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Abstract 

In this paper, we study some properties of the inclusion relationships for 

two subclasses and some other interesting properties of p-valent functions 

which are defined by linear operator. 

1. Introduction 

Let ( )UH  be the class of analytic functions in the open unit disc =U  

{ }1: <∈ zz C  and let [ ]pa,H  be the subclass of ( )UH  consisting of functions of 

the form 

( ) { }( ).,2,1;
1

1 …… =∈∈+++= +
+ NC pazazaazf

p
p

p
p  
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Also, let ( )pA  be the subclass of the functions ( ) ( )UH∈zf  of the form 

( ) ( ).
1

N∈+= ∑
∞

+=

pzazzf

p

p k
k

k

 (1.1) 

Let ( ) ( )pAzf ∈  be given by (1.1) and ( )pAg ∈  is given by 

( ) .

1

k
k

k

zbzzg

p

p ∑
∞

+=

+=  

The Hadamard product (or convolution) of ( )zf  and ( )zg  is defined by 

( ) ( ) ( ) ( ) ( ).
1

U∈∗=+=∗ ∑
∞

+=

zzfgzbazzgf

p

p k
kk

k

 

Also, let ( )ρ,pkP  be the class of functions ( ) k

k

k

zcpzh
p
∑
∞

+=

+=
1

 which are 

analytic in U  and satisfying the properties ( ) ph =0  and 

( ){ }
,

Re
2

0

π≤θ
ρ−

ρ−
∫
π

kd
p

zh
 (1.2) 

where 2, ≥= θ
k

irez  and .0 p<ρ≤  The class ( )ρ,pkP  was introduced by Aouf 

[2]. 

We note that 

(i) ( ) ( ) ( )10,2,1 <ρ≤≥ρ=ρ kkk PP  (see Padmanabhan and Parvatham 

[21]). 

(ii) ( ) ( )20,1 ≥= kkk PP  (see Pinchuk [24]). 

(iii) ( ) ( ) ( ),,0,,2 N∈<ρ≤ρ=ρ pppp PP  where ( )ρ,pP  is the class of 

functions with positive real part greater than ρ  (see Aouf [2]). 

(iv) ( ) ( ) ( ) ,0,2 N∈= ppp PP  where ( )pP  is the class of p-valent functions 

with positive real part (see [2]). 
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(v) ( ) ( ) ( ) ,10,12 <ρ≤ρ=ρ PP  where ( )ρP  is the class of functions with 

positive real part greater than .ρ  

(vi) ( ) PP =0,12  is the class of functions with positive real part. 

Let ( ) ( ) ,, ρ∈ pzh kP  then we can write ( )zh  of the form 

( ) ( ) ( ) ( ( )).,,;
2

1

42

1

4 2121 ρ∈∈





 −−






 += phhzzhzhzh PU

kk
 

The classes ( )ρ,pkS  and ( )ρ,pkC  are related to the class ( )ρ,pkP  and can be 

defined as 

( ) ( )
( )
( )

( ) ( )U∈ρ∈
′

⇔ρ∈ zp
zf

zfz
pzf ,, kk PS  (1.3) 

and 

( ) ( )
( )( )
( )

( ) ( ).,, U∈ρ∈
′

′′
⇔ρ∈ zp

zf

zfz
pzf kk PC  (1.4) 

El-Ashwah and Drbuk [12] defined the linear operator ( ) :,,
,
, Aca

pm
ℓλJ  

( ) ( )pApA →  as follows: 

( ) ( )zfAca
pm

,,
,
, ℓλJ  

( )
( )

( ) ( )
( )

,

1

k
k

k
k

kk
za

Ac

Aa

p

pp

Apa

Apc
z

m

p

p

+Γ

+Γ








+

−λ++

+Γ

+Γ
+= ∑

∞

+=
ℓ

ℓ
 (1.5) 

where { } CZ ∈−>≥λ>−−=∈ capAm ,,,0,0,,2,1,0,1,2, ℓ……  be such 

that ( ) 0Re >− ac  and ( ) .Re Apa −>  

Putting ca =  in (1.5) and by specializing the parameters ℓ,λ  and p, we obtain 

the following operators studied by various authors: 

(i) ( ) ( ) ( ) ( ) ( N∈−>≥λλ=λ ppzfJzfAaa m
p

pm
,,0,,,

,
, ℓℓ
ℓ

J  and { ,0=m  

})…,2,1 ±±  (see [25]). 

(ii) ( ) ( ) ( ) ( ) ( N∈≥λ≥λ=λ pzfIzfAaa m
p

pm
,0,0,,,

,
, ℓℓ
ℓ

J  and 0N∈m  
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{ })0∪N=  (see [8]). 

(iii) ( ) ( ) ( ) ( ) ( N∈≥= pzfmIzfAaa p
pm

,0,,,
,

,1 ℓℓ
ℓ

J  and )0N∈m  (see 

[16, 31]). 

(iv) ( ) ( ) ( ) ( N∈≥λ= λλ pzfDzfAaa m
p

pm
,0,, ,

,
0,J  and )0N∈m  (see [3]). 

(v) ( ) ( ) ( ) ( N∈= pzfDzfAaa m
p

pm
,,

,
0,1J  and )0N∈m  (see [4, 15]). 

(vi) ( ) ( ) ( ) ( ) ( N∈≥λ≥λ=
−
λ pzfJzfAaa m

p
pm

,0,0,,,
,

, ℓℓ
ℓ

J  and ∈m  

)0N  (see [5, 11, 30]). 

(vii) ( ) ( ) ( ) ( )Z∈=
−

mzfDzfAaa mpm
,,

,
1,1J  (see [23]). 

(viii) ( ) ( ) ( ) ( 0,,
1,

,1 ≥= ℓℓℓ
zfIzfAaa mm

J  and )0N∈m  (see [9, 10]). 

(ix) ( ) ( ) ( ) ( 0,,
1,
0, ≥λ= λλ zfDzfAaa mm

J  and )0N∈m  (see [1]). 

(x) ( ) ( ) ( ) ( )0
1,

0,1 ,, N∈= mzfDzfAaa mm
J  (see [28]). 

(xi) ( ) ( ) ( ) ( 0,,
1,

1, ≥λ= −
λ

−
λ zfIzfAaa mm
J  and )0N∈m  (see [22, 6]). 

(xii) ( ) ( ) ( ) ( )0
1,

1,1 ,, N∈=
−

mzfIzfAaa mm
J  (see [13]). 

(xiii) ( ) ( ) ( ) ( )zfcazfca ,1,1,1
1,0
, LJ =−−λ ℓ  (see [7]). 

(xiv) ( ) ( ) ( ) ( )zfcazfpcpa p
p

,1,,
,0
, LJ =−−λ ℓ  (see [26]). 

(xv) ( ) ( ) ( ) ( )0
1,

1,1 ,, N∈=
−

mzfzfAaa mm
PJ  (see [14]). 

(xvi) ( ) ( ) ( ) ( )1;01,,
1,0
, −>β>α=β+αβ α

βλ zfzf QJ
ℓ

 (see [14]). 

(xvii) ( ) ( ) ( ) ( )1,,
1,1

1,1 −>=
−

ℓℓ zfzfAaa JJ  (see [14]). 

(xviii) ( ) ( ) ( ) ( )pzfzf p
p

−>β>α=β+αβ α
βλ ;01,, ,

,0
, QJ
ℓ

 (see [17, 29]). 



INCLUSION RESULTS OF p-VALENT ANALYTIC … 

 

33 

It is readily verified from (1.5) that 

( ) ( )zfAca
pm

,,1
,
, +λ ℓJ  

( ) ( ) ( ( ) ( ))′
+

+
+

= λλ zfAcaz
Apa

A
zfAca

Apa

a pmpm
,,,,

,
,

,
, ℓℓ

JJ  (1.6) 

and 

( ) ( )zfAca
pm

,,
,1

,
+

λ ℓJ  

( ) ( ) ( ) ( ( ) ( )) .,,,,1
,
,

,
,

′
+

λ
+

+

λ
−= λλ zfAcaz

p
zfAca

p

p pmpm
ℓℓ ℓℓ

JJ  (1.7) 

Now, we can define the following classes of analytic functions by using the operator 

pm,
, ℓλJ  as follows: 

( )ρλ ,,,,,, pAca
m
ℓkS  

{ ( ) ( ) ( ) ( ) ( ) },,,,,:
,
, U∈ρ∈∈= λ zpzfAcapzf

pm
kSJA

ℓ
 (1.8) 

and 

( )ρλ ,,,,,, pAca
m
ℓkC  

{ ( ) ( ) ( ) ( ) ( ) }.,,,,:
,
, U∈ρ∈∈= λ zpzfAcapzf

pm
kCJA

ℓ
 (1.9) 

Obviously, we know that 

( ) ( )
( )

( ).,,,,,,,, ,,,, ρ∈
′

⇔ρ∈ λλ pAca
p

zfz
pAcazf mm

ℓℓ kk SC  (1.10) 

Lemma 1 [18]. Let ( )vu,θ  be a complex-valued function such that 

CCC ×⊂→θ DD ,:  (C  is the complex plane) 

and let 21 iuuu +=  and .21 ivvv +=  Suppose that ( )vu,θ  satisfies the following 

conditions: 

(i) ( )vu,θ  is continuous in D. 
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(ii) ( ) D∈0,1  and ( ){ } .00,1Re >θ  

(iii) for all ( ) Dviu ∈θ 12 ,  such that 

( ) ( ){ } .0,Re,1
2

1
12

2
21 ≤θ+−≤ viuuv  

Let 

( ) …+++= 2
211 zqzqzq   (1.11) 

be analytic in U such that ( ) ( )( ) ( )., UzDzqzzq ∈∈′  If 

( ) ( )( ){ } ( ),0,Re Uzzqzzq ∈>′θ  

then 

( ) ( )( ){ } .in0,Re Uzqzzq >′θ  

Lemma 2 [19]. Let ( )zp  be analytic in U with ( ) ap =0  and ( ){ }zpRe  ,0>  

.Uz ∈  Then, for 0>s  and { },1\ −∈µ C  

( )
( )

( )
( ),,0Re 0rz

zp

zpsz
zp <>









µ+

′
+  (1.12) 

where 0r  is given by 

( )

( ) .112,

1

1 22

22
0

2
1

−µ++=

−µ−+

+µ
= sA

AA

r  (1.13) 

Lemma 3 [20]. Let ψ  be convex function and let g be starlike in U. Then, for F 

analytic in U with ( ) ,10 =F  ( ) ( )( )gFg ∗ψ∗ψ  is contained in the convex hull of 

( ).UF  

2. The Main Results 

Unless otherwise mentioned, we assume throughout this paper that 

{ } ,,0,0,,0,2,,2,1,0,1,2, pAppm −>≥λ>∈<ρ≤≥−−=∈ ℓ…… NZ k  

C∈ca,  be such that ( ) 0Re >− ac  and ( ) .Re Apa −>  
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Theorem 1. Let 
( )

0
Re

,21 >+=
A

a
iaaa  and ( ),pf A∈  then 

( ) ( ).,,,,,,,,1 ,,,, ρ⊂ρ+ λλ pAcapAca
mm
ℓℓ kk SS  (2.1) 

Proof. We begin by setting 

( ( ) ( ))

( ) ( )
( ) ( ) .

,,

,,

,
,

,
,

ρ+ρ−=

′

λ

λ
zhp

zfAca

zfAcaz

pm

pm

ℓ

ℓ

J

J
 

( ) ( ){ } ( ) ( ){ },
2

1

42

1

4 21 ρ+ρ−





 −−ρ+ρ−






 += zhpzhp

kk
 

where ih  is analytic in U and ( ) ( ).2,110 == ihi  By using the identity (1.6) in (2.2) 

and differentiating the resulting, we obtain 

( ( ) ( ))

( ) ( )
( ) ( )

( ) ( )

( ) ( )
.

,,1

,,1

,
,

,
,

kP
J

J
∈

















+ρ+ρ−

′ρ−
+ρ−+ρ=

+

′+

λ

λ

A

a
zhp

zhzp
zhp

zfAca

zfAcaz

pm

pm

ℓ

ℓ
 

(2.3) 

This implies that 

( )
( )

( ) ( )
( ).;2,1 Uzi

A

a
zhp

zhz
zh

i

i
i ∈=∈

+ρ+ρ−

′
+ P  (2.4) 

Now, from the functoinal ( )vu,ψ  by setting ( ) 21 iuuzhu i +==  and =v  

( ) .21 ivvzhz i +=′  Thus 

( )
( )

.,

A

a
up

v
uvu

+ρ+ρ−

+=ψ  (2.5) 

The first and second conditions of Lemma 1 are satisfied by using ( )., vuψ  To prove 

the third condition: 

( ){ }
( )

.Re,Re

2

1
12

















+ρ+ρ−

=/

A

a
iup

v
viuv  
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( )

[(( ) ) ( ) ]
0

2

1

2122
2

2
2

1

<

+ρ++ρ−

+







+ρ

−≤

A

a

A

a
up

u
A

a

 (2.6) 

Therefore, by applying Lemma 1, ( )2,1=∈ ihi P  and thus ( ).Uzh ∈∈ kP  The 

proof of Theorem 1 is completed. 

Theorem 2. Let ρ−>
λ

+
p

p ℓ
 and ( ),pf A∈  then 

( ) ( ).,,,,,,,, ,,
1
,, ρ⊂ρ λ

+
λ pAcapAca

mm
ℓℓ kk JJ  (2.7) 

Proof. Making use of (1.7), the proof of Theorem 2 is similar to that of Theorem 

1, so it is omitted. 

Theorem 3. Let 
( )

0
Re

,21 >+=
A

a
iaaa  and ( ),pf A∈  then 

( ) ( ).,,,,,,,,1 ,,,, ρ⊂ρ+ λλ pAcapAca
mm
ℓℓ kk CC  (2.8) 

Proof. Applying (1.10) and Theorem 1, we assume that 

( ) ( )ρ+∈
′/

⇔ρ+∈ λλ ,,,,1,,,,1 ,,,, pAca
p

fz
pAcaf mm

ℓℓ kk SC  

( )ρ∈
′/⇒ λ ,,,,,, pAca

p

fz m
ℓkS  

( ).,,,,,, ρ∈⇔ λ pAcaf
m
ℓkC  

This completes the proof of Theorem 3. 

Theorem 4. Let ρ−>
λ

+
p

p ℓ
 and ( ),pf A∈  then 

( ) ( ).,,,,,,,, ,,
1
,, ρ⊂ρ λ

+
λ pAcapAca

mm
ℓℓ kk CC  (2.9) 

Proof. The proof of Theorem 4 is similar that to the proof of Theorem 3. Now, 

we study the closure properties of generalized integral operator defined by Saitoh et 

al. [27] as follows: 

( ) ( ) ( )( ).,
1

0
, pcpfdttft

z

pc
zf

c
z

cpc −>∈
+

= −∫ AL  (2.10) 
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Theorem 5. If ( ) ,,,,,,, ρ∈ λ pAcaf
m
ℓkS  then ( ) ( ,,,,, cazf

m
pc ℓλ∈ kSL  

) ( ) ,,, pcpA −>ρ  where the operator pc,J  is defined by (2.10). 

Proof. Suppose ( )ρ∈ ,,,, pAcaf m
kS  and putting 

( ( ) ( ))

( ) ( )
( ) ( ) ρ+ρ−=

′

λ

λ
zhp

zfAca

zfAcaz

pc
pm

pc
pm

,
,
,

,
,
,

,,

,,

LJ

LJ

ℓ

ℓ
 (2.11) 

( ) ( ){ } ( ) ( ){ },
2

1

42

1

4 21 ρ+ρ−





 −−ρ+ρ−






 += zhpzhp

kk
 

where h is analytic in U and ( ) .10 =h  By using (2.10), we have 

( ( ) ( )) ( ) ( ) ( ) ( ) ( )zfAcaczfAcapczfAcaz pc
pmpm

pc
pm

,
,
,

,
,,

,
, ,,,,,, LJJLJ

ℓℓℓ λλλ −+=′  

(2.12) 

Then by using (2.11) and (2.12), we get 

( )
( ) ( )

( ) ( )
( ) ( ) czhp

zfAca

zfAca
pc

pc
pm

pm

+ρ+ρ−=+

λ

λ

,
,
,

,
,

,,

,,

LJ

J

ℓ

ℓ
 (2.13) 

Differentiating (2.13) logarithmically with respect to z, we obtain 

( ( ) ( ))

( ) ( )
( )

( )
( ) ( )

.
,,

,,1
,
,

,
,

kP
J

J
∈

+ρ+ρ−

′
+=














ρ−

′

ρ−
λ

λ

czhp

zhz
zh

zfAca

zfAcaz

p pm

pm

ℓ

ℓ
 (2.14) 

This implies that 

( )
( )

( ) ( )
( ).;2,1 Uzi

czhp

zhz
zh

i

i
i ∈=∈

+ρ+ρ−

′
+ P  (2.15) 

From the functoinal ( )vu,ψ  by setting ( ) 21 iuuzhu i +==  and ( )zhzv i′=  

.21 ivv +=  Thus 

( )
( )

.,
cup

v
uvu

+ρ+ρ−
+=ψ  (2.16) 

the conditions of Lemma 1 are satisfied by using ( )vu,ψ  as the proof of Theorem 1. 
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Hence ( )2,1=∈ ihi P  and thus ( ) ,Uzh ∈∈ kP  which implies that 

( ) ( ).,,,,,,, ρ∈ λ pAcazf
m

pc ℓkSL  The proof of Theorem 5 is completed. 

Next, we introduce an inclusion property for the subclass ( ,,,, ca
m
ℓλkC  )ρ,, pA  

involving the operator ( )zfpc,L  which is given by the following theorem: 

Theorem 6. If ( ),,,,,,, ρ∈ λ pAcaf
m
ℓkC  then ( ) ( ,,,,, cazf

m
pc ℓλ∈ kCL  

) ( ) ,,, pcpA −>ρ  where the operator pc,J  is defined by (2.10). 

Proof. From Theorem 5 it follows that 

( )
( )

( )ρ∈
′/

⇔ρ∈ λλ ,,,,,,,, ,,,, pAca
p

zfz
pAcaf mm

ℓℓ kk SC  

( )
( )ρ∈






 ′/⇒ λ ,,,,,,, pAca

p

zfz m
pc ℓkSL  (by Theorem 5) 

( )
( )ρ∈

′









⇔ λ ,,,,,,

,
pAca

p

zf
z mpc

ℓkS
L

 

( ) ( ),,,,,,,, ρ∈⇔ λ pAcazf
m

pc ℓkCL  

which evidently proves Theorem 6. 

Theorem 7. Let ,21 iaaa +=  and 
( )

.0
Re

>
A

a
 If ( ,,,1,, Acaf +∈ λ ℓkC  

) ( ),, Uzp ∈ρ  then ( )ρ∈ λ ,,,,,, pAcaf ℓkC  for 

( )

,

1

1

2
122

0

−µ−+

+µ
=<

DD

rz  (2.17) 

where ( ) ,112
22 −µ++= sD  with (( ) ( )) 1−≠ρ−+ρ=µ p

A

a
 and 

( )( ).1 ρ−= ps  

Proof. Let ( ) ( )UzpAcaf
m ∈ρ+∈ λ ,,,,1,, ℓkC  and let 

( ( ) ( ))

( ) ( )
( ) ( ) ρ+ρ−=

′

λ

λ
zhp

zfAca

zfAcaz

pm

pm

,,

,,

,
,

,
,

ℓ

ℓ

J

J
 (2.18) 
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( ) ( ){ } ( ) ( ){ },
2

1

42

1

4 21 ρ+ρ−





 +−ρ+ρ−






 += zhpzhp

kk
 

where ih  is analytic in U and ( ) ( )2,110 == ihi  and ( ){ } ( ).2,10Re => izhi  By 

using the identity (1.6) in (2.18) and differentiating the resulting, we have 

( ( ) ( ))

( ) ( ) 












ρ−

+

′+

ρ−
λ

λ

zfAca

zfAcaz

p pm

pm

,,1

,,11
,
,

,
,

ℓ

ℓ

J

J
 

( )
( )( ) ( )

( ) (( ) ( ))ρ−+ρ+

′ρ−
+=

p
A

a
zh

zhzp
zh

1
 

{ ( )
( )( ) ( )

( ) (( ) ( ))
}

ρ−+ρ+

′ρ−
+






 +=

p
A

a
zh

zhzp
zh

1

1
1

1

2

1

4

k
 

( )
( )( ) ( )

( ) (( ) ( ))
,

1

2

1

4
2

2
2

















ρ−+ρ+

′ρ−
+






 +−

p
A

a
zh

zhzp
zh

k
 (2.19) 

where ( ){ } ( ).2,10Re => izhi  Applying Lemma 2 with ( )( )ρ−= ps 1  and 

(( ) ( )) ,1−≠ρ−+ρ=µ p
A

a
 we have 

( )
( )( ) ( )

( ) (( ) ( ))
( ) ,0

1
Re 0rz

p
A

a
zh

zhzp
zh

i

i
i <>

















ρ−+ρ+

′ρ−
+  (2.20) 

where 0r  is given by (2.17). This completes the proof of Theorem 7. 

Theorem 8. Let .ρ−>
λ

+
p

p ℓ
 If ( ) ( ) ,,,,,

1
,, UzpAcaf

m ∈ρ∈ +
λ ℓkC  then 

( )ρ∈ λ ,,,,,, pAcaf
m
ℓkC  for 

( )

,

1

1

2
122

0

−µ−+

+µ
=<

DD

rz  (2.21) 

where ( ) ,112
22 −µ++= sD  with (( ( )) ( )) 1−≠ρ−ρ−

λ

+
+ρ=µ p

p ℓ
 and 

( )( ).1 ρ−= ps  
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Proof. Let ( ) ( )UzpAcaf
m ∈ρ∈ +

λ ,,,,
1
,, ℓkC  and let 

( ( ) ( ))

( ) ( )
( ) ( ) .

,,

,,

,
,

,
,

ρ+ρ−=

′

λ

λ
zhp

zfAca

zfAcaz

pm

pm

ℓ

ℓ

J

J
 (2.22) 

( ) ( ){ } ( ) ( ){ },
4

1

44

1

4 21 ρ+ρ−





 −−ρ+ρ−






 += zhpzhp

kk
 

where ih  is analytic in U and ( ) ( )2,110 == ihi  and ( ){ } ( ).2,10Re => izhi  By 

using the identity (1.7) in (2.22) and differentiating the resulting, we have 

( ( ) ( ))

( ) ( ) 












ρ−

′

ρ− +
λ

+
λ

zfAca

zfAcaz

p pm

pm

,,

,,1
,1

,

,1
,

ℓ

ℓ

J

J
 

( )
( )( ) ( )

( ) (( ( )) ( ))ρ−−
λ

+
+ρ+

′ρ−
+=

pp
p

zh

zhzp
zh

ℓ

1
 

{ ( )
( )( ) ( )

( ) (( ( )) ( ))
}

ρ−−
λ

+
+ρ+

′ρ−
+






 +=

pp
p

zh

zhzp
zh

ℓ
1

1
1

1

4

1

4

k
 

( )
( )( ) ( )

( ) (( ( )) ( ))
,

1

4

1

4
2

2
2

















ρ−−
λ

+
+ρ+

′ρ−
+






 −−

pp
p

zh

zhzp
zh

ℓ

k
 (2.23) 

where ( ){ } ( ).2,10Re => izhi  Applying Lemma 2 with ( )( )ρ−= ps 1  and 

(( ( )) ( )) ,1−≠ρ−−
λ

+
+ρ=µ pp

p ℓ
 we have 

( )
( )( ) ( )

( ) (( ( )) ( ))
( ),0

1
Re 0rz

pp
p

zh

zhzp
zh

i

i
i <>

















ρ−−
λ

+
+ρ+

′ρ−
+

ℓ
 (2.24) 

where 0r  is given by (2.21). This completes the proof of Theorem 8. 

Theorem 9. Let φ  be a convex functions and ( ).,2 ρ∈ pf S  Then 

( ) ,,2 ρ∈ pG S  where .fG ∗φ=  
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Proof. Let .fG ∗φ=  Then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).,,,,,,
,
,

,
,

,
, zfAcazzfAcazGAca

pmpmpm
ℓℓℓ λλλ ∗φ=∗φ= JJJ  

(2.25) 

Since ( ),,2 ρ∈ pf S  Then ( ) ( ).,,, 2
,
, ρ∈λ pfAca

pm
SJ

ℓ
 By logarithmic 

differentiation of (2.25) and after some calculations, we have 

( ( ) ( ))

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
,

,,

,,

,,

,,

,
,

,
,

,
,

,
,

zfAcaz

zfAcazFz

zGAcap

zGAcaz

pm

pm

pm

pm

ℓ

ℓ

ℓ

ℓ

λ

λ

λ

λ

∗φ

∗φ
=

′

J

J

J

J
 (2.26) 

where ( ) ( ( ) ( )) ( ) ( )zfAcapzfAcazzF
pmpm

,,,,
,
,

,
, ℓℓ λλ

′= JJ  is analytic in U and 

( ) .10 =F  From Lemma 3, we can see that ( ( ) ( )) pzGAcaz
pm ′

λ ,,
,
, ℓJ  

( ) ( )zGAca
pm

,,
,
, ℓλJ  is contained in the convex hull of ( ) .UF  Since ( pm

z
,
, ℓλJ  

( ) ( )) ( ) ( )zGAcapzGAca
pm

,,,,
,
, ℓλ

′
J  is analytic in U and 

( )
( ( ) ( ))

( ) ( )
( ) ,

,,

,,
:

,
,

,
,














γ∈

ω

′ω
=ω=Ω=

λ

λ
P

J

J

zAcap

zAcaz
UF

pm

pm

ℓ

ℓ
 (2.27) 

then ( ( ) ( )) ( ) ( )zGAcapzGAcaz
pmpm

,,,,
,
,

,
, ℓℓ λλ

′
JJ  lies in ,Ω  this implies that 

( ).,. 2 ρ∈∗φ= pfG S  This completes the proof of Theorem 9. 

Concluding Remark 

The results presented in this paper can lead to several applications by 

appropriated linear operators which are mentioned in the introduction. 
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