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Abstract 

This note looks at the gravitational field of a point mass embedded in an 

evolving isotropic universe. 

1. Introduction 

This note looks at the gravitational field of one point mass embedded 

in an evolving isotropic universe, and how the solutions to Einstein 

equations differ from the Schwarzschild solution. This problem has 

already been studied, see for instance [1], [2], and references therein. 

Here we do not consider flat space expanding universes only but also 

positive or negative curvature space universes. The tensors are computed 

in orthonormal local frames (tetrad). Using the so-called “isotropic 
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coordinates” the Einstein tensor component 0
0G  involves the underlying 

3-dimensional constant curvature space Laplacian. As expected, at short 

distances the classical potential is inversely proportional to the physical 

distance. This study includes the case of constant curvature compact 

manifolds without border. The Einstein equations are highly non-linear, 

one of the main motivation was, knowing two exact solutions of these 

equations, find an example of how to merge them non perturbatively. 

Sections 1 and 2 show why the so-called “isotropic coordinates” are 

very convenient. Section 3 looks at the effect of adding a point mass to the 

background matter and approximate solutions are given in Section 4. 

These solutions are obtained at lowest order in the development of the 

parameter ar0=α  where 0r  is the Schwarzschild radius and a  the 

radius of the universe. Section 5 discusses the case of constant curvature 

compact manifolds without border. 

For a quick reading, after Sections 1 and 2 skip directly to equations 

(2.4), (3.5), (3.6) and (4.3) which represents the main equation and (4.4) 

which gives solutions. Section 5 can not be shortened. 

1. Notations, Einstein Tensor and Spherical 

Symmetry 

The space-time coordinates { }αx  of a point x  are labelled with Greek 

letters: ...,,,, γβα  ....,,,0 n<γβα≤  The time coordinate is: .0x  The 

vectors of the local natural frame are written: ....,, βα ee  When tensors 

are expressed with respect to local orthonormal frames they are labelled 

with Latin letters: ....,,, cba  The orthonormal local frame basis vectors 

are called: ,ah  and we set: .α
α= ehh aa  The metric tensor is ,αβg  and 

αβg  is its inverse. The determinant of the metric tensor is called .g  

The signature of the metric is: ( ).−−−+  In the case of local orthonormal 



GRAVITATIONAL MASS IN ISOTROPIC UNIVERSES 

 

99 

frames, the metric tensor is written: abη  and its diagonal terms are: 

( ).1,1,1,1 −−−+=ηaa  Latin indices are lowered with abη  and raised 

with the inverse tensor .abη  The geometry of constant curvature spaces 

is studied in [3]. For more details about the basic geometric equations and 

notations and information about the symmetry properties of constant 

curvature spaces see [4], [5]. 

In the neighborhood of a given point, the local coordinates, with 

respect to the local orthonormal frame attached to this point, are given by 

the 1-forms: ,α
α=ω dxhaa  which satisfy the structure equations: 

 ,0
.

=ω∧ω+ω ba
b

ad  (1.1) 

where: γ
γ

ω=ω dxa
b

a
b ..

 are the connexion 1-forms and the torsion is 

supposed to be zero. 

The curvature 2-form is defined by: 

 .
.....

dca
bcd

c
b

a
c

a
b

a
b

Rd ω∧ω=ω∧ω+ω=Ω  (1.2) 

The space-time coordinates are: the conformal time η  and the 

Riemann normal coordinates for the spatial part named ( )ϕθχ ,,  

corresponding to spherical coordinates with respect to some Oz  axis, 

where O  is the origin of the coordinates. In the following, partial 

derivation of a function with respect to η  is represented by a dot over the 

function, and derivation with respect to χ  by a prime sign. The vectors of 

the local orthonormal frames are chosen to be colinear with those of the 

local natural frames. The mass M  which is supposed to have negligible 

size, is placed at the origin O  of the coordinates. 

Imposing the spherical symmetry, the 1-forms aω  are: 

( ) ,,0 ηχη=ω df     ( ) ,,1 χχη=ω dg     ( ) ,,2 θχη=ω dh  
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( ) ,,3 ηχη=ω sdh     θ= sins  (1.3) 

and the metric is: 

 ( ).222222222 ϕ+θ−χ−η= dsdhdgdfds  (1.4) 

The connection 1-forms are: 

,0
1. χ+η

′
=ω d

f

g
d

g

f &
    ,2

0. θ=ω d
f

h&
    ,3

0. ϕ=ω d
f

sh&
 (1.5) 

,2
1. θ

′
=ω d
g

h
    ,3

1. ϕ
′

=ω d
g

sh
    ,3

2. ϕ=ω cd  

where: ( ).cos θ=c  

The non-zero components of the Einstein tensor ,a
b
G  in the 

orthonormal frame ,ah  are: 

,
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 (1.6) 

The last component can be simplified if: ,
g

g

h

h &&

=  a condition equivalent 
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to: 

 ( ) ( ) ( ).,, χχη=χη kgh  (1.7) 

In the following, we choose: ( )χ= shk  in the case of hyperbolic spaces 

( ),1−=κ  χ=k  for euclidean spaces ( ),0=κ  and ( )χ= sink  for 

spherical spaces ( ).1=κ  This is always possible by redefining the radial 

coordinate. Despites this variable change, the name χ  is kept for the 

radial coordinate. 

Using condition (1.7), equations (1.6) become: 
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 (1.8c) 

Equation (1.8a) is simplified if: 

 
2dg =  (1.9) 

and becomes: 

 ( ),
4133 3

22

2

2

0
0 d

dggg
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f
G ∆−

κ
+






=
&

 (1.10) 
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where: 

 d
k

k
d ′

′
+′′=∆ 23

 (1.11) 

is the three dimensional Laplacian of the isotropic space for zero angular 

momentum. 

One consequence of (1.10) is that there is no empty space static 

physical solution which is asymptotically hyperbolic. Because if the space 

is empty and the solution is static, and if there is no cosmological 

constant, equation (1.10) gives: ( ) ( ).~
4

33
xdd δ

κ
−∆  For 0=κ  the 

solution is: ,1~ χα+d  where α  is a constant, which is the solution 

(2.2). But for ,1−=κ  the solution is: ( ) ( ),22 χδ+γ= χ−χ sheed  where 

γ  and δ  are constants. Then, 0→g  if ∞→χ  which is not a physical 

solution. Therefore, if ,1−=κ  the solution can not be static. 

2. The Metric Coefficients 

Until now we have used only the spherical symmetry hypothesis, (1.7) 

and (1.9) being only technical choices. 

If ,0=M  the metric (1.4) is the one of an evolving isotropic universe. 

For instance for hyperbolic spaces [6]: 

 ( ) ( ( ) ( )).22222222 ϕ+θχ−χ−ηη= dsdshddads  (2.1) 

If 0≠M  in a static empty universe, the choice (1.7) corresponds to 

the Schwarzchild metric in the so-called isotropic coordinates [6]: 

 ( ( )),
4
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where: r  is the radial coordinate, 2
0 2 cMGr =  is the Schwarzschild 

radius, G  is the gravitational constant, and c  the speed of light. 

In the first order perturbation theory, the metric of an evolving 

isotropic universe is, for the scalar modes and hyperbolic case [7]: 

( ) [( ) ( )( ( ) ( ))].2121 22222222 ϕ+θχ+χψ+−ηφ+η= dsdshddads  (2.3) 

In (2.2) let us make the variable change: ρ= ar  and: ,η= at  the metric 

becomes: 

( ( )) ,1

1

1
22222

4
2

2

22



















ϕ+θρ+ρ







ρ

α
+−η



















ρ

α
+

ρ

α
−

= dsdddads  

where: ( )ar 40=α  is a dimensionless parameter and the radial 

coordinate ρ  and conformal time η  are also dimensionless. 

With these three examples in mind and (1.9), we make the following 

working hypothesis: 

 ( ) ( )( ) ,,1
2χηα+η= qag  (2.4) 

where α  is chosen dimensionless, and since the problem involves only 

two length parameters ( 0r  and ),a  we suppose that: .~0 aMar=α  

Assumption (2.4) is general enough. We could have set: 

( ) ( )Mggg ,,10 χη+η=  but this can be put in the form (2.4) once we 

take (1.9) into account. 

Since α  is small and dimensionless, we shall study the equations at 

the lowest order in .α  (2.4) is not the most general possible form for .g  

We could have tried something like: ( ) ( ) ( )( ) ,,,1
2χη+χηα+η= uqag  

where u  is a function representing, for instance, wave propagation 
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independently of M  (at least in first approximation). 

In (2.4), ( )ηa  as a function of η  only, can still be understood as the 

universe radius only in the limit 0→α  or asymptotically when .∞→χ  

1<<α  does not mean that M  is small but that a  is large enough. 

We define: aaH &=  (although, H  is usually defined as: 
dt

da

a
H

1
=  

where: ).η= addt  Then with: ,H
a

a
−=−=

α

α &&
 we have: 

 .
1

2
1

1

q

q

q

q
H

g

g

α+

α
+








α+

α−
=

&&
 (2.5) 

3. The Matter Energy Momentum Tensor Equations 

The Einstein equations are: a
b

a
b

a
b

TG µ=δΛ−  where 48 cGπ=µ  

and Λ  is the cosmological constant. 

The matter evolution is given by the conservation equations of the 

energy-momentum tensor: .0=α
βαTD  To write the Einstein equations 

with (1.8), we have to be careful and use the components of the energy 

momentum tensor in the orthonormal frames. Since the metric (1.4) is 

diagonal, the diagonal terms of the energy momentum tensor are the 

same in the natural frames as in the orthonormal frames. But this is not 

the case for the component 1
0T  and from now on, the components in the 

orthonormal frames are written with a bar over in order to avoid any 

confusion. The conservation equations are: 

( ) ( )2
2

1
1

1
1

0
0

0
00 23 TT

g

g
TT

g

g
T −+−+∂

&&
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1
0
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f
T

g
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 (3.1a) 
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( ) ( )2
2

1
1

1
1

0
0

1
11 2 TT

k

k

g

g
TT

f

f
T −
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+
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−∂  

.04
0
1

0
10 =











+∂+ T
g

g
T

f

g &
 (3.1b) 

The two other equations, for 2=β  and ,3=β  are identically zero due to 

the spherical symmetry. The equations (1.6) are four and the 

conservation conditions 0== α
βα

α
βα GDTD  are two. Therefore there are 

two degrees of freedom which are f  and .g  Knowing g  one should be 

able to deduce f  from (1.8c) which is directly related to the pressure 

unlike (1.8b) (see hereafter). 

In the classical non relativistic limit the first equation is the matter 

conservation equation, and the second is the Euler equation of fluid 

mechanics. 

In the isotropic ( )0=M  and static cases: .00
1 =G  Then, in the latter 

equations, is it possible to neglect the contribution of 
0
1T  and ( )2

2
1
1 TT −  

(pressure isotropy)? 

As an example, let us consider the energy-momentum tensor of a 

continuous medium like a gas: 

 ( ) .abbaab puupT η−+ε=  (3.3) 

Using the spherical symmetry we have: 

( )( ) ,
2100 upT +ε+ε=          ( )( ) ,

2111 pupT ++ε=  

,22 pT =          ( ) .1001 uupT +ε=  

If ( )α= Ou1  then ( ) ( )22
2

1
1 α=− OTT  and ( ).

0
1 α= OT  

Let us consider the last term of (3.1b), the square bracket is equal to 
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( ).ln
0
1

4
0

0
1 TgT ∂  For this term to be small one must have: ( )αOT ≃

0
1  

or/and: ( ).
0
1

4 χ= functionTg  Using (1.6) and (1.7) one has: 

 .ln
20

1

0
1 














∂






−==µ χ gf

g

g

g

fg
GT

&&
 (3.4) 

Therefore 
0
1Tµ  will be small if: ( ) ( )( ).1 α+η= Ofunction

gf

g&
 Using (2.5) 

this means: .
1

1
~

q

q
f

α+

α−
 In order to keep some freedom we shall write: 

 ( )( ) ( )( ).,1,1 χη+χη−= araraf  (3.5) 

The derivatives are: 

( ),12 qq
g

g
α+′α=

′
    ( ),12 22rr
f

f
α−′α−=

′
 

,
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2
1

2
1

2222 r

r

r

r
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α
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α
+=

&&
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f α−
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α+

α
+

α−

α+

α+

α−
=

&&
 

If: 

 ( ),α+= Oqr  (3.6) 

then: 

( ( )) ( )22 21
1

α+
α

+α+= O
a

q
O

a

H

g

g

f

&&
 

which in (3.4) gives: 

 ( ) ( ),4 220
1 α+′α− OaqG &≃  (3.7) 

then: ( ).0
1 αOG ≃  
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With (3.5) and (3.6) we have: ( ).0 2α+=
′

+
′

O
g

g

f

f
 Equations (1.8b) 

and ((1.8c) become: 

 ( )2

22

2

2

3
3

2
2 22

1
α+

κ
+








+−== O

gg

g

gf

fg

g

g

f
GG

&&&&&
 (3.8a) 

and the same expression for ,1
1G  therefore: 

 ( ).22
2

1
1 α+= OGG  (3.8b) 

Now we look at the last term of (3.1a). 

 ( )20
1

0
11

1
0

1
01 22 α+



 ′

+∂=











 ′

+
′

+
′

+∂µ− OG
k

k
GT

k

k

g

g

f

f
T  (3.9) 

(the minus sign is due to the exchange of the indices 0  and ).1  

We compare the coefficient of (3.7) with :µ  

 .
48

121
3

24

222 a

Mc

G

c

aac

MG

a
=











π








=

α

µ
 (3.10) 

This “density” is assumed to be negligible compared with .ε  Therefore the 

terms containing 
1
0T  in the equations (3.1) will be neglected and these 

equations reduce to: 

 ( ) ( ),03 21
1

0
0

0
00 α+=






 −+∂µ OTT

g

g
T

&
 (3.11a) 

 ( ) ( ).0 21
1

0
0

1
11 α+=






 −

′
−∂µ OTT
f

f
T  (3.11b) 

These equations say that 1u  plays a negligible role in (3.3) if a  is large 

enough. 
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4. Approximate Solution to the Equations 

α
βT  is the sum of several components which will be supposed to be 

uncoupled. The exact nature of these components is not important for our 

purpose. The discussion hereafter is given only as an example. 

Let us consider a gas obeying Maxwell-Boltzmann statistics [8]. The 

particle density is: ( ) ( )ββνπ= mhmKmn 3
2

34  where m  is the molecule 

mass, h  the Planck constant, ( ),1 kT=β  T  is the temperature, k  the 

Boltzmann constant, and ν  is the exponential of the chemical potential. 

The pressure is: β= np  and the energy density is: 

( )

( )

( )
( )

,
34 1

2
2

3

3













β

β
+

β

βνπ
=ε

m

mK

m

mK

h

m
 where: nK  are the modified Bessel 

functions. 

If ,0→T  0→p  and .nm≃ε  In this section, we consider only two 

cases: cold matter and radiation. 

For the radiation: .3ε=p  Then equations (3.11) are satisfied if: 

( ) .1~
84 −− α+ε qar  

The case of cold matter is identical to the case of a set of massive 

bodies without collision. (3.1b) is automatically satisfied and (3.1a) gives: 

( ) .21~
33 −− α+ε qac  

Finally, equation (1.10) for 0
0G  is (up to ( )2αO  terms): 

( ) ( ) 0
0

3

2

2

2
33

43
TqHqq

a
H

a
µ=Λ−−κ+∆

α
−κ+ &  (4.1a) 

( ) ( ) .2121
4

4

3

3 







α+

τ
+α+

τ
µ= −−

q
a

q
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The order 0  gives the usual equation of an evolving isotropic universe: 

 ( ) 






 τ
+

τ
µ=Λ−κ+

43

2

2

3

aa
H

a

rc  (4.1b) 

and the order α  equation is: 
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2
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2

3 q
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+

τµ
=−κ+∆ &  (4.1c) 

The other Einstein equation is (3.8) (up to ( )2αO  terms): 
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4

2
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2

2

2
qHHqHq

a
HH

a
κ−−++

α
+κ++= &&&&&  (4.2a) 

Then, with the above hypotheses about the matter content: 

 ( ) Λ+
τµ

−=κ++
4

2

2 3
2

1

a
HH

a

r&  (4.2b) 

and: 

 ( ) ( ).32 22 aqqHHqHq rµτ=κ−−++ &&&&  (4.2c) 

In this equation: 

( ) ( )
( )0

0
2
2

222
2

22

3

2
GG

aHH
HHH −

κ+
−

κ+
+=κ−− ≃

&&  (4.2d) 

( ) ap
a

µ−ε+µ−= ~
2

2

 

(where 2
2G  and 0

0G  are taken at lowest order). 

Then in (4.2c), when a  is large: 0~qHq &&& +  which has two solutions: 

0≃q&  and .1~ aq&  Finally, when ,1>>a  (4.1c) is re-written: 
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 ( ),33 xTqqq δ−κ+∆ ≃  (4.3) 

where T  represents the contribution of .baT  In the above example: 

.
43

2 2







 τ
+

τµ
=

aa
T rc  (4.3) is an eigenvalue equation. If T  can not be 

neglected the eigenvalue depends on .η  

In order to obtain (4.3), we have used a matter background composed 

of radiation and cold matter. Appendix A shows that (4.3) is still true if 

other types of matter are considered. 

The Einstein equations are not solved exactly, but up to ( )2αO  and 

( )aO 1  contributions. This is mainly due to the hypothesis (3.6). 

Equation (4.3) can be solved by setting: ( ) ( )χχηψ shq ,~  if ,1−=κ  

and for 0=κ  and ,1=κ  respectively: ( ) χχηψ ,~q  and 

( ) ( ).sin,~ χχηψq  More generally, and for example, in the hyperbolic 

case, one can try: ( ) ( )χχ γshuq ~  which leads to a Legendre equation for 

u  if: 21−=γ  [9]. This gives the same result. 

We now assume that: ,0=Λ  the solutions of (4.3) are: 

if :1−=κ  ( ),~ χ
χν−
sheq  where: T+=ν 42

 

and 2→ν  if ;∞→a  (4.4a) 

if :0=κ  ,~ χ
χν−

eq  where: ;2 T=ν  (4.4b) 

if 1+=κ  from (4.1b) we have: 

.
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Then: ( ),sin~ χ
χν−

eq  where: .42 −=ν T  (4.4c) 
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The coordinates ( )ϕθχ ,,  are merely labels used to identify space 

points. If ,0=M  the radial distance is .χa  When ,1<<χ  ,1~ χq  

whatever .κ  Equation (2.4), with ,1~ aα  shows that, at first order and 

at small χ  the classical potential is inversely proportional to the distance 

even if the background space-time is not static and not Euclidean. 

We have not checked the stability of these solutions with respect to 

perturbations. 

5. Compact Manifolds 

Spaces of constant curvature are studied in [3]. Let V  be a compact 

3-dimensional constant curvature manifold without border and V
~

 its 

universal covering. Let Γ  be the universal covering group and γ  its 

elements. Functions defined on V  can be extended to V
~

 where they 

must be periodic under the action of .Γ  Γ  is a discrete group of 

isometries, therefore the spherical symmetry used until now is no longer 

true. 

In [11], we used cylindrical coordinates which are more convenient 

than spherical coordinates. They are defined as follows: The symmetry 

axis, called the Oz  axis, is taken to be the base geodesic of the generator 

0γ  of Γ  having the longest transvection (but this is not compulsory). The 

distance of a point P  to its orthogonal projection on Oz  is the radius and 

is called .ρ  The abscissa of this projection is called z  and the azimuthal 

angle is .ϕ  

We now consider the example of space of constant negative curvature 

but the conclusions are the same for the other cases. 3~
HV =  is an 

hypersphere of the Minkowski space .4M  The correspondence between 

the cylindrical coordinates and the 4M  coordinates (with signature 
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( )−−−+  is: 

( ) ( ),0 zchchx ρ=    ( ) ,1
ϕρ= cshx    ( ) ,2

ϕρ= sshx    ( ) ( ),3 zshchx ρ=  (5.1) 

where: ( ),cos ϕ=ϕc  ( ).sin ϕ=ϕs  Let x  be a point whose coordinates in 

4M  are ( )3210 ,,, xxxxx =  and γ  an element of .Γ  The image x ′  of x  

under the action of γ  is [ ]xx γ=′  where [ ]γ  is the matrix representing γ  

in .4M  

We define: 

 ,1
0 ρ=ω ad     ( ) ,2

0 ϕρ=ω dash     ( ) .3
0 dzach ρ=ω  (5.2) 

These a
0ω  represent the coordinates of points in a neighbourhood U  of x  

with respect to an orthonormal frame whose basis vectors ( )xha  are 

collinear with the vectors of the natural basis. γ  is an isometry, the 

image of U  is given by: ( ) ( )xhx a
a ′′ω0  where ( )xha ′′  are the basis vectors of 

the adapted frame obtained by transporting the vectors ( )xha  and where 

the a
0ω  are unchanged. 

Since γ  is an isometry, the adapted frame is orthonormal and the 

local coordinates are ( ) ( )xAx ba
b

a
00 ω=′ω  where A  is a rotation matrix. For 

instance ([4] Appendix A): ( ) ( ( )) ( )xhxhxh aaa ′=γ=γ′ 00  and A  is the 

unit matrix. 

Now let us assume that: 

 ,1 ρ=ω gd     ( ) ,2 ϕρ=ω dshh     ( ) ,3 dzchl ρ=ω  (5.3) 

where ,g  ,h  l  are functions of ,ρ  ,ϕ  .z  The rotation A  mingles the 

components ( )xa0ω  to obtain ,ρd  ,ϕd  dz  at .x ′  The components aω  are 
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transformed likewise. The aω  keeps their forms if: 

 lhg ==  (5.4) 

and if g  is invariant under the action of .γ  

In Section 1, the radial coordinate was redefined in order to simplify 

the Einstein tensor components and to be able to use the convenient 

“isotropic coordinates”. Here the coordinates ( )z,, ϕρ  of the constant 

curvature space are not redefined in order to keep the transformation 

relation [ ]xx γ=′  unchanged. 

We write: η=ω fd0  as before and: 

 ,1 ρ=ω gd    ,2 ϕ=ω hd    .3 ldz=ω  (5.5) 

In the hyperbolic example: ( ),ρ= shhh  ( ).ρ= chll  

In the rest of this section the sign ′ means the partial derivative with 

respect to .ρ  

The connection 1-forms are: 

,0
1. ρ+η

′
=ω d

f

g
d

g

f &
  ,0

2. ϕ+η=ω
ϕ

d
f

h
d

h

f &

  ,0
3. dz

f

l
d

l

fz
&

+η=ω  (5.6) 

,1
2. ϕ

′
−ρ=ω

ϕ
d

g

h
d

h

g
  ,1

3. dz
g

l
d

l

gz ′
−ρ=ω   .2

3. dz
h

l
d

l

hz ϕ
−ϕ=ω  

Since all the calculations follow the same path as before, we do not 

give all the details but only the main points. With (5.4) and the 

hypothesis (1.9) for g  we obtain, like (1.10): 

 ( ),
1433 3

22

2

2

0
0 d

dggg

g

f
G ∆−

κ
+






=
&

 (5.7) 

where: 
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ρ

+
ρ

+′







ρ

ρ
+

ρ

ρ
+′′=∆

ϕϕ

22

3

ch

d

sh

d
d

sh

ch

ch

sh
d zz  (5.8) 

and: ϕϕd  is the second derivative with respect to ϕ  and idem for .zzd  

In the previous sections we considered also the component .0
1G  Here 

it has the same form as in (1.6): 

.
20

1










 ′
−

′






−=

g

g

f

f

g

g

fg
G

&&
 

As in (2.4) and (3.5), we write: 

( )( ) ,1
2

qag α+η=      ( ) ( ),11 rraf α+α−=  

where q  and r  are functions of ( ).,, zϕρ  

With (3.6) we obtain (3.8): 

( ).22
1 2

22

2

2

3
3

2
2

1
1 α+

κ
+








+−= O

gg

g

fg

fg

g

g

f
GGG

&&&&&
≃≃  

The nondiagonal components of ,baG  except ,0
1G  which are strictly zero in 

the spherical symmetry case are still 0  but up to ( )2αO  terms only. 

The conservation equations of b
aT  have the same structure as (3.1): 

( ) ( )3
3

2
2

1
1

1
1

0
0

0
00 23 TTT

g

g
TT

g

g
T −−+−+∂

&&
 

,022
1
0

1
01 =













ρ

ρ
+

ρ

ρ
+

′
+

′
+∂+ T

ch

sh

sh

ch

g

g

f

f
T

g

f
 

( ) ( ) ( )2
2

1
1

3
3

2
2

1
1

1
1

0
0

1
11 2 TT

sh

ch
TTT

g

g
TT

f

f
T −

ρ

ρ
+−−

′
+−

′
−∂  

( ) .04
0
1

0
10

3
3

1
1 =











+∂+−

ρ

ρ
+ T

g

g
T

f

g
TT

ch

sh &
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Finally we obtain: 

 ( ),~33 yxTqqq γ−δ−κ+∆ ∑γ
 (5.9a) 

where y  is the point of V  where the mass M  is located, and yγ  are the 

image of y  in .
~
V  

In order to avoid any confusion with the spherical solutions (4.4), we 

rename cqqq →:  and re-write (5.9): 

 ( ),~3 yxqq cc γ−δσ+∆ ∑γ
 (5.9b) 

where .3 T−κ=σ  

In the following the orthonormal eigenfunctions of the Laplacian on 

V  are called ,: 3
rrrr ψλ−=ψ∆ψ  where: .0≥λr  In (5.9b) cq  is a Green 

function. The general solution of (5.9b) is: 

 
( ) ( )

,~ ∑ λ−σ

ψψ

s s

s

s

c
xy

q  (5.10) 

cq  is invariant by Γ  as required. 

In classical mechanics the solutions (4.4) represent potentials, and it 

is tempting to add the potentials produced by the images of the mass M  

in .
~
V  In principle we should not do that because General Relativity is a 

non linear theory. However, we shall compute: ( ) ( )∑γ
γ= yxqxQ ,  where 

q  in (4.4) is a function of the distance in V  between the point x  where 

one computes the potential and the mass source. The Seldberg trace 

formula [10] links the invariant sum Q  (with respect to Γ ) to the 

spectrum of the Laplacian operator: 

 ( ) ( ) ( ) ( ) ( )., ∑∑ ψψλ=γ=
γ s

s

s

s xyhyxqxQ  (5.11) 
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If the background space-time is hyperbolic ( ):1−=κ  

( ) ( ) ( ) ,4
0

20∫
∞

β χχΦχπ=λ dshqh s  

where: ( ) ( )( ),sin0 χββχ=Φβ sh  ( )21 β+=λs  is the 3-d Laplacian 

eigenfunction in spherical coordinates with null angular momentum 

associated to .0≠λs  If ,0=λ  this function is replaced by 1. 

With (4.4a) the sum Q  is defined, and the calculation of the integrals 

( )sh λ  gives cqQ ~  (5.10). This means that adding the classical 

potentials is a good approximation. 

In the Eclidean case ( ):0=κ  ( ) ( )∫
∞

β χχΦχπ=λ
0

204 dqh s  with: 

( ) ( ),sin0 βχβχ=Φβ  .2β=λs  

The calculation is the same as for .1−=κ  However, this integral is 

not defined if χ1~q  ( 0=ν  in 4.4b)) and if .0=λ  This corresponds to 

the fact that the sum (5.11) does not converge in that case. If we call 0V  

the volume of the fundamental domain, associated to V  the number of 

image domains between χ  and δχ+χ  is, at large 0
24: Vδχπχχ  which 

grows faster than .1~ χq  

If the background space-time is spherical ( ):1+=κ  

( ) ( ) ( ) ,sin4 20

0

sup
χχΦχπ=λ β

χ

∫ dqh s  

where if :0≠λs  ( ) ( )( ),sinsin0 χββχ=Φβ  .12 −β=λs  

In principle the upper bound of the integral should be π=χsup  but 

in fact we have to take into account all the geodesic of 3S  joining x  to .y  
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Taking: ∞=χsup  gives (5.10). 

6. Appendix A. The Scalar Field 

The aim of this appendix is not to study the physics of a self-

interacting scalar field in its own gravitational field, for that see [7] and 

references therein. 

Considering a gravitational mass M  during the inflation phase has 

no meaning, but here we add a scalar field to the ordinary matter (Section 

4) to justify the form of equation (4.3) in another situation. 

We consider a free scalar field φ  whose Lagrangian is: 

 ( ),φφ−φ∂φ∂= +
β

αβ+
α VgL  (A.1) 

the action being: .xdgLS n
∫=  V  is the potential which contains 

mass term and self-coupling. The notation V  is used because it is usual 

for a potential but has nothing to do with Section 5. 

The Euler-Lagrange equations give: 

( ) ,
1

φ−=φ∂∂=φ∆ φβ
αβ

α Vgg
g

 

where: 
( )

.VV
φφφ +∂=  

 ,
131 3

22 



 φ′






 ′

+
′

+φ∆−







φ







−+φ=φ∆

g

g

f

f

gf

f

g

g

f

&
&&

&&  (A.2) 

where (Section 3): ( )20 α+=
′

+
′

O
g

g

f

f
 and: +α+α−=− qqHH

f

f

g

g
&

&&
882

3
 

( ).2αO  

The energy-momentum tensor is (for real ):φ  
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.2 a
bdb

ada
b

LhhT δ−φ∂φ∂η= βγ
γβ

 

As before the spherical symmetry implies ,032 =φ∂=φ∂  then, in the 

orthonormal frames defined in Section 1: 

( )
,

2

2

2

2
0
0 V

gf
T +

φ′
+

φ
=

&

    
( )

,
2

2

2

2
1
1 V

gf
T +

φ′
−

φ
−=
&

 

( )
,

2

2

2

2
3
3

2
2 V

gf
LTT +

φ′
+

φ
−=−==
&

    .
20

1 φ′φ= &

fg
T  

If ,0=M  (isotropic space) equation (A.2) gives: 

 ( ) .02
1

0002
=φ+φ+φ φVH

a

&&&  (A.3) 

If ,0≠M  we write: .10 αφ+φ=φ  The equation of 1φ  is: 

[ ( ) ] ( ) ( ).8
4

1
002011

3
1

2
12

φ+φ+φ−φ−=φ∆−φ+−φ φ
&&&&&& qqH

a
qVHH

a
 

In this equation the technique of variable separation can be used if 

q~1φ  and if q  is an eigenfunction of .3 ∆  

The Einstein equation for 0
0G  gives: 

 [ ] ( ) ( ) ,
3 0

0002

2
02

2 mTV
a

H
a

µ+












φ+

φ
µ=Λ−κ+

&

 (A.4a) 

where ( )000mT  represents the energy-momentum tensor contribution of 

the other matter components at lowest order. 

( ) ( ) 







φφ+φ−φ

φµ
−=−κ+∆ φ 10112

03

2 2
33

1
VH

a
qHqq

a

&
&

&  

( ) ( ).20
01

2
02

α+µ+φ
µ

− OTq
a

m
&  (A.4b) 
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( )abmT 1  is the contribution of the other matter components at order .α  

The Einstein equation for 2
2G  gives: 

[ ] ( ) ( ) ,2
1 2

202

2
0

0
2

2 mT
a

VHH
a

µ+












 φ
−φµ=Λ−κ++

&
&  (A.4c) 

( ) ( ) ( ) ( ).
2 22

211102102
α+µ+φ−φφ

µ
−φφµ=+ φ OTH
a

VqHq
a

m
&&&&&  (A.4d) 

Even the simple case where V  is reduced to a mass term 

( )22φ= mV  is complicated [7]. Here we suppose that φ  is a free non self-

interacting massless field: .0=V  Then, from (A.3): 2
0 ~ −φ a&  and if we 

choose: ,~1 qφ  equations (A.4) show that (4.3) is still true. 
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