Fundamental Journal of Mathematics and Mathematical Sciences p-ISSN: 2395-7573; e-ISSN: 2395-7581 Volume 13, Issue 1, 2020, Pages 15-22 This paper is available online at http://www.frdint.com/ Published online February 15, 2020

HIGHER-ORDER BANACH CONTRACTION MAPPING THEOREM IN η-CONE METRIC SPACE

CLEMENT BOATENG AMPADU

31 Carrolton Road Boston, MA 02132-6303 USA e-mail: drampadu@hotmail.com

Abstract

The concept of η -cone metric space appeared in [1]. In the present paper, we prove the higher-order Banach contraction mapping theorem [2] in this setting.

1. Introduction and Preliminaries

Definition 1.1 (Huang and Zhang [3]). Let *E* be a real Banach space with norm $\|\cdot\|$ and *P* be a subset of *E*. *P* is called a cone if and only if

(a) *P* is closed, nonempty, and $P \neq \{\theta\}$, where θ is the zero vector in *E*;

(b) For any nonnegative real numbers a and b, and x, $y \in P$, we have ax + by

 $\in P;$

Keywords and phrases: cone metric space, higher-order, Banach contraction, normal constant.

2020 Mathematics Subject Classification: 54A05, 54E35, 54E35.

Received November 21, 2017; Accepted October 25, 2019

© 2020 Fundamental Research and Development International

(c) for $x \in P$, if $-x \in P$, then $x = \theta$.

Definition 1.2 (Huang and Zhang [3]). Given a cone *P* in a Banach space *E*, we define on *E* a partial order \leq with respect to *P* by

$$x \leq y \iff y - x \in int(P).$$

We shall write $x \prec y$ whenever $x \preceq y$ and $x \neq y$, while $x \ll y$ will stand for $y - x \in \text{Int}(P)$, where Int(P) designates the interior of *P*.

Definition 1.3 (Huang and Zhang [3]). The cone *P* is said to be normal if there is a real number C > 0, such that for all $x, y \in E$, we have

$$\theta \le x \le y \Longrightarrow ||x|| \le C ||y||.$$

The least positive number satisfying the above inequality is called the normal constant of P. In particular, we will say that P is a K-normal cone to indicate the fact that the normal constant is K.

Definition 1.4 (Huang and Zhang [3]). The cone *P* is said to be regular if every increasing sequence which is bounded from above is convergent, that is, if $\{x_n\}$ is a sequence such that

$$x_1 \leq x_2 \leq \cdots \leq x_n \leq \cdots y$$

for some $y \in E$, then there exists $x^* \in E$ such that $\lim_{n \to \infty} ||x_n - x^*|| = 0$.

Definition 1.5 (Deimling [4]). The cone *P* is said to be minihedral if $\sup \{x, y\}$ exists for all $x, y \in E$, and strongly minihedral if every subset of *E* which is bounded from above has a supremum and hence any subset which is bounded from below has an infimum.

Remark 1.6. In this paper, we assume that the cone *P* is normal with constant *K* and *P* is such that $int(P) \neq \emptyset$, and \leq is a partial ordering with respect to *P*. Hence the Banach space *E* and the cone *P* will be omitted, and the Banach space *E* will be assumed to be ordered with the order induced by the cone *P*.

Definition 1.7 (Gaba [1]). Let *X* be a nonempty set and $\eta : X \times X \mapsto [1, \infty)$ be a map. A function $d_{\eta} : X \times X \mapsto E$ will be called a η -cone metric space on *X* if

Moreover, the pair (X, d_{η}) is called an η -cone metric space.

Remark 1.8 (Gaba [1]). If for all $x, y \in X$

(a) $\eta(x, y) = 1$, then we obtain the definition of cone metric space (Huang and Zhang [3]).

(b) $\eta(x, y) = L$, where $L \ge 1$, then we obtain the definition of cone metric type space (Cvetkovic et al. [6]).

(c) $\eta(x, y) = C$, where $C \ge 1$, $E = \mathbb{R}$ and $P = [0, \infty)$, then we obtain the definition of metric type space (Khamsi [7]).

Example 1.9 (Gaba [1]). Let $X = C([a, b], \mathbb{R})$ be the space of all continuous real valued functions defined on the interval $[a, b], E = \mathbb{R}$ and $P = \mathbb{R}^+$, then (X, d_{η}) is an η -cone metric space with

$$d_{\eta}(x, y) = \sup_{t \in [a, b]} |x(t) - y(t)|^2$$

and

$$\eta(x, y) = |x(t)| + |y(t)| + 2.$$

Definition 1.10 (Gaba [1]). We say the following in an η -cone metric space (X, d_{η}) :

(a) $\{x_n\}$ is convergent to $x \in X$ if for every $c \in E$ with $\theta \ll c$, there exists $n_0 \in \mathbb{N}$ such that $d_{\eta}(x_n, x) \ll c$;

(b) $\{x_n\}$ is Cauchy if for every $c \in E$ with $\theta \ll c$, there exists $n_0 \in \mathbb{N}$ such that $d_{\eta}(x_n, x_m) \ll c$;

(c) *X* is complete if every Cauchy sequence in *X* converges to an element of *X*.

Remark 1.11. Note that an η -cone metric is not always continuous (Example 4.1 of [Gaba [1]).

2. Main Result

Definition 2.1. Let X be a nonempty set. By the *r*-orbit of $T: X \mapsto X$ at x_0 , we mean for any $r \in \mathbb{N}$, the set

$$I(x_0, T^r) = \{x_0, T^r x_0, T^{2r} x_0, \cdots\}.$$

Definition 2.2. Let (X, d_{η}) be an η -cone metric space. A map $T : X \mapsto X$ will be called an *r*th-order Banach contraction mapping if it satisfies

$$d_{\eta}(T^{r}x, T^{r}y) \leq \sum_{q=0}^{r-1} c_{q} d_{\eta}(T^{q}x, T^{q}y)$$

for all $x, y \in X$, where $0 \le c_q < 1$ for all $0 \le q \le r - 1$, and all $r \in \mathbb{N}$.

Proposition 2.3. Let (X, d_{η}) be an η -cone metric space, and $T : X \mapsto X$ be an *r*th-order Banach contraction mapping. For every pair $x \neq y$, define

$$Z \coloneqq Z(x, y) = \max_{0 \le v \le r-1} \beta^{-v} \frac{d_{\eta}(T^v x, T^v y)}{d_{\eta}(x, y)}.$$

Then

$$Z = \max_{n \in \mathbb{N} \cup \{0\}} \beta^{-n} \frac{d_{\eta}(T^n x, T^n y)}{d_{\eta}(x, y)},$$

where $\beta \in [0, 1)$.

Remark 2.4. If in addition to Remark 1.8(a), $E = \mathbb{R}$ and $P = [0, \infty)$, then it follows that every metric space is an η -cone metric space. Thus Proposition 4.1 of [5] implies the Proposition immediately above.

Now by [2], we have the following alternate characterization of Definition 2.2.

Definition 2.5. Let (X, d_{η}) be an η -cone metric space, a map $T : X \mapsto X$ will be called an *r*th-order Banach contraction mapping if for all $x, y \in X$ and all $r \in \mathbb{N}$, the following inequality holds:

$$d_{\eta}(T^r x, T^r y) \le Z\beta^r d_{\eta}(x, y),$$

where $\beta \in [0, 1)$ and $Z \ge 1$ is given by Proposition 2.3.

Our main result is as follows.

Theorem 2.6. Let (X, d_{η}) be a complete η -cone metric space such that d_{η} is continuous. Suppose $T: X \mapsto X$ satisfies Definition 2.5. Moreover, for any $x_0 \in X$, suppose that $\lim_{n,m\to\infty} \eta(x_n, x_m) < \frac{1}{Z\beta^r}$, where $x_n, x_m \in I(x_0, T^r)$. Then there is a unique $w^* \in X$ such that $T^r w^* = w^*$ for any $r \in \mathbb{N}$. Moreover, for each $x \in X$ and any $r \in \mathbb{N}$, $\lim_{n\to\infty} T^{rn}x = w^*$.

Proof. Let x_0 be arbitrary and define the sequence $\{x_n\}$ by $x_n = T^m x_{n-1}$ for any $r \in \mathbb{N}$. Observe

$$d_{\eta}(x_n, x_{n+1}) = d_{\eta}(T^{rn}x_{n-1}, T^{r(n+1)}x_n) \le Z\beta^r d_{\eta}(x_{n-1}, x_n),$$

$$d_{\eta}(x_{n+1}, x_{n+2}) = d_{\eta}(T^{r(n+1)}x_n, T^{r(n+2)}x_{n+1}) \le (Z\beta^r)^2 d_{\eta}(x_{n-1}, x_n),$$

$$\vdots$$

$$d_{\eta}(x_n, x_{n+1}) \le (Z\beta^r)^n d_{\eta}(x_0, x_1)$$

for all $n = 1, 2, 3, \dots$. Since $Z\beta^r < 1$, consequently, the sequence $\{T^m x_{n-1}\}$ is Cauchy. By the completeness of X, there exists $w^* \in X$ such that $\lim_{n\to\infty} T^m x_{n-1} = w^*$. Now we show existence of the *r*-fixed point, that is, $T^r w^* = w^*$. Observe that

$$d_{\eta}(T^{r}w^{*}, w^{*}) \leq \eta(T^{r}w^{*}, w^{*})[d_{\eta}(T^{r}w^{*}, x_{n}) + d_{\eta}(x_{n}, w^{*})]$$
$$\leq \eta(T^{r}w^{*}, w^{*})[d_{\eta}(T^{r}w^{*}, T^{rn}x_{n-1}) + d_{\eta}(x_{n}, w^{*})]$$
$$\leq \eta(T^{r}w^{*}, w^{*})[Z\beta^{r}d_{\eta}(w^{*}, x_{n-1}) + d_{\eta}(x_{n}, w^{*})].$$

Now taking norm to inequality in the above, and then taking limits as $n \to \infty$, we deduce that

$$||d_{\eta}(T^r w^*, w^*)|| = 0$$

which implies $T^r w^* = w^*$. For uniqueness, suppose $T^r u^* = u^*$, but $u^* \neq w^*$, then we have

$$d_{\eta}(u^*, w^*) = d_{\eta}(T^r u^*, T^r w^*) \le Z\beta^r d_{\eta}(u^*, w^*)$$

which implies

$$(1 - Z\beta^r)d_{\mathfrak{n}}(u^*, w^*) \le 0$$

but $d_{\eta} \ge 0$ and $Z\beta^r \ne 1$, thus $d_{\eta}(u^*, w^*) = 0$, that is, $u^* = w^*$ and uniqueness follows, and the proof is complete.

Now we have the following in support of the main result.

Example 2.7. Let $X = [0, \infty)$, $E = \mathbb{R}$, and $P = [0, \infty)$. Let us define for all $x, y \in X, d_{\eta} : X \times X \mapsto \mathbb{R}$ and $\eta : X \times X \mapsto [1, \infty)$ as:

$$d_{\eta}(x, y) = (x - y)^2; \ \eta(x, y) = x + y + 2.$$

Then d_{η} is an η -cone metric on *X*. Moreover, (X, d_{η}) is complete. Define $T^r x = \frac{x}{2r}$ for any $r \in \mathbb{N}$, and set $\frac{1}{3} = \beta \in [0, 1)$. Observe from the conclusion of Proposition 2.3, we have

$$Z = \max_{n \in \mathbb{N} \cup \{0\}} (\frac{1}{3})^{-n} \frac{(\frac{x}{2^n} - \frac{y}{2^n})^2}{(x - y)^2}$$
$$= \max_{n \in \mathbb{N} \cup \{0\}} 3^n \frac{1}{2^{2n}} \frac{(x - y)^2}{(x - y)^2}$$
$$= \max_{n \in \mathbb{N} \cup \{0\}} \frac{3^n}{2^{2n}}$$
$$= \max\{1, \frac{3}{4}, \frac{9}{16}, \frac{27}{64}, \cdots\}$$
$$= 1.$$

Thus for any $r \in \mathbb{N}$, we have

$$d_{\eta}(T^{r}x, T^{r}y) = \frac{1}{2^{2r}}(x-y)^{2} < \frac{1}{3^{r}}(x-y)^{2} = Z\beta^{r}d_{\eta}(x, y).$$

Note that for each $x \in X$, and any $r \in \mathbb{N}$, $T^{m}x = \frac{x}{2^{m}}$. Thus we obtain

$$\lim_{n,m\to\infty}\eta(x_n, x_m) = \lim_{n,m\to\infty}\left(\frac{x}{2^{rn}} + \frac{x}{2^{rm}} + 2\right) < 3^r.$$

It follows all the conditions of the previous theorem hold, and the unique *r*-fixed point is given by $0 \in X$.

References

- [1] Yae Ulrich Gaba, η -metric structures, arXiv:1709.07690 [math.GN].
- [2] Clement Ampadu, Generalization of higher-order contraction mapping theorem, Unpublished.
- [3] L.-G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332(2) (2007), 1468-1476.
- [4] K. Deimling, Nonlinear Functional Analysis, Springer-Verlage, Berlin, Heidelberg and New York, 1985.
- [5] J. Ezearn, Higher-order Lipschitz mappings, Fixed Point Theory Appl. 88 (2015).
- [6] A. S. Cvetkovic, M. P. Stanic, S. Dimitrijevic and Suzana Simic, Common fixed point theorems for four mappings on cone metric type space, Fixed Point Theory Appl. 2011, Article ID 589725 (2011).
- [7] M. A. Khamsi, Remarks on cone metric spaces and fixed point theorems of contractive mappings, Fixed Point Theory Appl. (2010), 7 pages.