INCLUSION RESULTS OF *p***-VALENT ANALYTIC FUNCTIONS DEFINED BY LINEAR OPERATOR**

R. M. EL-ASHWAH and M. E. DRBUK*

Department of Mathematics Faculty of Science Damietta University Damietta 34517 Egypt e-mail: r_elashwah@yahoo.com drbuk2@yahoo.com

Abstract

In this paper, we study some properties of the inclusion relationships for two subclasses and some other interesting properties of *p*-valent functions which are defined by linear operator.

1. Introduction

Let $\mathcal{H}(\mathbb{U})$ be the class of analytic functions in the open unit disc $U =$ $\{z \in \mathbb{C} : |z| < 1\}$ and let $\mathcal{H}[a, p]$ be the subclass of $\mathcal{H}(\mathbb{U})$ consisting of functions of the form

$$
f(z) = a + a_p z^p + a_{p+1} z^{p+1} + \dots (a \in \mathbb{C}; p \in \mathbb{N} = \{1, 2, \dots\}).
$$

Keywords and phrases: *p*-valent functions, analytic functions, Hadamard product, linear operator.

*Corresponding author

Received December 14, 2014; Accepted January 9, 2015

© 2015 Fundamental Research and Development International

²⁰¹⁰ Mathematics Subject Classification: 30C45.

Also, let $A(p)$ be the subclass of the functions $f(z) \in H(\mathbb{U})$ of the form

$$
f(z) = zp + \sum_{k=p+1}^{\infty} a_k z^k \quad (p \in \mathbb{N}).
$$
 (1.1)

Let $f(z) \in A(p)$ be given by (1.1) and $g \in A(p)$ is given by

$$
g(z) = zp + \sum_{k=p+1}^{\infty} b_k z^k.
$$

The Hadamard product (or convolution) of $f(z)$ and $g(z)$ is defined by

$$
(f * g)(z) = zp + \sum_{k=p+1}^{\infty} a_k b_k z^k = (g * f)(z) \quad (z \in \mathbb{U}).
$$

Also, let $\mathcal{P}_k(p, \rho)$ be the class of functions $h(z) = p + \sum_{k=1}^\infty c_k z^k$ *k* $h(z) = p + \sum c_k z$ *p* ∑ ∞ $=p+$ $= p +$ 1 which are

analytic in $\mathbb U$ and satisfying the properties $h(0) = p$ and

$$
\int_{0}^{2\pi} \left| \frac{\text{Re}\{h(z)\} - \rho}{p - \rho} \right| d\theta \le k\pi,\tag{1.2}
$$

where $z = re^{i\theta}$, $k \ge 2$ and $0 \le \rho < p$. The class $\mathcal{P}_k(p, \rho)$ was introduced by Aouf [2].

We note that

(i) $\mathcal{P}_k(1, \rho) = \mathcal{P}_k(\rho)$ ($k \ge 2, 0 \le \rho < 1$) (see Padmanabhan and Parvatham [21]).

(ii) $\mathcal{P}_k(1, 0) = \mathcal{P}_k(k \ge 2)$ (see Pinchuk [24]).

(iii) $\mathcal{P}_2(p, \rho) = \mathcal{P}(p, \rho)$ ($0 \le \rho < p, p \in \mathbb{N}$), where $\mathcal{P}(p, \rho)$ is the class of functions with positive real part greater than ρ (see Aouf [2]).

(iv) $\mathcal{P}_2(p, 0) = \mathcal{P}(p)$ ($p \in \mathbb{N}$), where $\mathcal{P}(p)$ is the class of *p*-valent functions with positive real part (see [2]).

(v) $\mathcal{P}_2(1, \rho) = \mathcal{P}(\rho)$ ($0 \le \rho < 1$), where $\mathcal{P}(\rho)$ is the class of functions with positive real part greater than ρ.

(vi) $P_2(1, 0) = P$ is the class of functions with positive real part.

Let $h(z) \in \mathcal{P}_k(p, \rho)$, then we can write $h(z)$ of the form

$$
h(z) = \left(\frac{k}{4} + \frac{1}{2}\right)h_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right)h_2(z) \ (z \in \mathbb{U}; h_1, h_2 \in \mathcal{P}(p, \rho)).
$$

The classes $S_k(p, \rho)$ and $C_k(p, \rho)$ are related to the class $\mathcal{P}_k(p, \rho)$ and can be defined as

$$
f(z) \in \mathcal{S}_k(p, \rho) \Leftrightarrow \frac{zf'(z)}{f(z)} \in \mathcal{P}_k(p, \rho) \quad (z \in \mathbb{U})
$$
 (1.3)

and

$$
f(z) \in \mathcal{C}_k(p, \rho) \Leftrightarrow \frac{(zf'(z))'}{f'(z)} \in \mathcal{P}_k(p, \rho) \quad (z \in \mathbb{U}). \tag{1.4}
$$

El-Ashwah and Drbuk [12] defined the linear operator $\mathcal{J}_{\lambda}^{m,p}(a, c, A)$: $\mathcal{J}_{\lambda,\ell}^{m,\,p}(a,\,c,\,A)$ $A(p) \rightarrow A(p)$ as follows:

$$
\mathcal{J}_{\lambda,\ell}^{m,p}(a, c, A)f(z)
$$

= $z^p + \frac{\Gamma(c + Ap)}{\Gamma(a + Ap)} \sum_{k=p+1}^{\infty} \left(\frac{p + \ell + \lambda(k-p)}{p + \ell}\right)^m \frac{\Gamma(a + kA)}{\Gamma(c + kA)} a_k z^k,$ (1.5)

where $m \in \mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$, $A > 0$, $\lambda \ge 0$, $\ell > -p$, $a, c \in \mathbb{C}$ be such that $Re(c - a) > 0$ and $Re(a) > -Ap$.

Putting $a = c$ in (1.5) and by specializing the parameters λ , ℓ and p , we obtain the following operators studied by various authors:

(i) $\mathcal{J}_{\lambda, \ell}^{m, p}(a, a, A) f(z) = J_{p}^{m}(\lambda, \ell) f(z) (\lambda \ge 0, \ell > -p, p \in \mathbb{N}$, ℓ ℓ ℓ J and *m* = { ,0 $\pm 1, \pm 2, \ldots$ }) (see [25]).

(ii)
$$
\mathcal{J}_{\lambda,\ell}^{m,p}(a, a, A)f(z) = I_p^m(\lambda, \ell)f(z) \ (\ell \ge 0, \lambda \ge 0, \ p \in \mathbb{N}
$$
 and $m \in \mathbb{N}_0$

 $= \mathbb{N} \cup \{0\}$ (see [8]).

(iii) $\mathcal{J}_{1, \ell}^{m, p}(a, a, A) f(z) = I_p(m, \ell) f(z) (\ell \ge 0, p \in \mathbb{N})$ $\mathcal{J}_{1,\ell}^{m,p}(a, a, A)f(z) = I_p(m, \ell)f(z) (\ell \ge 0, p \in \mathbb{N} \text{ and } m \in \mathbb{N}_0)$ (see [16, 31]).

(iv)
$$
\mathcal{J}_{\lambda,0}^{m,p}(a, a, A)f(z) = D_{\lambda, p}^{m}f(z) \ (\lambda \ge 0, p \in \mathbb{N} \text{ and } m \in \mathbb{N}_0)
$$
 (see [3]).
\n(v) $\mathcal{J}_{1,0}^{m,p}(a, a, A)f(z) = D_p^m f(z) (p \in \mathbb{N} \text{ and } m \in \mathbb{N}_0)$ (see [4, 15]).
\n(vi) $\mathcal{J}_{\lambda, \ell}^{-m, p}(a, a, A)f(z) = J_p^m(\lambda, \ell) f(z) (\ell \ge 0, \lambda \ge 0, p \in \mathbb{N} \text{ and } m \in \mathbb{N}_0)$ (see [5, 11, 30]).

(vii)
$$
\mathcal{J}_{1,1}^{-m,p}(a, a, A) f(z) = D^m f(z) \text{ (m } \in \mathbb{Z} \text{) (see [23]).}
$$

\n(viii) $\mathcal{J}_{1,\ell}^{m,1}(a, a, A) f(z) = I_{\ell}^m f(z) (\ell \ge 0 \text{ and } m \in \mathbb{N}_0 \text{) (see [9, 10]).}$
\n(ix) $\mathcal{J}_{\lambda,0}^{m,1}(a, a, A) f(z) = D_{\lambda}^m f(z) (\lambda \ge 0 \text{ and } m \in \mathbb{N}_0 \text{) (see [1]).}$
\n(x) $\mathcal{J}_{1,0}^{m,1}(a, a, A) f(z) = D^m f(z) (m \in \mathbb{N}_0 \text{) (see [28]).}$
\n(xi) $\mathcal{J}_{\lambda,1}^{-m,1}(a, a, A) f(z) = I_{\lambda}^{-m} f(z) (\lambda \ge 0 \text{ and } m \in \mathbb{N}_0 \text{) (see [22, 6]).}$
\n(xii) $\mathcal{J}_{1,1}^{-m,1}(a, a, A) f(z) = I^m f(z) (m \in \mathbb{N}_0 \text{) (see [13]).}$
\n(xiii) $\mathcal{J}_{\lambda,\ell}^{0,1}(a-1, c-1, 1) f(z) = \mathcal{L}(a, c) f(z) \text{ (see [7]).}$
\n(xiv) $\mathcal{J}_{\lambda,\ell}^{0,p}(a-p, c-p, 1) f(z) = \mathcal{L}_p(a, c) f(z) \text{ (see [26]).}$
\n(xv) $\mathcal{J}_{1,1}^{-m,1}(a, a, A) f(z) = \mathcal{P}^m f(z) (m \in \mathbb{N}_0 \text{) (see [14]).}$
\n(xvi) $\mathcal{J}_{\lambda,\ell}^{0,1}(\beta, \alpha + \beta, 1) f(z) = Q_{\beta}^{\alpha} f(z) (\alpha > 0; \beta > -1) \text{ (see [14]).}$
\n(xvii) $\mathcal{J}_{\lambda,\ell}^{0,p}(\beta, \alpha + \beta, 1) f(z) = \mathcal{J}_{\ell} f(z) (\ell > -1) \text{ (see [14]).}$

It is readily verified from (1.5) that

$$
\mathcal{J}_{\lambda,\ell}^{m,p}(a+1,c,A)f(z)
$$

=
$$
\frac{a}{a+Ap} \mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)f(z) + \frac{A}{a+Ap} z(\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)f(z))'
$$
 (1.6)

and

$$
\mathcal{J}_{\lambda,\ell}^{m+1,\,p}(a,\,c,\,A)f(z)
$$

= $(1 - \frac{p\lambda}{p+\ell})\mathcal{J}_{\lambda,\ell}^{m,\,p}(a,\,c,\,A)f(z) + \frac{\lambda}{p+\ell}z(\mathcal{J}_{\lambda,\ell}^{m,\,p}(a,\,c,\,A)f(z))$. (1.7)

Now, we can define the following classes of analytic functions by using the operator $\mathcal{J}_{\lambda,\ell}^{m,\,p}$ as follows:

$$
S_{k,\lambda,\ell}^m(a, c, A, p, \rho)
$$

= $\{f(z) \in \mathcal{A}(p) : \mathcal{J}_{\lambda,\ell}^{m,p}(a, c, A)f(z) \in \mathcal{S}_k(p, \rho), z \in \mathbb{U}\},$ (1.8)

and

$$
\mathcal{C}_{k,\lambda,\ell}^{m}(a,c,A,p,\rho)
$$

= $\{f(z) \in \mathcal{A}(p) : \mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)f(z) \in \mathcal{C}_{k}(p,\rho), z \in \mathbb{U}\}.$ (1.9)

Obviously, we know that

$$
f(z) \in \mathcal{C}_{k,\lambda,\ell}^m(a, c, A, p, \rho) \Leftrightarrow \frac{zf'(z)}{p} \in \mathcal{S}_{k,\lambda,\ell}^m(a, c, A, p, \rho). \tag{1.10}
$$

Lemma 1 [18]. *Let* $\theta(u, v)$ *be a complex-valued function such that*

$$
\theta: D \to \mathbb{C}, D \subset \mathbb{C} \times \mathbb{C} \ (\mathbb{C} \ is \ the \ complex \ plane)
$$

and let $u = u_1 + iu_2$ *and* $v = v_1 + iv_2$. Suppose that $\theta(u, v)$ satisfies the following *conditions*:

(i) $\theta(u, v)$ *is continuous in D.*

(ii) $(1, 0) \in D$ *and* $\text{Re}\{\theta(1, 0)\} > 0$.

 (iii) *for all* $\theta(iu_2, v_1) \in D$ *such that*

$$
v_1 \le -\frac{1}{2}(1 + u_2^2), \quad \text{Re}\{\theta(iu_2, v_1)\} \le 0.
$$

Let

$$
q(z) = 1 + q_1 z + q_2 z^2 + \dots \tag{1.11}
$$

be analytic in *U* such that $(q(z), zq'(z)) \in D$ ($z \in U$). If

$$
\operatorname{Re}\left\{\Theta(q(z), zq'(z))\right\} > 0 \ (z \in U),
$$

then

$$
\operatorname{Re}\left\{\Theta(q(z), zq'(z))\right\} > 0 \text{ in } U.
$$

Lemma 2 [19]. *Let* $p(z)$ *be analytic in U with* $p(0) = a$ *and* $\text{Re}{p(z)} > 0$, $z \in U$. *Then, for* $s > 0$ *and* $\mu \in \mathbb{C} \setminus \{-1\}$,

$$
\operatorname{Re}\left\{p(z) + \frac{s z p'(z)}{p(z) + \mu}\right\} > 0, \quad (|z| < r_0),\tag{1.12}
$$

where r_0 *is given by*

$$
r_0 = \frac{|\mu + 1|}{\sqrt{A + (A^2 - |\mu^2 - 1|)^{\frac{1}{2}}}}, A = 2(s + 1)^2 + |\mu|^2 - 1.
$$
 (1.13)

Lemma 3 [20]**.** *Let* ψ *be convex function and let g be starlike in U*. *Then, for F analytic in U with* $F(0) = 1$, $((\psi * Fg) / (\psi * g))$ *is contained in the convex hull of* $F(U)$.

2. The Main Results

Unless otherwise mentioned, we assume throughout this paper that $m \in \mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}, k \ge 2, 0 \le p < p, p \in \mathbb{N}, A > 0, \lambda \ge 0, \ell > -p,$ *a*, *c* ∈ ℂ be such that Re(*c* − *a*) > 0 and Re(*a*) > −*Ap*.

Theorem 1. *Let* $a = a_1 + ia_2$, $\frac{\text{Re}(a)}{A} > 0$ $a = a_1 + ia_2$, $\frac{\text{Re}(a)}{4} > 0$ and $f \in \mathcal{A}(p)$, then

$$
S_{k,\lambda,\ell}^m(a+1,c,A,p,\rho) \subset S_{k,\lambda,\ell}^m(a,c,A,p,\rho). \tag{2.1}
$$

Proof. We begin by setting

$$
\frac{z(\mathcal{J}_{\lambda,\ell}^{m,p}(a, c, A)f(z))^{'} }{\mathcal{J}_{\lambda,\ell}^{m,p}(a, c, A)f(z)} = (p - \rho)h(z) + \rho.
$$

= $\left(\frac{k}{4} + \frac{1}{2}\right) \{(p - \rho)h_1(z) + \rho\} - \left(\frac{k}{4} - \frac{1}{2}\right) \{(p - \rho)h_2(z) + \rho\},$

where h_i is analytic in *U* and $h_i(0) = 1(i = 1, 2)$. By using the identity (1.6) in (2.2) and differentiating the resulting, we obtain

$$
\frac{z(\mathcal{J}_{\lambda,\ell}^{m,p}(a+1,c,A)f(z))^{'}}{\mathcal{J}_{\lambda,\ell}^{m,p}(a+1,c,A)f(z)} = \left\{\rho + (p-\rho)h(z) + \frac{(p-\rho)zh'(z)}{(p-\rho)h(z)+\rho+\frac{a}{A}}\right\} \in \mathcal{P}_k.
$$
\n(2.3)

This implies that

$$
h_i(z) + \frac{zh'_i(z)}{(p - \rho)h_i(z) + \rho + \frac{a}{A}} \in \mathcal{P} \quad (i = 1, 2; z \in U).
$$
 (2.4)

Now, from the functoinal $\psi(u, v)$ by setting $u = h_i(z) = u_1 + iu_2$ and $v =$ $zh'_i(z) = v_1 + iv_2$. Thus

$$
\psi(u, v) = u + \frac{v}{(p - \rho)u + \rho + \frac{a}{A}}.\tag{2.5}
$$

The first and second conditions of Lemma 1 are satisfied by using $\psi(u, v)$. To prove the third condition:

Re
$$
\{ \gamma(iu_2, v_1) \} = \text{Re} \left\{ \frac{v_1}{(p - \rho)iu_2 + \rho + \frac{a}{A}} \right\}.
$$

$$
\leq -\frac{\left(\rho + \frac{a_1}{A}\right)(1 + u_2^2)}{2[((p - \rho)u_2 + \frac{a_2}{A})^2 + (\rho + \frac{a_1}{A})^2]} < 0
$$
\n(2.6)

Therefore, by applying Lemma 1, $h_i \in \mathcal{P}(i = 1, 2)$ and thus $h \in \mathcal{P}_k(z \in U)$. The proof of Theorem 1 is completed.

Theorem 2. Let
$$
\frac{p+\ell}{\lambda} > p - \rho
$$
 and $f \in \mathcal{A}(p)$, then

$$
\mathcal{J}_{k,\lambda,\ell}^{m+1}(a, c, A, p, \rho) \subset \mathcal{J}_{k,\lambda,\ell}^m(a, c, A, p, \rho).
$$
(2.7)

Proof. Making use of (1.7), the proof of Theorem 2 is similar to that of Theorem 1, so it is omitted.

Theorem 3. Let
$$
a = a_1 + ia_2
$$
, $\frac{\text{Re}(a)}{A} > 0$ and $f \in \mathcal{A}(p)$, then

$$
\mathcal{C}_{k,\lambda,\ell}^m(a+1, c, A, p, \rho) \subset \mathcal{C}_{k,\lambda,\ell}^m(a, c, A, p, \rho).
$$
 (2.8)

Proof. Applying (1.10) and Theorem 1, we assume that

$$
f \in C_{k,\lambda,\ell}^{m}(a+1, c, A, p, \rho) \Leftrightarrow \frac{zf'}{p} \in S_{k,\lambda,\ell}^{m}(a+1, c, A, p, \rho)
$$

$$
\Rightarrow \frac{zf'}{p} \in S_{k,\lambda,\ell}^{m}(a, c, A, p, \rho)
$$

$$
\Leftrightarrow f \in C_{k,\lambda,\ell}^{m}(a, c, A, p, \rho).
$$

This completes the proof of Theorem 3.

Theorem 4. Let
$$
\frac{p+\ell}{\lambda} > p - \rho
$$
 and $f \in \mathcal{A}(p)$, then

$$
\mathcal{C}_{k,\lambda,\ell}^{m+1}(a, c, A, p, \rho) \subset \mathcal{C}_{k,\lambda,\ell}^m(a, c, A, p, \rho).
$$
 (2.9)

Proof. The proof of Theorem 4 is similar that to the proof of Theorem 3. Now, we study the closure properties of generalized integral operator defined by Saitoh et al. [27] as follows:

$$
\mathcal{L}_{c,p}f(z) = \frac{c+p}{z^c} \int_0^z t^{c-1} f(t) dt \ (f \in \mathcal{A}(p), \, c > -p). \tag{2.10}
$$

Theorem 5. *If* $f \in S_{k,\lambda,\ell}^m(a, c, A, p, \rho)$, then $\mathcal{L}_{c,\,p}f(z) \in S_{k,\lambda,\ell}^m(a, c, a)$ *A*, p , ρ) (*c* > *-* p), *where the operator* $\mathcal{J}_{c, p}$ *is defined by* (2.10).

Proof. Suppose $f \in S_k^m$ (a, c, A, p, ρ) and putting

$$
\frac{z(\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)\mathcal{L}_{c,p}f(z))^{'}}{\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)\mathcal{L}_{c,p}f(z)} = (p-\rho)h(z) + \rho
$$
\n(2.11)

$$
= \left(\frac{k}{4} + \frac{1}{2}\right) \{ (p - \rho)h_1(z) + \rho \} - \left(\frac{k}{4} - \frac{1}{2}\right) \{ (p - \rho)h_2(z) + \rho \},\
$$

where *h* is analytic in *U* and $h(0) = 1$. By using (2.10), we have

$$
z(\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)\mathcal{L}_{c,p}f(z))^{'} = (c+p)\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)f(z) - c\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)\mathcal{L}_{c,p}f(z)
$$
\n(2.12)

Then by using (2.11) and (2.12) , we get

$$
(c+p)\frac{\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)f(z)}{\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)\mathcal{L}_{c,p}f(z)} = (p-p)h(z) + \rho + c
$$
\n(2.13)

Differentiating (2.13) logarithmically with respect to *z*, we obtain

$$
\frac{1}{p-\rho}\left(\frac{z(\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)f(z))'}{\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)f(z)}-\rho\right)=h(z)+\frac{zh'(z)}{(p-\rho)h(z)+\rho+c}\in\mathcal{P}_k.\quad(2.14)
$$

This implies that

$$
h_i(z) + \frac{zh'_i(z)}{(p - \rho)h_i(z) + \rho + c} \in \mathcal{P} \ (i = 1, \ 2; \ z \in U). \tag{2.15}
$$

From the functoinal $\psi(u, v)$ by setting $u = h_i(z) = u_1 + iu_2$ and $v = zh'_i(z)$ $= v_1 + iv_2$. Thus

$$
\psi(u, v) = u + \frac{v}{(p - \rho)u + \rho + c}.
$$
\n(2.16)

the conditions of Lemma 1 are satisfied by using $\psi(u, v)$ as the proof of Theorem 1.

Hence $h_i \in \mathcal{P}$ $(i = 1, 2)$ and thus $h \in \mathcal{P}_k$ $(z \in U)$, which implies that $\mathcal{L}_{c, p} f(z) \in \mathcal{S}_{k, \lambda, \ell}^{m}(a, c, A, p, \rho)$. The proof of Theorem 5 is completed.

Next, we introduce an inclusion property for the subclass $\mathcal{C}_{k,\lambda,\ell}^m(a, c, A, p, \rho)$ involving the operator $\mathcal{L}_{c, p} f(z)$ which is given by the following theorem:

Theorem 6. *If* $f \in C_{k,\lambda,\ell}^m(a, c, A, p, \rho)$, then $\mathcal{L}_{c,p}f(z) \in C_{k,\lambda,\ell}^m(a, c, a)$ *A*, p , ρ) (*c* > *-* p), *where the operator* $\mathcal{J}_{c, p}$ *is defined by* (2.10).

Proof. From Theorem 5 it follows that

$$
f \in C_{k,\lambda,\ell}^{m}(a, c, A, p, \rho) \Leftrightarrow \frac{zf'(z)}{p} \in S_{k,\lambda,\ell}^{m}(a, c, A, p, \rho)
$$

\n
$$
\Rightarrow \mathcal{L}_{c,p} \left(\frac{zf'(z)}{p} \right) \in S_{k,\lambda,\ell}^{m}(a, c, A, p, \rho) \text{ (by Theorem 5)}
$$

\n
$$
\Leftrightarrow z \left(\frac{\mathcal{L}_{c,p}f(z)}{p} \right)^{\prime} \in S_{k,\lambda,\ell}^{m}(a, c, A, p, \rho)
$$

\n
$$
\Leftrightarrow \mathcal{L}_{c,p}f(z) \in C_{k,\lambda,\ell}^{m}(a, c, A, p, \rho),
$$

which evidently proves Theorem 6.

Theorem 7. *Let* $a = a_1 + ia_2$, and $\frac{\text{Re}(a)}{A} > 0$. $\frac{a}{a} > 0$. If $f \in C_{k,\lambda,\ell}(a+1, c, A,$ p, ρ) ($z \in U$), then $f \in C_{k,\lambda,\ell}(a, c, A, p, \rho)$ for

$$
|z| < r_0 = \frac{|\mu + 1|}{\sqrt{D + (D^2 - |\mu^2 - 1|)^{\frac{1}{2}}}},\tag{2.17}
$$

 $where \t D = 2(s+1)^2 + |\mu|^2 - 1, \t with \t \mu = ((\rho + \frac{a}{A})/(p - \rho)) \neq -1$ *a and* $s = (1/(p - \rho)).$

Proof. Let $f \in C_{k,\lambda,\ell}^m (a+1, c, A, p, \rho)$ $(z \in U)$ and let

$$
\frac{z(\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,\,A)f(z))}{\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,\,A)f(z)} = (p-\rho)h(z) + \rho
$$
\n(2.18)

$$
= \left(\frac{k}{4} + \frac{1}{2}\right) \{ (p - \rho)h_1(z) + \rho \} - \left(\frac{k}{4} + \frac{1}{2}\right) \{ (p - \rho)h_2(z) + \rho \},\
$$

where h_i is analytic in *U* and $h_i(0) = 1(i = 1, 2)$ and $Re{h_i(z)} > 0 (i = 1, 2)$. By using the identity (1.6) in (2.18) and differentiating the resulting, we have

$$
\frac{1}{p-\rho}\left(\frac{z(\mathcal{J}_{\lambda,\ell}^{m,p}(a+1,c,A)f(z))^{'} }{\mathcal{J}_{\lambda,\ell}^{m,p}(a+1,c,A)f(z)} - \rho\right)
$$
\n
$$
= h(z) + \frac{(1/(p-\rho))zh'(z)}{h(z) + ((\rho + \frac{a}{A})/(p-\rho))}
$$
\n
$$
= \left(\frac{k}{4} + \frac{1}{2}\right) \{h_1(z) + \frac{(1/(p-\rho))zh'_1(z)}{h_1(z) + ((\rho + \frac{a}{A})/(p-\rho))}\}
$$
\n
$$
- \left(\frac{k}{4} + \frac{1}{2}\right) \left\{h_2(z) + \frac{(1/(p-\rho))zh'_2(z)}{h_2(z) + ((\rho + \frac{a}{A})/(p-\rho))}\right\},\tag{2.19}
$$

where $\text{Re}\left\{h_i(z)\right\} > 0$ (*i* = 1, 2). Applying Lemma 2 with $s = (1/(p - \rho))$ and $μ = ((ρ + \frac{a}{A})/(p - ρ)) ≠ -1,$ $\frac{a}{4}$)/(p- ρ)) $\neq -1$, we have (z) + $\frac{(1/(p-\rho))zh'_i(z)}{h'_i(z)}$ $(z) + ((\rho + \frac{a}{4})/(p - \rho))$ $\text{Re}\left\{h_i(z) + \frac{(1/(p-\rho))zh'_i(z)}{q}\right\} > 0 \ (|z| < r_0),$ $\frac{a}{A}$)/(*p* $h_i(z) + ((\rho + \frac{a}{4})$ $h_i(z)$ + $\frac{(1/(p-\rho))zh'_i(z)}{h_i(z)}$ *i* $\frac{d\left(z\right) + \frac{d\left(z\right) - p}{h_i(z) + \left((p + \frac{a}{A})/(p - \rho)\right)} > 0$ (|z| < $\left\{ \right.$ \mathcal{I} $\overline{\mathcal{L}}$ $\left\{\right.$ \int $+ ((\rho + \frac{\alpha}{4})/(p - \rho$ $+\frac{(1/(p-p))z'h'_i(z)}{2} > 0$ (|z| < r₀), (2.20)

where r_0 is given by (2.17). This completes the proof of Theorem 7.

Theorem 8. *Let* $\frac{p+2}{\lambda} > p - \rho$. $\frac{p+\ell}{\lambda} > p - \rho$. If $f \in C_{k,\lambda,\ell}^{m+1}(a, c, A, p, \rho)$ ($z \in U$), then

 $f \in C_{k,\lambda,\ell}^m(a, c, A, p, \rho)$ for

$$
|z| < r_0 = \frac{|\mu + 1|}{\sqrt{D + (D^2 - |\mu^2 - 1|)^{\frac{1}{2}}}},\tag{2.21}
$$

where $D = 2(s + 1)^2 + |\mu|^2 - 1$, *with* $\mu = ((\rho + (\frac{p + \ell}{\lambda} - \rho)) / (p - \rho)) \neq -1$ $\mu = ((\rho + (\frac{p+\ell}{2} - \rho)) / (p - \rho)) \neq -1$ and $s = (1/(p - \rho)).$

Proof. Let $f \in C_{k,\lambda,\ell}^{m+1}(a, c, A, p, \rho)$ $(z \in U)$ and let

$$
\frac{z(\mathcal{J}_{\lambda,\ell}^{m,p}(a, c, A)f(z))^{'} }{\mathcal{J}_{\lambda,\ell}^{m,p}(a, c, A)f(z)} = (p - \rho)h(z) + \rho.
$$
\n(2.22)\n
$$
= \left(\frac{k}{4} + \frac{1}{4}\right) \{(p - \rho)h_1(z) + \rho\} - \left(\frac{k}{4} - \frac{1}{4}\right) \{(p - \rho)h_2(z) + \rho\},
$$

where h_i is analytic in *U* and $h_i(0) = 1(i = 1, 2)$ and $Re\{h_i(z)\} > 0(i = 1, 2)$. By using the identity (1.7) in (2.22) and differentiating the resulting, we have

$$
\frac{1}{p-\rho} \left(\frac{z(\mathcal{J}_{\lambda,\ell}^{m+1, p}(a, c, A)f(z))^{2}}{\mathcal{J}_{\lambda,\ell}^{m+1, p}(a, c, A)f(z)} - \rho \right)
$$
\n
$$
= h(z) + \frac{(1/(p-\rho))zh'(z)}{h(z) + ((\rho + (\frac{p+\ell}{\lambda} - p))/(p-\rho))}
$$
\n
$$
= \left(\frac{k}{4} + \frac{1}{4}\right) \{h_1(z) + \frac{(1/(p-\rho))zh'_1(z)}{h_1(z) + ((\rho + (\frac{p+\ell}{\lambda} - p))/(p-\rho))}\}
$$
\n
$$
- \left(\frac{k}{4} - \frac{1}{4}\right) \left\{h_2(z) + \frac{(1/(p-\rho))zh'_2(z)}{h_2(z) + ((\rho + (\frac{p+\ell}{\lambda} - p))/(p-\rho))}\right\}, \quad (2.23)
$$

where $\text{Re}\{h_i(z)\} > 0$ (*i* = 1, 2). Applying Lemma 2 with $s = (1/(p - \rho))$ and $((\rho + (\frac{p+\tau}{\lambda} - p))/(p - \rho)) \neq -1,$ $\mu = ((\rho + (\frac{p+\ell}{2} - p)) / (p - \rho)) \neq -1$, we have

$$
\operatorname{Re}\left\{h_i(z) + \frac{(1/(p-\rho))zh'_i(z)}{h_i(z) + ((\rho + (\frac{p+\ell}{\lambda} - p))/(p-\rho))}\right\} > 0 \ (|z| < r_0), \tag{2.24}
$$

where r_0 is given by (2.21). This completes the proof of Theorem 8.

Theorem 9. Let ϕ be a convex functions and $f \in S_2(p, \rho)$. Then $G \in S_2(p, p)$, where $G = \phi * f$.

Proof. Let $G = \phi * f$. Then

$$
\mathcal{J}_{\lambda,\ell}^{m,\,p}(a,\,c,\,A)G(z) = \mathcal{J}_{\lambda,\ell}^{m,\,p}(a,\,c,\,A)\big(\phi * f\big)(z) = \phi(z) * \mathcal{J}_{\lambda,\ell}^{m,\,p}(a,\,c,\,A)f(z).
$$
\n(2.25)

Since $f \in S_2(p, \rho)$, Then $\mathcal{J}_{\lambda, \ell}^{m, p}(a, c, A) f \in S_2(p, \rho)$. $\mathcal{J}_{\lambda,\ell}^{m,p}(a, c, A) f \in \mathcal{S}_2(p, \rho)$. By logarithmic differentiation of (2.25) and after some calculations, we have

$$
\frac{z(\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)G(z))^{'}}{p\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)G(z)} = \frac{\phi(z) * F(z)\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)f(z)}{\phi(z) * \mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)f(z)},
$$
(2.26)

where $F(z) = z(\mathcal{J}_{\lambda}^{m}P(a, c, A)f(z)) / p\mathcal{J}_{\lambda}^{m}P(a, c, A)f(z)$, $= z(\mathcal{J}_{\lambda,\ell}^{m,p}(a, c, A)f(z))' / p\mathcal{J}_{\lambda,\ell}^{m,p}(a, c, A)f(z)$ is analytic in *U* and $F(0) = 1$. From Lemma 3, we can see that $z(\mathcal{J}_{\lambda,\ell}^{m,p}(a, c, A)G(z))' / p$ $\mathcal{J}_{\lambda,\ell}^{m,p}(a, c, A)G(z)$ is contained in the convex hull of $F(U)$. Since $z(\mathcal{J}_{\lambda,\ell}^{m,p})$ $(a, c, A)G(z)$ $\smash{\int p\mathcal{J}_{\lambda, \ell}^{m, p}(a, c, A)G(z)}$ is analytic in *U* and

$$
F(U) = \Omega = \left\{ \omega := \frac{z(\mathcal{J}_{\lambda,\ell}^{m,p}(a, c, A)\omega(z))}{p\mathcal{J}_{\lambda,\ell}^{m,p}(a, c, A)\omega(z)} \in \mathcal{P}(\gamma) \right\},\tag{2.27}
$$

then $z(\mathcal{J}_{\lambda}^{m, p}(a, c, A)G(z))$ / $p\mathcal{J}_{\lambda}^{m, p}(a, c, A)G(z)$, $\mathcal{J}_{\lambda,\ell}^{m,\,p}(a,\,c,\,A)G(z)$ $\int p\mathcal{J}_{\lambda,\ell}^{m,\,p}(a,\,c,\,A)G(z)$ lies in Ω , this implies that $G = \phi * f \in S_2(p, \rho)$. This completes the proof of Theorem 9.

Concluding Remark

The results presented in this paper can lead to several applications by appropriated linear operators which are mentioned in the introduction.

References

- [1] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Indian J. Math. Math. Sci. 25(28) (2004), 1429-1436.
- [2] M. K. Aouf, A generalization of functions with real part bounded in the mean on the unit disc, Math. Japon. 33(2) (1988), 175-182.
- [3] R. M. El-Ashwah and M. K. Aouf, Inclusion and neighborhood properties of some analytic *p*-valent functions, General Math. 18(2) (2010), 173-184.
- [4] M. K. Aouf and A. O. Mostafa, On a subclass of *n*-*p*-valent prestarlike functions, Comput. Math. Appl. 55 (2008), 851-861.
- [5] M. K. Aouf, A. O. Mostafa and R. M. El-Ashwah, Sandwich theorems for p-valent functions defined by a certain integral operator, Math. Comput. Modelling 53 (2011), 1647-1653.
- [6] M. K. Aouf and T. M. Seoudy, On differential sandwich theorems of analytic functions defined by generalized Salagean integral operator, Appl. Math. Letter 24 (2011), 1364- 1368.
- [7] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), 737-745.
- [8] A. Catas, On certain classes of *p*-valent functions defined by multiplier tranformations, Proc. Book of the International Symposium on Geometric Functions Theory and Applications, Istanbul, Turkey, August 2007, pp. 241-250.
- [9] N. E. Cho and T. H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc. 40(3) (2003), 399-410.
- [10] N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling 37(1-2) (2003), 39-49.
- [11] R. M. El-Ashwah and M. K. Aouf, Some properties of new integral operator, Acta Univ. Apulensis 24 (2010), 51-61.
- [12] R. M. EL-Ashwah and M. E. Drbuk, Subordination properties of *p*-valent functions defined by linear operators, British J. Math. Comput. Sci. 4(21) (2014), 3000-3013.
- [13] T. M. Flett, The dual of an identity of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765.
- [14] I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 179 (1993), 138-147.
- [15] M. Kamali and H. Orhan, On a subclass of certian starlike functions with negative coefficients, Bull. Korean Math. Soc. 41(1) (2004), 53-71.
- [16] S. S. Kumar and H. C. Taneja, Classes multivalent functions defined by Dziok-Srivastava linear operaor and multiplier transformations, Kyungpook Math. J. 46 (2006), 97-109.
- [17] J.-L. Liu and S. Owa, Properties of certain integral operator, Int. J. Math. Sci. 3(1) (2004), 69-75.
- [18] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math Anal. Appl. 65(2) (1978), 815.826.
- [19] S. Ruscheweyh and V. Singh, On certain extremal problems for functions with positive real part, Proc. American Math. Soc. 61(2) (1976), 329-334.
- [20] S. Ruscheweyh and T. Sheil-Small, Hadamard Products of Schlicht functions and the Polya-Schoenberg Conjectur, Commentarii Math. Helvetici 48 (1973), 119-135.
- [21] K. S. Padmanabhan and R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math. 31 (1975), 311-323.
- [22] J. Patel, Inclusion relations and convolution properties of certain sub-classes of analytic functions defined by generalized Salagean operator, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), 33-47.
- [23] J. Patel and P. Sahoo, Certain subclasses of multivalent analytic functions, Indian J. Pure Appl. Math. 34 (2003), 487-500.
- [24] B. Pinchuk, Functions with bounded boundary rotation, Israel J. Math. 10 (1971), 7- 16.
- [25] J. K. Prajapat, Subordination and superordination preserving properties for generalized multiplier transformation operator, Math. Comput. Modelling 55 (2012), 1456-1465.
- [26] H. Saitoh, A linear operator and its applications of first order differential subordinations, Math. Japon. 44 (1996), 31.38.
- [27] H. Saitoh, S. Owa, T. Sekine, M. Nunokawa and R. Yamakawa, An application of certain integral operator, Appl. Math. Lett. 5 (1992), 21-24.
- [28] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. 1013 (1983), 362-372.
- [29] T. M. Seoudy, Inclusion properties of certain subclasses of *p*-valent functions associated with the integral operator, J. Math. 2014 (2014), Art. 749251, pp. 1-4.
- [30] H. M. Srivastava, M. K. Aouf and R. M. El-Ashwah, Some inclusion relationships associated with a certain class of integral operators, Asian European J. Math. 3(4) (2010), 667-684.
- [31] H. M. Srivastava, K. Suchithra, B. Adolf Stephen and S. Sivasubramanian, Inclusion and neighborhood properties of certian subclasses of multivalent functions of complex order, J. Ineq. Pure Appl. Math. 7(5) (2006), 1-8.