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Abstract 

Moving bodies near the earth surface will get the force attracting them to 

downward as big as acceleration of gravity (g). Theoretically, based on 

derivation from [1], we can eliminate gravity effect from a moving body 

near the earth surface by setting the velocity and the trajectory. 

1. Introduction 

Generally, on celestial mechanics, the trajectory of the planets is ellipse. The 

only force attracting those planets in order to stay in their orbits is gravity. On the 

other hand, the unique problem emerges when the trajectory of a moving body near 

the earth’s surface is ellipse. This geometry makes gravity effect disappear. 

In this paper, we set radius, ,err <<  in which =er  earth radius from the center. 

In the third article, we set pr ℓ=  in which pℓ  is the Planck length. Both the second 

and the third papers, are derived from the same equation (see [1]). 

2. Theoretical Review 

Based on [1], Arisetyawan has derived a formula from semicircular motion on 

the earth surface as follows: 
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Equation (1) is semicircular trajectory on two-dimensional axis. How to get this 

formula (see [1]). Now, we will eliminate gravity effect ( )g  from (1) by setting 

2

π
=θ  for all time t. 

Thus, 
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a glimpse, equation (2) is similar with parabolic trajectory, but the coefficient of 2
x  

is not constant for all time t. 

We will prove that the coefficient of (2) is not constant as follows: 
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From the relation between linear and angular velocity, we have 

,rv ω=  (4) 
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From (5), we know that linear velocity is also not constant. The boundary condition 

for ,0=T  we set ,0 cvv ==  in which c is the speed of light, we knew that in 

special relativity, there are no moving bodies in this universe faster than light. 
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Now, we will prove that (2) is an ellipse. By considering (2) as parabolic 

equation, we have equations for symmetrical axis and maximum height as follows: 
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Based on (5), equations (6) and (7) mean that the maximum point is not unique 

because sa  is not constant. It means the trajectory will pass through all maximum 

points. By using analogue steps in previous paper (see [4]), but it is a different case 

and we can rewrite (6) and (7) as follows: 
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By using trigonometry properties: 
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Equation (13) is an ellipse at the center ( ).,0 d  

From (13), we have 
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( ) .2 max
2
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d

c
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The following condition for maxy  is 

,20 max dy ≤≤  

.20
2

0max savy ≤≤  

From (15), taking the positive value, we have a semi-ellipse equation as follows 

 ( ) .2 max
2

max dyy
d

c
xs +−=  (16) 

If we set yxs ′=  and ,max xy ′=  thus (16) can be written in a new transformation as 

follows: 

 ( ) .2
2

xdx
d

c
y ′+′−=′  (17) 

Equation (17) is equivalent with (2). Both of them are semi-ellipse in different 

coordinates. 

3. Result and Discussion 

From equation (1), by setting the angle, we can get different trajectories. For 

example, if we set 0=θ  for all time t, the trajectory will be parabolic. 
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