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Abstract
In this paper, we study some properties of the inclusion relationships for
two subclasses and some other interesting properties of p-valent functions
which are defined by linear operator.

1. Introduction

Let H(U) be the class of analytic functions in the open unit disc U =
{ze C:|g <1} and let H[a, p] be the subclass of H(U) consisting of functions of

the form

f(z)=a+a,z” +ap+1zp+1 +.(aeC;peN={,2.1}.
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Also, let A(p) be the subclass of the functions f(z) € H(U) of the form

oo

flz) =z + Z ayz¥ (pe N). (1.1)

k=p+1
Let f(z) e A(p) be givenby (1.1) and g € A(p) is given by

oo

g(z) =z + Z b.z".

k=p+1
The Hadamard product (or convolution) of f(z) and g(z) is defined by

oo

(Fre)@=2"+ Y aph =g+ )@ (e ).

k=p+l1

Also, let P.(p, p) be the class of functions h(z) = p + Z ck,zk which are

k=p+1
analytic in U and satisfying the properties #(0) = p and
2n Relh
J' efh(z)} - P‘de <k, (1.2)
9 pP—P

where z = re®®, k> 2 and 0 < p < p. The class P,(p, p) was introduced by Aouf
[2].

We note that

i) Pp(1, p)=Py(p) (k=22,0<p<1) (see Padmanabhan and Parvatham
[21]).

(i) Py, (1, 0) = Py (k = 2) (see Pinchuk [24]).

(iii) Py(p, p)=P(p,p) (0<p< p, pe N), where P(p, p) is the class of

functions with positive real part greater than p (see Aouf [2]).

(iv) Po(p, 0) = P(p) (p € N), where P(p) is the class of p-valent functions

with positive real part (see [2]).
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(v) Po(1,p)=P(p) (0<p<1), where P(p) is the class of functions with

positive real part greater than p.
(vi) Po(1, 0) = P is the class of functions with positive real part.

Let h(z) € Pr(p, p), then we can write h(z) of the form

h(z) = (% +%) Iy (2) —(é —%)hz(z) (ze Us by, hy € P(p, p)).

The classes Sj(p, p) and Ci(p, p) are related to the class P (p, p) and can be

defined as

f(2)e Si(p.p) & Zj:((j)) e Pu(p.p) (ze ) (1.3)
and

f@6%@mhi%%%6ﬂ@m)&em- (1.4)

El-Ashwah and Drbuk [12] defined the linear operator J3 [/(a, ¢, A):

A(p) — A(p) as follows:

T3P e, e A)F(2)

_ . T(c + Ap) Z(p+€+7»(k—p)) I'(a + kA) (1.5)

T(a + Ap) p+/l I'(c + kA) A
where me Z=1{...,-2,-1,0,1,2,..}, A>0,A20,/ > —p, a,ce C be such
that Re(c — a) > 0 and Re(a) > —Ap.

Putting a = ¢ in (1.5) and by specializing the parameters A, ¢ and p, we obtain

the following operators studied by various authors:

(1) jx’f(a, a, A)f(2) =T, (A O)f(2)(A20,¢>~p, pe N and m ={0,
+1,42, ... 1) (see [25]).

(ii) jx’ﬁp(a,a,A)f(z)zI;,"(?»,f)f(z)(!fZO,?»ZO,peN and me Ny
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= NU{0}) (see [8]).

(iii) jf’/’(a, a, A)f(z) = 1,(m, 0)f(z)(£20, pe N and me Nj) (see
[16, 31]).

(@iv) j;’i’op(a, a, A)f(z) = Dy ,f(z2) (A 20, pe N and me Ny) (see [3]).
(v) jfbp(a, a, A)f(z) = D)) f(z)(pe N and me N) (see [4, 15]).

(vi) jz’}’p(a,a,A)f(z)z]i,"(?»,f)f(z)(fZO,?»ZO,peN and me

Ny) (see [5, 11, 30]).
vii) J1 17 (a, a, A)f(z) = D" f(2) (m € Z) (see [23]).
(viit) 715 (. a. A)f(z) = 17" f(z)(£ 2 0 and m & Ny) (see [9, 10]).
(ix) T5o(a a. A)f(z) = Dy f(z) (A = 0 and m e Ny) (see [1]).
() TV (a, a, A)f(z) = D" f(z)(me No) (see [28]),
(xi) jz’}’l(a, a, A)f(z) = 1" f(z) (A >0 and m e Ny) (see [22, 6]).
(i) T11" (a, a, A)f(2) = 1" f(2) (me Np) (see [13]).
(i) Ty} (a—1, ¢ =1L 1)f(2) = L(a, ) f(2) (see [7]).
(iv) TP (a - p.c = p.1)f(2) = L ,(a ¢)f(2) (see [26]).
() T @, a, A)f(z) = P"f(z) (me Ny) (see [14]).
(i) Ty (B, o+ B 1)f(2) = QR £(2) (o > 0; B > —1) (see [14]).
(xvid) T 7 (@, a, A)f(2) = T f(2) (0> 1) (see [14]).

(xviii) T 7 (B, o+ B 1)f(2) = QF ,f(2) (o> 0: B > —p) (see [17, 29]).
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It is readily verified from (1.5) that
Tl a+1, e, A)f(2)

B a+aAp 7lae A @)+ =0 Z(J P(a. e, Af()  (16)

and

TP (a, ¢, A)f(2)

pA
p+/

= (=L )T e AP+ A TR e e G (1)

Now, we can define the following classes of analytic functions by using the operator

J T 7 as follows:
8112’1,7\,,/5(“? c, A, P p)

={f(z)e A(p): J'ﬁ’f(a, ¢, A)f(z)e Si(p, p), ze U}, (1.8)

and

C;?,K,f(a’ c, A’ P, P)

={f(2)e A(p): T3/ (a, ¢, A)f(z) € C(p, p), z€ U} (1.9)

Obviously, we know that

f(2)e P ila e, A p,p) & flfz)e St ila, e, A p,p). (1.10)

Lemma 1 [18]. Let 0(u, v) be a complex-valued function such that
0:D — C, D c CxC (C is the complex plane)

and let u = uy + iuy and v = v| + ivy. Suppose that ®(u, v) satisfies the following

conditions:

(i) O(u, v) is continuous in D.
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(i) (1, 0)e D and Re{d(1, 0)} > 0.

(iii) for all O(iuy, v;) € D such that

(1+u?), Re{6(iuy, v)} < 0.

N —

v £ —
Let
q(2) =1+ gz + gz + ... (1.11)
be analytic in U such that (¢(z), z¢'(z)) e D (z € U). If
Re Plg(2). 24/ (2) }> 0 (c € U),
then
Re {0(g(2). 2¢/(z) }> 0in U

Lemma 2 [19]. Let p(z) be analytic in U with p(0) = a and Re{p(z)} > 0,
z€ U. Then,for s >0 and pe C\{-1},

szp’(z)
Re {p(z) + m} > 0, (lZl < }’0), (112)

where 1, is given by

_ jw+1
\/A+(A2 — 2 —1))2

JA=2s+ 1) |y -1 (1.13)

)

Lemma 3 [20]. Let ¢ be convex function and let g be starlike in U. Then, for F
analytic in U with F(0) =1, ((y * Fg)/ (v * g)) is contained in the convex hull of
F(U).

2. The Main Results

Unless otherwise mentioned, we assume throughout this paper that
meZ=1{..,-2,-1,0,1,2,..},k22,0<p<p,pe NJA>0,1L20, /> —p,
a, c € C be such that Re(c — a) > 0 and Re(a) > —Ap.
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Theorem 1. Let a = aj + ia,, ReT(a) >0 and f € A(p), then

Siala+1, ¢, A p,p)c Siiyla, c, A p,p). 2.1
Proof. We begin by setting

AT (a, e Af ()
TP a, e A)f(2)

=(p—ph(z) +p.

~ (53]t + o= =3 - plia() + 1

where h; is analytic in U and #;(0) = 1(; = 1, 2). By using the identity (1.6) in (2.2)

and differentiating the resulting, we obtain

(TPl a1 e, AF(2) o
2L = {p+ (p—pi(e) + — L= ey
Tt la+l e A)f(z) (p=Ph()+p+5
2.3)
This implies that
hi(z) + 2hi(z) eP (i=1,2zeU). (2.4)

(p=PIi(e) +p+5

Now, from the functoinal W(u, v) by setting u = h;(z) =u; +iu, and v =
zhi(z) = v; + ivy. Thus
v
Y(u, v)=u+ = (2.5)
(p=plut+p+—

The first and second conditions of Lemma 1 are satisfied by using y(u, v). To prove

the third condition:

V1

Re {y(iu,, v)} = Re I

(P—P)1M2+P+A
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(p +%)(1 + u%)
< - <0 (2.6)

AP —phuz + 3 +(p+ )]

Therefore, by applying Lemma 1, #; € P(i =1, 2) and thus he Pr(z € U). The

proof of Theorem 1 is completed.

Theorem 2. Let p;—f >p—p and f € A(p), then
Ti a, e, A, pop) e T la, ¢, A, p,p). @.7)

Proof. Making use of (1.7), the proof of Theorem 2 is similar to that of Theorem
1, so it is omitted.

Theorem 3. Let a = aj + ia,, Re;Ea) >0 and f € A(p), then

C?,;M(a +1c A p,p)C C?’;L’/(a, ¢, A, p,p). 2.8)
Proof. Applying (1.10) and Theorem 1, we assume that

felCilhla+lc A p,p) e ¥
T P

e Ska’g(a +1,¢, A, p,p)

o’

= € Skmh /(Cl, ¢, A, P p)
) JAL L

S fe C?,;M(a, ¢, A, p,p).

This completes the proof of Theorem 3.

Theorem 4. Let p;—f >p—p and f € A(p), then
C?,J;ri((a, ¢, A, p,p)c C?,;M(a, ¢, A, p,p). 2.9)

Proof. The proof of Theorem 4 is similar that to the proof of Theorem 3. Now,
we study the closure properties of generalized integral operator defined by Saitoh et
al. [27] as follows:

Lo ,f(2)= ”—”j:tf—lf(t)dt (f e A(p), ¢ > —p). 2.10)

c
Z
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Theorem 5. If fe Siy ola, c, A, p,p), then L. ,f(z)e Siaela, c,

A, p, p) (¢ > —p), where the operator J ., is defined by (2.10).
Proof. Suppose f € S{'(a, ¢, A, p, p) and putting

AT5P @ e AL pf(2)
jx’ép(a, c, A)Ec,pf(z)

(p—-p)h(z)+p 2.11)

= (g + %){(p —p)y(2) +p} - (g —%){(p = p)hy(2) + p},

where h is analytic in U and /#(0) = 1. By using (2.10), we have

(TP e, AL pf(2)) = (c+ pTPL(a e AVF () = TP (a, e AL, f(2)

(2.12)
Then by using (2.11) and (2.12), we get
jT,ép (Cl, C’ A)f(z)
(c+p)—— =(p-ph(z)+p+c (2.13)
j}\‘:( (a7 ¢, A)‘Cc,pf(z)
Differentiating (2.13) logarithmically with respect to z, we obtain
(TP (a, e A)f(2) ’
! ke —p|=h(z)+ ZZI(Z) € P (2.14)
PPl Tp ) (a e A)f(2) (p=ph(z)+p+c
This implies that
i (2) + ehi(2) eP(i=12zeU). (2.15)

(p—ph(z)+p+c
From the functoinal W(u, v) by setting u = hi(z) =u; +iuy and v = zhi(z)
= v +ivy. Thus

1%

—(p—p)u+p+c' (2.16)

v, v)=u+

the conditions of Lemma 1 are satisfied by using y(u, v) as the proof of Theorem 1.
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Hence hje P(i=1,2) and thus he P(zeU), which implies that

L. pf(z)e Sy i(a, ¢, A, p, p). The proof of Theorem 5 is completed.

Next, we introduce an inclusion property for the subclass C km’l’ é(a, c, A p,p)

involving the operator L. , f (z) which is given by the following theorem:

Theorem 6. If fe Ci'y ((a, c, A p,p), then L. ,f(2)e Ciai(a, c,
A, p, p) (¢ > —p), where the operator J .., is defined by (2.10).

Proof. From Theorem 5 it follows that

L CI

feclllyila c A pp)e .

P a c, A p,p)

= Ec,p(zfp(z)) € Siaela, ¢, A, p, p) (by Theorem 5)

L
= z[ﬂj € Staela, ¢, A, p,p)

p

A Lc,pf(z) € C;ﬁh,((a’ ¢, A, p, p),

which evidently proves Theorem 6.

Theorem 7. Let a = a; +ia,, and

Riﬁ") >0. If feCrapilatlc A

p.p) (ze U), then f e Cyy s(a, c, A, p,p) for

|z <ny = [l (2.17)

D+ (D2 —|u2 ~1|)2

where D =2(s +1)° +|].L|2 -1, with u=((p+%)/(p—p))¢—l and
s=(1/(p-p)).

Proof. Let f € Ci'y s(a+1,¢, A p,p)(z€ U) and let

AT (a, e AF ()
TP (a, e, Af(2)

=(p-p(z)+p (2.18)
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- (53 ) -pm@ P} -5+ Jp-pia) +p).

where h; is analytic in U and 4;(0) =1(i =1, 2) and Re{A;(z)}>0(i =1, 2). By
using the identity (1.6) in (2.18) and differentiating the resulting, we have
(TP @ e A)F(2)
P=PL Tl (a+1, ¢, A)f(2)

(1/(p—p))eh'(2)
W)+ (p+5)/ (p=p)

- (E +l){hl(z) s Wp-p)ahiz)
P W)+ (p+2)/(p—p)

= h(z) +

~ (k 1) h(2) + (1/(p —p))zh; (2) (2.19)

_+_ s
v m(@)+(p+5)/(r-p))
where Re{h;(z)}>0( =1, 2). Applying Lemma 2 with s=(1/(p—-p)) and

w=((p+)/(p=p))# L wehave

(1/(p—p))zhi(z)

Re<h;(z) +
1@+ ((p+0)/ (p=p))

>0 (|2 < r), (2.20)

where 1, is given by (2.17). This completes the proof of Theorem 7.

p+/
A

feCiiac A p.p) for

Theorem 8. Let

>p-p. If feCl3lia c, A pp)(zeU), then

|+ 1]
D+ (D2 —p2 1))z

lz| <1y = (2.21)

where D =2(s + 1)® +|u> — 1, with u=((p+(p;-€—p))/(p—p))¢—l and

s=(1/(p-p).
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Proof. Let f € CZ’,J;’JZ(a, ¢, A, p,p) (ze U) and let

(TP (@ e A ()

- = (p - p)h(z) +p. (2.22)
j;\’:(p ((l, c, A)f(Z)

- (53] - +p =% 4 [ - plia(2) 1

where h; is analytic in U and 4;(0) =1( =1, 2) and Re{s;(z)} > 0(i =1, 2). By
using the identity (1.7) in (2.22) and differentiating the resulting, we have

| {AJWHPWCHﬂﬂ@f_ }

p- p m+1 p( c, A)f(Z)

— n(z) + (1/(p = p))zh'(z)
W)+ (p+ (Lt = p)) [ (p—p))

(1;- 4){1"1( " (1/(p- p))zh{( ) )
muw«m+(P -p)/(p-p)
(%_%) h2(Z)+ (1/([7 - p))zhé(z) , (223)

m(@)+ (o + (L= p))/ (p—p)

where Ref{h;(z)} >0 (i =1,2). Applying Lemma 2 with s=(1/(p—p)) and

=((p+( p)—:[ -p))/(p—p))# -1, we have

(1/(p - p))zhi(z)

Re ;i (z) + —
1@+ (p+ (5= =)/ (P —p))

>0( <),  (224)

where 1, is given by (2.21). This completes the proof of Theorem 8.

Theorem 9. Let ¢ be a convex functions and f € S,(p,p). Then
Ge S,(p, p), where G = * f.
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Proof. Let G = ¢ * f. Then

Tl (a e, AG(2) =Ty [ (a, ¢, A) (@ f)(z) = 0(z) * Ty [ (a, e, A)f(2).
(2.25)

Since f e S,(p,p), Then j'ﬁ’f(a, c, A) f € S,(p,p). By logarithmic

differentiation of (2.25) and after some calculations, we have

’

AT5 P a e, AGE) 02+ F(T 3] (a. e, A)f(2) 26)
pIyla e, AGR) ) * Ty (a e AF(R) ‘

where F(z) = 2(J3 [ (a, c, A)f(z)), [ pT5"Fa, ¢, A)f(z) is analytic in U and
F(0)=1. From Lemma 3, we can see that z(J3 [/ (a, c, A)G(z)),/p

Ty F(a, ¢, AYG(z) is contained in the convex hull of F(U). Since z(J3"}

(a, c, A)G(z)), | pT 5" (a, ¢, AYG(z) is analytic in U and
ATy ) (@, e, A)eAz))

FU)=Q={0= — e P(Y)¢, (2.27)
pj,}t,gp(a» ¢, A)(D(Z)

then z(j?f”,f’(a, ¢, A)G(z)) /pj?f”,f’(a, ¢, A)G(z) lies in Q, this implies that

G =0%* f.€ S»(p, p). This completes the proof of Theorem 9.

Concluding Remark

The results presented in this paper can lead to several applications by

appropriated linear operators which are mentioned in the introduction.
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