects 
due to this property their interaction is similar to the interaction of hard spheres. As 
is suggested by its name, a compacton is a soliton structure with compact support. 
Compactons have originally been discovered as a special class of nonlinear waves in 
generalized versions of the KdV equation (Rosenau [5] and Rosenau and Hyman 
[6]). 

For the case of discrete Klein-Gordon Equation the kink solutions can be 
obtained either by perturbation approaches [7] or by numerical techniques. If KG 
also includes an-harmonic interactions, then specific kink internal modes may be 
created [8]. In other various previous works [9-12], different solutions have been 
found to the nonlinear continuum version of Klein-Gordon equation with self         
an-harmonic interaction with and without harmonic substrate potential. In many 
cases, these approaches did not consider the stability conditions for each presented 
solution. In this paper, we study a general version of nonlinear Klein-Gordon 
equation than that presented in [11, 12]. In these papers was considered self an-
harmonic interaction in addition to possessing a harmonic substrate potential. In 
order to study the model, we applied the mechanical analogy method which was able 
to demonstrate some peculiar properties of solutions. Some analytical solutions were 
obtained for this equation and it was drawing some similarities with the equation 
presented in [12] by a suitable choice of corresponding speed values. 

In the first section, we will construct the general form of the nonlinear Klein-
Gordon equation, with an-harmonic potential terms of substrate. We will provide the 
condition for continuously “gluing” different branches of solutions. Also, we will 
use the virial theorem and the second variation for obtaining stability conditions for 
solutions. Analytical solutions are presented under the trivial and condensed type of 
boundary conditions. We briefly describe the mechanical analogy method for each 
case. This approach will allow us to confirm or exclude the existence of available 
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solutions. We evaluate the energy for each solution and the dispersion relation will 
be discussed by using virial relation and the second variation of the Hamiltonian. At 
the end, we present a short discussion on the existence of the solutions shown in [11, 
12] as special ones of our equation. 

2. The Equation of Motion 

First, we construct the equation of motion for the system of identical particles 
along a chain with mass “m” subjected to substrate potential )( ,nV θ  

 )( ,
42

42
nn

nV
βθ

−
αθ

=θ  (1) 

that represents the interaction of the system with the background. The interaction 
between neighbor particles is being done by the potential ( )1−θ−θ nnU  that can be 

modeled by 

 ( ) ( ) ( ) .
42

4
1

22
1

1
1 −−− θ−θ+θ−θ=θ−θ nnnnnn

CCU  (2) 

As we can notice, this equation is constructed taking in mind harmonic and              
an-harmonic potential parts. Here 21 and,, CCβα  are constants that control the 

barrier of double well potential and the forces of linear and nonlinear coupling, 
respectively. The equation of motion that describes a discrete set of n bodies under 
the interaction potential described by )( nV θ  and ( )1−θ−θ nnU  will take the 

following form 

( )nnnC
dt
d θ−θ+θ−θ

−+ 21112

2
 

( ) ( ) .0][ 33
1

3
12 =βθ−αθ+θ−θ+θ−θ+ +− nnnnnnC  (3) 

For the case when nθ  varies slowly, we can use the standard continuum 

approximation ( ) ( )txtn ,θ→θ  and extend 1+θn  in terms of ( )., txθ  Under these 

considerations making 
a

x χ=  (where a is the distance between points of the lattice) 

and assuming that ,
2

3 12
2 xxxxxxx

CC θ⎟
⎠
⎞

⎜
⎝
⎛>>θθ  from equation (3) we obtain 
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 .03 32
21 =βθ−αθ+θθ−θ−θ xxxxxtt CC  (4) 

We will study the continuum version of the discrete nonlinear equation (3). 
Following the same approach done in [12], one can arrive at the following ordinary 
differential equation 

 ( ) ( ) ,0
3

1
3

2 22

2

2

2

1
2

4 =γ+βθ−α
β

+θ
−

−θ
CC

Cu
ss  (5) 

with γ  being the constant of integration that can be considered equal to zero. By 

rewriting the parameters 

 ( ) ,
3

1,
3

2
22

1
2

β
=

−
=

C
b

C
Cua  (6) 

we obtain the next equation 

 ( ) .02224 =βθ−α+θ−θ ba ss  (7) 

That has the same structure of the similar equation discussed in the paper [12]. 
Nevertheless, it is possible to find new solutions as particular cases in the same 
fashion that was done in the mentioned paper [11]. 

3. Energy and Stability of Solutions 

A. Jump conditions 

During the process of finding solutions, we observed that these solutions 
contain several important branches. Next, for avoiding discontinuities, we need the 
proper point to “glue” the branches of the solutions and to build the physical 
acceptable solutions, so we evaluate the next equation 

 (( ) ) ,03
0

0

32
21

2 =βθ−αθ+θθ−θ−∫
ε+

ε−

s

s
sssss dsCCu  (8) 

where 0s  is a critical point where the jump occurs and the first derivative supports 

discontinuities 

 .0lim 0
00

≠
∂
θ∂ ε+

ε−→ε
s
ss

 (9) 

After several calculations, we find the points at which we can make the jumping and 
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it is given by the condition 

 )( .
23 2

1
2

0
a

C
Cuss ±=

−
±=θ  (10) 

B. Dispersion relations and energies 

To obtain the terms of dispersion associated with each solution, we add as usual 
a small deviation ( )η  in the equation of motion, such that 

 η+θ→θ 0  (11) 

with .1<<η  We will consider the trivial boundary condition when 00 =θ  and 

solutions on condensed state trivial boundary conditions .10 =θ  Therefore, for the 

continuum version of equation (3), we find the linear equation that describes the 
small deviation vacuum states 

 ,01 =αη+η−η xxtt C  (12) 

and the dispersion relation is 

 .2
1

2 α+=ω kC  (13) 

Therefore the solution is stable when 

 .
1

2
C

k α−>  (14) 

Since we restrict ourselves to the case of traveling waves, the Hamiltonian 
density can be rewritten as 

 .
4222

424
2

2
1

2 βθ−αθ+⎟
⎠
⎞⎜

⎝
⎛ θ+⎟

⎠
⎞⎜

⎝
⎛ θ+

=
ds
dC

ds
dCuH  (15) 

Consequently, the expression for the energy values can be written in terms of the 
variables sθ  and θ  as 

 .
4222

2

1

42
321

2
θ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
θ

βθ−
θ

αθ+θ+θ
+

= ∫
θ

θ
dCCuE

ss
ss  (16) 

C. Virial relations 

For better treatment, we reorganize the relations for energy values (16) in the 
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following manner 

 432
2

1
1

2

4222
EEECECuH β−α++

+
=  (17) 

with 

 ∫ ∫ ∫∫ θ
θ
θ=θ

θ
θ=θθ=θθ= ,,,,

4
4

2
3

3
21 dEdEdEdE

ss
ss  (18) 

and by considering the transformation ( )asa θ=θ  in the total Hamiltonian, we have 

 [ ] .
42

1
22 432
23

1
1

2
⎟
⎠
⎞⎜

⎝
⎛ β−α++

+
=θ EE

a
ECaECuaH a  (19) 

Evaluating ( ) ,1=adadH  we can obtain the virial relation 

 ,0
422

3
2 432

2
1

1
2

=β+α−+
+ EEECECu  (20) 

from which we can find that 

 .
422

3
2 432

2
1

1
2

EEECECu β−α+−=
+  (21) 

Then, if we substitute this condition into the equation for energy, we have 

 .
2 4223 EECEH β−−α=  (22) 

Next, the second variation of the Hamiltonian [ ]aH θ  takes the form 

 ( ) .0
2

3 43221
22 >β−α+== EEECdaHd a  (23) 

The conditions of stability by using the second variation H2δ  and the energies 
should be analyzed for each particular case. 

Let us analyze some particular cases. The first one we consider when 

( ),0i.e., 1
2

1 =−= CuCu  the second case will take place when 02 =C  (i.e., 

when the potential interaction between neighboring particles is of harmonic type). 
Finally, in the third case we will develop the conditions for which is obtained a 
solution to equation (7). It should be noted that the particular case for 02 =C  was 
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analyzed in the work [12]. Complementary to the stability analysis for each 
structure, it will take place the study of their phase trajectories. Starting from 
equation (4) the subsequent algebra yields the following expression 

 
( ) 2

21
2

3

3 s
ss

CCu θ−−

βθ+αθ−
=θ  (24) 

which will help us to determine the direction of the phase trajectories. 

 

Figure 1. Phase trajectories when 1−=β  and .32 =C  

4. Solutions with Trivial Boundary Conditions 

As usual, these solutions are being restricted by the following conditions 

 .0,0, →θ→θ±∞→ ss  (25) 

Applying these conditions to equation (7) yields .0=α  Therefore we have several 
important cases 

A. Case I. 01
2 =− Cu  

For the case when the velocity of traveling waves satisfies the relation 

,01
2 =− Cu  equation (3) is reduced to the next one 

 .0424 =θβ+θ bs  (26) 

From here, the phase trajectories for equation (7) are given by the function ( ),θθs  

 .
3

41

2
θ⎟

⎠
⎞

⎜
⎝
⎛ β−

±=θ
Cs  (27) 

Thus, the phase trajectories that correspond to the solutions (26) will be the straight 
lines drawn in Figure 1. 
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By solving equation (26), we get 

 ( ) ,

41

23
s

CAes
⎟
⎠
⎞

⎜
⎝
⎛ β−±

=θ  (28) 

 

Figure 2. Peak 1=β  and .32 =C  

whose figure corresponds to the “peak”, see Figure 2. 

To construct the solution, we note that the point at which we glue the branches 
of the function is given by the condition (10). This condition means that is possible 
to build appropriated solutions due to the relation .0=θs  In the similar way, the 

peak obtained in [11] has the similar behavior in its phase trajectories. 

B. Case II. 02 =C  

For the case when the inter-particle interaction between particles is an-harmonic 
type, i.e., for ,02 =C  equation (24) transforms to 

 
( )

( ) .0
2

1 22

1
2

2 =βθ−α
−β

−θ
Cu

s  (29) 

By applying the trivial boundary condition when 0=α  and using equation (5) it is 
possible to obtain the function ( ),θθs  

 
( )

,
2

2

1
2 θ
−

β=θ
Cu

s  (30) 

from which we can get the phase trajectories that are depicted in Figure 3. 

Solving equation (30) the branches of the analytical solutions appear 
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 ( )

( )

.

2

1

1
2

Cs
Cu

s
+

−β

β±
=θ  (31) 

One of the available profiles corresponds to a similar Delta function Dirac, see 
Figure 4. 

 

Figure 3. Phase trajectories for 1=β  and .21
2 =− Cu  

 

Figure 4. Profile of the solution when 1=β  and .21
2 =− Cu  

C. Case III 

From equation (7) by using the trivial boundary conditions ( ) ,0=α  we obtain 

the following equation 

 .04224 =θβ+θ−θ ba ss  (32) 

Thus, we can find the function ( ) ,θθs  

 
( )

.311
2

4
2

1
2

2 θ
−

β
−±=θ

Cu
Ca

s  (33) 
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In the case of negative sign of the previous equation, we make 0→θ  and 
obtain .0→θs  The corresponding picture of the phase trajectories is presented in 

Figure 5, and its corresponding solution is shown in Figure 6. 

The analytical solution of this equation can be found by utilizing 

( )21
2

23
Cu

C
−

β
=σ  and similarly 

 

Figure 5. Phase trajectory when 3,1 2 ==β C  and .21
2 =− Cu  

 

Figure 6. A peak solution when 1547.1,3,1 2 =σ==β C  and .21
2 =− Cu  

as done in [12], we write the transcendental equation for the solution 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

σθ−+

θσ+−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

σθ−+

θσ+−−=−σ±
4

2

4

2
0

11

21Arctan
11

21Arctan
2

ssa  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

σθ−+

θσ−
σθ−+

θσ+−−
4

2

4

2

1111

21Ln
2
1  
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

σθ−+

θσ−
σθ−+

θσ+−
4

2

4

2

1111

21Ln
2
1  

.
2

114 2

4

θσ

σθ−+−  (34) 

The jump condition (10) appears when ,
2
a

s ±=θ  i.e., for .1
2

44
σ

±=
β

±=θ
b

a  

This condition will give us the height of the peak solution and for given equation 

(13) when ,0=α  we have the dispersion relation .2
1

2 kC=ω  Thus the stability 

condition is satisfied when .02 >k  The compact solution for the trivial boundary 
condition (25) in [12] is acceptable since it corresponds to the positive sign of 
equation (33). 

1. Energies 

For the obtained solutions of Case III, we can evaluate their energies by using 
equations (18), (22), 0=α  and also the next equation 

 .11
2

4σθ−−=θ a
s  (35) 

For the energy expressions after a long algebra, we have 

 ( ) [ ] ( )
⎟
⎠
⎞

⎜
⎝
⎛ π+

−+−π−−
σ

−
=

2
34721Log

2
5342

6
7

8 41
1

221 mnCuaE  (36) 

with m‚ n integer numbers. Now by using the value of the energy portion 1E  from 

equation (18) 

 ⎟
⎠
⎞⎜

⎝
⎛ π+−π−

σ
=

2
342

2 411
mnaE  (37) 

and its subsequent substitution in the virial relation (20), we can evaluate the suitable 
velocity values for the traveling solutions with trivial boundary condition 

 [ ] ( )
[ ] ( )

,
34921Log1710224
3421Log17262924

1C
mn
mnu

π++++π−+
π++++π−+

=  (38) 

that is related directly to the parameter .1C  Also we can obtain the condition of 
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stability by using the values of the energies taking in mind the second variation of 
the Hamiltonian (23), 

( ) [ ] )(
⎟
⎠
⎞

⎜
⎝
⎛ π+

+++π−−
σ

−
=δ

2
34921Log918212

8 41
1

221
2 mnCuaH  

( ) [ ] )( .0
2

3421Log1823
16 41

1
221

>⎟
⎠
⎞

⎜
⎝
⎛ π+

++−π+
σ

−
−

mnCua  (39) 

From here it is easy to check the values of n and m are restricted by the following 
expression 

 [ ] .
68

21Log389922108 +−−+π
>

nm  (40) 

5. Nontrivial Boundary Conditions 

Next, we consider the condensate type of boundary conditions 

 const.,0, 0 =θ→θ→θ±∞→ ss  (41) 

 

Figure 7. Phase trajectories when the parameter values are ,2=α  1=β  and 

.32 −=C  

We apply it to equation (7) and obtain 

 .0 β
α±=θ  (42) 

Now, we analyze the possible solution of the system 

A. Case I. 01
2 =− Cu  

For the case when ,01
2 =− Cu  from (3) we have the next equation 

 ( ) ,0224 =βθ−α+θ bs  (43) 
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and the jump condition is given by 

 ( ) ( ) ,021241 =βθ−α−±=θ bs  (44) 

that gives the restrictions ,02 <C  0<b  when we try to construct the phase 

trajectories. When solving this equation we obtain the next branches 

 ( ) ( ( ) )sbs 412sin β−±
β
α±=θ  (45) 

with a proper choice of the branches A and B of the phase trajectory, the solution 
that can be built is a typical compact kink represented in Figure 8. Taking the 
branches ,A  B,  B′ and A′  of the phase trajectories, we can build also a compact 
pulse of the bell form, see Figure 9. The other structure that we can construct could 
be a periodic solution like sinus function, Figure 10. 

Thus, the compact kink and compact pulse with velocity 1Cu =  will have a 

dispersion relation given by expression (13) 

 ,222 α+=ω ku  (46) 

 

Figure 8. Compact kink for ,2=α  1=β  and .32 −=C  

 

Figure 9. Compact pulse for ,2=α  1=β  and .32 −=C  



M. AGÜERO, F. ONGAY and J. SÁNCHEZ-MONDRAGÓN 

 

54 

and the solution is stable when 

 .
2

2
C

k α−>  (47) 

The solution will be supported at the condensate for .0 β
α±=θ  By replacing it in 

the equations for energies given in the first section when ,1
2 Cu =  we get 

 

Figure 10. Periodical solution when ,2=α  1=β  and .32 −=C  

( ) [ ( ) ]

( )
,

4

2sin
2

4
12

4
12

2
12

1
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

β−

β−
+β−=

b

sbsbE  

( ) ( ( ) [ ( ) ] [ ( ) ]),4sin2sin812
32
1

4
124

124
124

32
2 sbsbsbbE β−+β−+β−β−=  

[ ( ) ]

( )
,

4

2sin
2

4
12

4
12

3
β−

β−
−=

b

sbsE  

( ) [ ( ) ] [ ( ) ]

( )
.

32

4sin2sin812

4
12

4
124

124
12

4
β−

β−+β−−β−
=

b

sbsbsbE  (48) 

Since the condensate value is given by ,0θ±=θ  the energies will be evaluated 

between ( )
( ) 4120

2
14

β−

π+
±=

b
ns  for 0θ−  and ( )

( ) 4121
2

34
β−

π+
±=

b
ms  for .0θ  Therefore, 

the energy for the compact kink ckE  that is contained in the trajectories A and B is 
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calculated as 

( ( ) )

( )

( ( ) ) ( )2
2

4
12 8

123

2

12
β−

π+−
−

β−

π+−α
= bnmC

b

nmEck  

( ( ) )

( )
.

16

123

4
12β−

π+−β
−

b

nm  (49) 

Using the virial relation (20), 

 0
422

3
2 43

22
1

1
2

=β+α−+
+ EEECECu  (50) 

and ,1
2 Cu =  the velocity values are strait-fully obtained 

 
( )

.
4

3

16

38

4
12

β+
β−

β−α=
b

u  (51) 

From the second variation for the compact kink, we have 

 ( ) .
16
3

28
9

4
522 β>α+β−bC  (52) 

The other solution the compact pulse that is determined in the trajectories A,  B,  B′  

and ,A′  shows the following value of energy :cpE  

( )
( )

( )
,

8

3
2

3

4
12

22

4
12 β−

πβ
−β−

π
−

β−

πα
=

b

qbqC

b

qEcp  (53) 

,nmnmq −′−′+=  (54) 

nmnm ′′,,,  being integer numbers. From the second variation for the compact 

pulse, we have 

 ( ) .
8
3

2
9 4

52
2 β>α+

β−bC  (55) 

B. Case II. 02 =C  

For this case, we have the next expression of ODE 
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( )

( ) ,0
2

1 22

1
2

2 =βθ−α
−β

−θ
Cu

s  (56) 

and the phase trajectories are obtained by the next equation 

 
( )

( ).
2

1 2

1
2

βθ−α
−β

±=θ
Cu

s  (57) 

 

Figure 11. Phase trajectory for ,2=α  1=β  and .21
2 =− Cu  

From here we can obtain two solutions, the first one constructed with the branches B 
and C, and the second solution with C′  and C, as we can observe from Figure 11. 
Solving equation (57), we obtain 

 ( )
( )

.
2

hTan
1

2 s
Cu

s
−

α
β
α±=θ  (58) 

From the analysis of phase trajectories and with the proper election of the branches, 
we can obtain two different solutions that are depicted in Figure 12. We have here a 
kink that is constructed with the branches B and C. Figure 13 represents the gray 
soliton constructed with the aid of the C′  and C branches. 

The trajectories A,  ,A′  D  and D′  correspond to solutions outside the 
condensate. However these solutions could not be built because there is no 
possibility to glue the branches. 

The kink solution is emerging in the condensate defined by ,
β
α±=θ  their 

energy values can be obtained from 

,
3

22

23

1

⎟
⎠
⎞⎜

⎝
⎛
β
αβ

−
β
αα=E  
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( ) .1harctan212
2
33

β

α
+

β
α

β
−=E  

 

Figure 12. Kink like solution when ,2=α  1=β  and .21
2 =− Cu  

 

Figure 13. Gray soliton for when ,2=α  1=β  and .21
2 =− Cu  

 ( ) .1harctan
3
2

25

2323

24
β

α
+⎟

⎠
⎞⎜

⎝
⎛
β
α

β
−

β
α

β

α−=E  (59) 

C. Case III 

From the relation (7) by using the condensate boundary conditions, one can 
obtain 

 ( ) ,02224 =βθ−α+αθ−θ bss  (60) 

by utilizing the same approach of the paper [12], we have the phase trajectory 
determined by the equation 

 ( ) ,111
2

22θ−−±=θ fa
s  (61) 

that is depicted in Figure 14. 
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Analyzing the phase trajectories (14), we can select only the paths denoted by 
dotted lines that represent a discontinuity, the possible trajectories will be those of 
Figure 15. 

This trajectory corresponds to the function (61) with negative sign. The 
analytical solution of equation (60) can be obtained by using parameter restriction 

,α  

 ( ) ,
3 2

2
1

2

C
Cu −β

=α  (62) 

 

Figure 14. Phase of trajectory for 2,1,32 1
2 =−=β=α Cu  and .32 =C  

 

Figure 15. Phase trajectory para 2,1,32 1
2 =−=β=α Cu  and .32 =C  

being .1=σα  From equation (61) with negative sign, we obtain 

 ( ) ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ θ−θ+
−θ−−=−±

2
21Ln1Arcsin2

22
2

0
fffssfa  (63) 

with 

 ( ) .
3

2,
2

1
2

C
Cuaf −

=
α
β=  (64) 



NONCLASSICAL SOLITARY WAVES FOR NONLINEAR … 

 

59 

This transcendental equation possesses two branches that allow us to build the 
solutions. Using the phase trajectories, the available solutions that we can find for 
the function (61) are kink like structures (17) for the branches B and C. The anti-
bubble solution of bell form is constructed using the branches B and B′  and the 
peak like solution is built by the branches D and .D′  

The solutions (63) satisfy the jump conditions (10), i.e., if we substitute in 
equation (61), it is observed that the points in which we can glue the appropriated 

branches for ,2,0
f

±=θ  are precisely the point where we glue the solutions for 

making the anti-bubble 

 

Figure 16. Kink para 2,1,32 1
2 =−=β=α Cu  and .32 =C  

 

Figure 17. Anti-bubble solution when 2,1,32 1
2 =−=β=α Cu  and .32 =C  

structure. The velocity of these solutions is defined by 

 ,3
1

2 CCu +
β
α

=  (65) 

and the dispersion relation is given by (13). It is worthy to mention that the kink 
solution obtained in the work [9] also can be derived by our equation. 

For the solution obtained, we substitute the velocity for the nontrivial solution 
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and by using the next expression 

 ( ) ,111
2

22θ−−−=θ fa
s  (66) 

 

Figure 18. Peak like solution outside of condensate for 1
2,1,32 Cu −=β=α  

2=  and .32 =C  

we can get the available energy values 

,
4222 432

2
1

1
2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ β−α++
+

γ= EEECECuE  

( ( ) ( ) )2222 1111112 θ−−−−θ−−+

θ
=γ

ff

f  (67) 

with the following expressions for different parts of the energy equation 

[( ) ( ) ( ) ],111Arcsin1
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1 2222

1 θ−−+θ−−θ−=′ fff
f
aE  

[ ( ) ( ) ( )2222
3

2 1141Arcsin618
16
1 θ−−+θ−−θ−=′ fff

f
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( ) ( ) ( ) ( ( ) )],111411112 2222222 θ−−θ−−−θ−−θ−− ffff  
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( ) ( )
2
111log41arcsin2

22
2 θ−−−
−θ−+

ff  

( ) ( ( ) )].11141 2222 θ−−θ−−+ ff  (68) 

Each solution has the energy determined by its phase trajectories and has to be 

validated in the proper limit .21,0 0 f
y

f
±=θ±=

β
α±=θ=θ  For example, 

the energy for the kink is 

 
( )

( ) ,
32 3

2
5

1
2

π′−
β

−
= nn

C

CuE  (69) 

the virial relation gives the next condition 

 .
41
33

1
2 Cu =  (70) 

Calculating the energies, we found that the energies for the anti-bubble and peak 
like solutions correspondingly take divergent values. 

6. Conclusions 

We studied a system of identical particles subjected to nonlinear forces along a 
line and obtained nonlinear equation that in some sense is more general than that 
presented in works [9-12]. The jump condition method is used to construct wide 
classes of nonclassic traveling wave solutions of the NPDEs arising in nonlinear 
physics, such as Klein-Gordon equation. This nonlinear equation supports different 
analytical nonclassical solutions compacton bubble, kink, and peakons. These 
solutions were obtained making suitable speed restrictions in the space of parameter 
values. We ensure that solutions are properly constructed by given their phase 
trajectories and the fulfillment of gluing conditions. Additionally, we found 
dispersion relations and their energies that determine the stability and velocities of 
obtained solutions. 
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