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Abstract

The (linearized) quantum Rindler space-times associated with generalized twist-
deformed Minkowski spaces are provided. The corresponding corrections to the

Hawking spectra linear in deformation parameters are derived.
1. Introduction

Presently, it is well known that there exists the deep (and extraordinary) relation
between horizons of black hole and thermodynamics. Already in early 1970s this was
observed by Bekenstein (see [1]), that laws of black hole dynamics (especially the
second one) can be given thermodynamical interpretation, if one identifies entropy
with the area of black hole horizon and temperature with its “surface gravity”. Such
an observation has been confirmed by Hawking in his two seminal articles [2] and

[3], in which, it was predicted that a black hole should radiate with a temperature

hg
TBlack Hole = ke’ (1

where g denotes the gravitational acceleration at the surface of the black hole, k is
Boltzman’s constant, and c¢ is the speed of light. Subsequently, it was shown

separately by Davies [4] and Unruh [5], that uniformly accelerated observer in
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vacuum detects a radiation (a thermal field) with the same temperature as Tgj,ck Hole

ha
Tvacuum = ke’ ()

but with inserted acceleration of the detector a. Formally, such an observer “lives” in
so-called Rindler space-time [6], which can be obtained by the following

transformation from Minkowski space with coordinates (xo, Xy, Xo, x3) !

X9 = N(z;)sinh(azg), 3
x; = N(z;)cosh(azg), 4)
Xy = 2, )
X3 =23, (6)
where N is a positive function of the coordinate. The Minkowski metric ds* = —dxg

3 2
+ Zi:l dx; transforms to

ds® = —aN?(z))dzd + (N")(z))dz? + dz3 + dz3. (7)

Recently, in the papers [7] and [8], there was proposed the noncommutative

counterpart of Rindler space - so-called (linearized) x-Rindler space and twist-

deformed Rindler spacetime, respectively. First of them is associated with the well-

known x-deformed Minkowski space [9], [10]2, while the second one with twisted

canonical, Lie-algebraic and quadratic quantum Minkowski space-time. Further,
following the content of the papers [1-5] (see also [11, 12]), there have been found
corrections to the Hawking thermal spectrum linear in deformation parameter, which

are detected by (noncommutative and uniformly accelerated) k- as well as twist-
deformed Rindler observers.
The suggestion to use noncommutative coordinates goes back to Heisenberg and

was firstly formalized by Snyder in [13]. Recently, however, the interest in space-

time noncommutativity is growing rapidly. Such a situation follows from many

fe=1.
%k denotes the mass-like parameter identified with Planck’s mass.
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phenomenological suggestions, which state that relativistic space-time symmetries
should be modified (deformed) at Planck scale, while the classical Poincare
invariance still remains valid at larger distances [14-17]. Besides, there have been
found formal arguments, based mainly on Quantum Gravity [18, 19] and String
Theory models [20, 21], indicating that space-time at Planck-length should be

noncommutative, i.e., it should have a quantum nature.

At present, in accordance with the Hopf-algebraic classification of all
deformations of relativistic and nonrelativistic symmetries [22, 23], one can
distinguish three kinds of quantum spaces. First of them corresponds to the well-

known canonical type of noncommutativity
%, & 1= B, @®)
with antisymmetric constant tensor O"V. Its relativistic and nonrelativistic Hopf-

algebraic counterparts have been proposed in [24] and [25], respectively.

The second kind of mentioned deformations introduces the Lie-algebraic type of

spacetime noncommutativity
EE B )

with particularly chosen coefficients wa being constants. The corresponding

Poincare quantum groups have been introduced in [26-29], while the suitable Galilei
algebras in [30] and [25].

The last kind of quantum space, so-called quadratic type of noncommutativity
[%,. & ]= 805 3,5.: 6f% = const, (10)
has been proposed in [31], [32] and [29] at relativistic and in [33] at nonrelativistic
level.

Recently, there was considered the new type of quantum space - so-called

generalized quantum space-time

[5,. & 1= 6, +i00y %), (11)

which combines canonical type with the Lie-algebraic kind of space-time
noncommutativity. Its Hopf-algebraic realization has been proposed in [34-36] in the

case of relativistic symmetry and in [36] for its nonrelativistic counterpart.
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In this article, following the scheme proposed in [7] and [8], we provide the
noncommutative counterparts of Rindler space-time, associated with generalized
twist-deformed Poincare Hopf algebras [36] (see space-time (11)). Further, we
investigate the gravito-thermodynamical radiation detected by such generalized twist-

deformed Rindler observers in the vacuum, i.e., we find the thermal (Hawking)
spectra for twisted space-time (11). Particularly, for parameter Gﬁv approaching

zero, we get the thermal spectra for canonical space-time (8) derived in [8].

The paper is organized as follows. In Section 1, we recall the basic facts
concerning the generalized twist-deformed Poincare Hopf algebras and the
corresponding quantum space-times [36]. The second section is devoted to the
generalized Rindler spaces, obtained from their noncommutative Minkowski
counterparts. The deformed Hawking radiation spectra detected by twisted Rindler

observers are derived in Section 3. The final remarks are discussed in the last section.

2. Generalized Twist-deformed Minkowski Spaces and the Corresponding
Poincare Hopf Structures

In this section, following the paper [36], we recall basic facts related with the
generalized twist-deformed relativistic symmetries and corresponding quantum

space-times.

In accordance with the general twist procedure [37-40], the algebraic sectors of

all discussed below Hopf structures remain undeformed (N, = (=, +, +, +))

[Muv’ Mpo] = i(npcstp = NyeMpyp +MypM s _npvacs)7

(12)
[Muv’ Pp] = i(nvppp. _Tlp.va)7 [P,,u B 1=0,
while the coproducts and antipodes transform as follows
Ag(a) = Ala) = F .o Agla) o F.7') S(a) = uSo(a)u.”™", (13)

where Ag(a)=a®1+1®a, Syla)=-a and u. = z fwSo(f2)) (we use
Sweedler’s notation F. = z f() ® f(2)). Present in the above formula the twist
element F.e U.(P) ® U.(P) satisfies the classical cocycle condition

Fag (Mg ®DF.= Fop3 - (10 Ag)F., (14)
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and the normalization condition
E®NF.=(1®¢e)F.=1 (15)
with F 1, = F.®1 and F.,3 =1® F..

Corresponding to the above Hopf structure space-time is defined as quantum
representation space (Hopf module) for quantum Poincare algebra, with action of the
deformed symmetry generators satisfying suitably deformed Leibnitz rules [41, 42,

24]. The action of Poincare algebra on its Hopf module of functions depending on

space-time coordinates x,, is given by
Bov f() =0 f(x). My > f(x)=ilgdy ~x0,)f (). (16)
while the *.-multiplication of arbitrary two functions is defined as follows

fx) % g(x) = oo (F > f(x)® g(x)). (17)

In the above formula F. denotes twist factor in the differential representation
(16)and wo(a ®b)=a-b.

In the article [36], there have been considered three (all possible) types of
Abelian and generalized twist factors (a Ab=a ® b —b ® a)’:

. A1

W) Foy,x = eXPl[RPk AMiy+ 6P A Pz} (18)

.. g1

(11) fe()isf( = eXpl[%Po /\Mkl +90iP0 /\Pl:| (19)
and

(111) }—905’? = eXpl[%B /\Mkl + GOiPO N I)l:|’ (20)

leading to the following generalized quantum space-times (see (11)):

. i
(@) [xos xa]*ekl’K = Exiaak’ (21

3Indices k, [ are fixed and different than i.
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[Xa» XpJg,, i« = 2001 (Bt Bp1 — 8418pk) +LKXO(6ia6kb = 84adip)»

.. i .
(i) [x0, X, leq, ¢ = 5(51an = O Xy) + 200084,
[xav xb ]*eol.’f( = O (22)
and

(lll) [Xo, xa]*eol',TC = 219016

i i
[¥as 3 by, % = 2 8ip Brat = Biaxic) + = 8ia Bpxic = 8ppx)s (23)
respectively, with star product given by the formula (17).

The corresponding Poincare Hopf structures have been provided in [36] as well.
However, due to their complicated form, in this article, we recall as an example only
one Poincare Hopf algebra, associated with first twist factor (18). In accordance with
mentioned above twist procedure its algebraic sector remains classical (see formula
(12)), while the coproducts take the form (see formula (13))

. 1
Aek,,K(Pp) = AO(PM)+ Slnh(ﬁ Pk) N (Tlmpo _TIOp.Pi)
1
+ (COSh(ﬁ Pk) - 1) L Mg B —MouP): (24)
1
Aekl,K(M].LV) = Ao(M;w)JFRMio A (nuka _Tlvkpp)
. . 1
+Z[MM,V’ MiO]/\Slnh(RPk)
1
—[[M].LV’MI'O]’ MiO]J-(COSh(RPk)_I)
+ L My sinh[ =2 B ) L (P -2 Ry) (25)
7 Lo o K Vi ki = Xito
1 1
_X(Wkpo_XkPi)/\MiO(COSh(RPk)_I)

_ekl[(nkupv _nkqu)®Pl + P ®(T|lqu _nlqu)]
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+ekl[(nlp.Pv —leva)®Pk +h ®(nkp.Pv —leva)]

. 1

+ ekl[[Mpv’ Myl AL Smh(ﬁ ijPJ
. 1

-0y [[Muv» Myl B L Smh(ﬁ By )Pk

j 1
+ lekl[[[Muv’ M), Mio]» P A (COS(R Pk) - l)PI

. 1
- lekl[[[Muv’ M) Myol. B A (COSh(R Pk) - 1)Pk»

with a Lb=a®b+b ®a, WY = njynli _niynlj and Xy = njynki —niynkj'

The two remaining Hopf structures corresponding to the twist factors (19) and (20)
look similar to the coproducts (24) and (25).

Of course, if parameter 6"V goes to zero and parameters K, K and K approach
infinity, the above space-times and corresponding Hopf structures become
undeformed. Besides, for fixed (different than zero) parameters 0" and 0% and
parameters ¥, K and X approaching infinity, we get twisted canonical Minkowski
space provided in [24]. Moreover, for parameters 6 and 6" running to zero, and
fixed parameters ¥, K and K, we recover the Lie-algebraically deformed relativistic

spaces introduced in [28] and [29].
3. Generalized Twist-deformed Rindler Space-times

Let us now find the twisted Rindler spaces associated with the generalized
Minkowski space-times provided in pervious section. In this aim, we proceed with

the algorithm proposed in [7] and [8] for k- and twist-deformed Minkowski space-
times, respectively.

We define such (Rindler) space-times as the quantum spaces with
noncommutativity given by the proper *-multiplications. This new
*- multiplications are defined by the new Z -factors, which can be obtained from

relativistic twist factors (18)-(20) as follows:
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(i) Firstly, we take the standard transformation rules from commutative

Minkowski space (described by x,, variables) to the accelerated and commutative as

well (Rindler) space-time (z, ) [6]

X = zj sinh(azg), (26)
x| = z; cosh(azg), 27
Xy =29, (28)
X3 =23, (29)

where a denotes the acceleration parameter, i.e., we have chosen function
N(z;) = z; in formulas (3)-(6).

(ii) Further, we rewrite the Minkowski twist factors (18)-(20) (depending on

commutative Xy variables and defining the *- multiplication (17)) in terms of Zy

variables.

In such a way, we get three following Z - factors and the corresponding Rindler

quantum spaces:

(1) Rindler space-time associated with twisted relativistic space (i) (see formula

(21)).

In such a case, due to the transformation rules (26)-(29)%, the proper

%6y, % - product takes the form

F(2) %0, ¢ 8(2) = @o (250 > f(2) @ g(2)). (30)
where

-1 .
Zoy.x = €XP —i(8410y £1 (20 21, dz aq)/\ dy + 8110119,

“One can find, that axO = (— s.inh(azo)az1 + (Cosh(azo)/azl)BZO) and 9, = (cosh(azo)aZl

—(sinh(azg)az; )0 " ).
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A filzos 21 D0 95y )+ 84281302301, A Dy + 8138120309, A D,

1
+§5k1f1(20’ 215 04, 9 ) (2 £o (200 21. 909z )- g0(z0: Zl)azi)

1
+R8ilazk ~ (81(z0, 21)fo(z0, 21, 94 97)

=80(20. 21)f1(20 21, 94, 97, )
+ L 808,39, A (z3foleon 210 0, 9., )= g0(200 21)0,.)
T 20395 A\23f0l\20- 212 0450 0 )= 80(20, 21)0y

1
+ 50 k382025 A (eaf0(20- 21 9z azl)_ 80(2o, Zl)az2)

= eXP(Aek,, K(Z? az) A Bek[,]((z’ az)) = eXpOGkI,K(Z9 az)9 (31)
and

fo(zo, 215 0z 821) = —sinh(az)id ,, + (cosh(azg )/ azy )id . (32)

filzg. 2. 0. 9,1) = cosh(azg)id ,, — (sinh(azg)/az; )id , (33)

20(z9> 71) = 7y sinh(azg), g1(zg, z1) = z; cosh(azy). (34)
However, to simplify, we consider the following differential operator

. -1
(2'5]‘:’63 ] =1+0g,, «(z,9,), (35)

which contains only the terms linear in deformation parameter 6 and «.° Hence,

the linearized *-Rindler multiplication is given by the formula (30), but with

differential operator (35) instead the complete factor Zgil - Consequently, for

f(z) =z, and g(z) = z,, we get

[Zp,v 2y ];ekl’K = [(Aekl, K(Z’ az)zp)(Bekl,K(Z’ az)zv)

*We look only for the corrections to Hawking radiation linear in deformation parameter.
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_(Bekl,]((z7 az)zp,)(Aekl,K(Z’ az)zv )] (36)

with f,(z,d,) =id o f3(z,0,)=1i0 z;- The above commutation relations define

the generalized twist-deformed Rindler space-time associated with generalized
Minkowski space (21).

(i) Rindler space-time associated with generalized twist-deformed Minkowski
space (ii) (see (22)).

Here, due to the rules (26)-(29), the *q 0i K" multiplication looks as follows
F@) ¥y 1 8(x) = 00 (25 o > f(2) @ g(2)), (37)
where
Zg;i,f( = exp —i(8;801 /o (z0» 21 92y azl)/\ Ailzo. 21, CE azl)

+ 8i2902f0(ZO e aZO’ 8Z1)/\ azz + 8i3903f0(20, 11> aZO’ 8Z1)/\ az3

+

1
% 8428130 20- 21 CE azl)/\ (Z28Z3 - Z3az2)
1
+ﬁ8k3812f0(10’ 215 9 azl)/\ (Z3az2 - Zzaz3)
1
+ﬁ5k1f0(10’ Zl’azo’azl)/\(gl(zo’ 21)9, ~ 2, 1(zo, Zl’azo’azl)

1
+ﬁ511f0(10’ 215 94)- 95 ) (e £i (0. 21, 94092 )-&1(z0. 21 ), )
= eXP(CGOi,k(Z’ d,) A DeoisK(Z’ E)Z)) = exp Oeol,’k(z, d,). (38)
Consequently, the corresponding (linearized) Rindler space-time takes the form

[Zp’ ZV]*A‘GO[,&
= [(COOi,ﬁ‘(Z7 az )Zp. )(DQOi,k(Z7 az )ZV - (DQOi,ﬁ(Z9 az )Z]J, )(CGOi,R‘(Z’ az )ZV )]7 (39)
where we use the linearized approximation to Z 5; & (see (35)).

(iii) Rindler space-time associated with relativistic twist-deformed space (iii)
(see formula (23)).
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In such a case, the *901'3 - multiplication takes the form

[(2) *y, % 8(z) = ®e (Zgéi,K > f(2) ® g(2)). (40)
with factor
Zgéi,g = exp —i(8;1001/o (<0 21 9z azl)/\ Alzo. 21, 25 azl)

+8;2002f0(20, 21, 94,, 9, ) A D, +8,3003.f0 (20 1- 9z azl)/\az3
1

+ﬁ5ﬂf1(zo, 21,040, 9, ) A (240, — 202, (41)
1

+ 5= 8ud; A (g1(z0- 200, = 21 ilzo. 210 92,. 02,))

1
+ﬁallaz[ A (Zkf1(20’ 21 azo’ azl)_ 21(zp, Zl)azk))
= exp (e, %(2 9.) A Gay %(2, 3;)) = exp Og, (2, 9.).

Then, the (linearized) Rindler space looks as follows

[t wv)sg,, = By w2 9)20) (Goy, k(2 0)2,)
_(g90i,?(z’ az)zp)(e‘eoj,?(z’ az)zv )] (42)

with ;eOi % multiplication defined by the linear approximation to (41) (see (35)).

Obviously, for both deformation parameters 6 and 0" approaching zero, and
all parameters ¥, ¥ and K running to infinity, the above generalized Rindler space-
times become classical. It should be also noted that for fixed (different than zero)
parameters 6 and 6% and parameters k, K and K approaching infinity, we get
twisted canonical Rindler space provided in [8]. On the other side, for parameters
0% and o running to zero, and fixed parameters k, K and ¥, we recover the Lie-

algebraically deformed Rindler spaces introduced in [8] as well.

4. Hawking Thermal Spectra for Generalized Twist-deformed
Rindler Space-times

In this section, we find the corrections to the gravito-thermodynamical process,
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which occurs in generalized twist-deformed space-times.

As it was mentioned in Introduction, such effects as Hawking radiation [2], can
be observed in vacuum by uniformly accelerated observer [4, 5]. First of all,
following [7] and [8], we recall the -calculations performed for gravito-
thermodynamical process in commutative relativistic space-time [11, 12]. Firstly, we
consider the on-shell plane wave corresponding to the massless mode with positive

frequency ® moving in x; = x direction of Minkowski space (xq = t)
o(x, 1) = exp (Gx — o). (43)
In terms of Rindler variables this plane wave takes the form (zg = 7T, z; = z)

o(x(z, ), t(z, 7)) = O(z, T) = exp (ibdze ™), (44)

i.e., it becomes nonmonochromatic and instead has the frequency spectrum f (),

given by Fourier transform

oz )= [ 92 f(a)e™o” (45)
The corresponding power spectrum is given by P(w) =] f ((1))|2 and the
function f(®) can be obtained by inverse Fourier transform
F(o) = f: Jrpi®ze O jiot _ (_%) (@z) @ F(_%‘))eﬂ:w/Za, 46)
where I'(x) denotes the gamma function [43]. Then, since
. 2
‘F(%‘ - s ED” @7

we get the following power spectrum at negative frequency

275/ a

Ty (48)
eZmo/a -1

oP(-0) = o f(-0)|* =

ho/ kT

which corresponds to the Planck factor (e —1) associated with temperature

T = ha/2nke (the temperature of radiation seen by Rindler observer (see formula

).
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Let us now turn to the case of generalized twist-deformed space-times provided
in pervious section. In order to find the power spectra for such deformed Rindler

spaces, we start with the (fundamental) formula (44) for scalar field, equipped with

the twisted (linearized) %- multiplications
(I)T.WiSth (z,7) = exp (ifl)z e ) (49)

Then

too 2 —at

f::T.VViSth (0)) — d,tei(l)z*.,.e ;l: . .el.(,l)T’ (50)

—o0

and, in accordance with the pervious considerations, we get6

. ~+oo LA —a .
f.’].“msted (w) = f(w) +J. dtwo (0., (1, z, at’ az) b pl0ze T ® elmt)

+oo ca -at .
+J dre'™ Te’m(oo((’).,.(r,z,at,az)bifoz(@e_m), (51)

—oo

the corresponding (twisted) power spectrum is defined as
: . 2
(DP.:ljwmted (- o) = (4 f.:l.“wwted o). (52)

Consequently, due to the form of linearized Rindler factors Z fmear, we have:

(1) The thermal spectrum for generalized Rindler space (i).

In such a case the operator O.,.(t, z, 9, 9,) = Oekl’K(‘c, z,dg, 0,) is given

by the formula (31) and

182,00 [ o iot -
k1<i d‘telwze tu)’re at

Twisted _
Famined (@) = f (o) + A2 [ e

Gk,,K

*We only take under consideration the terms linear in deformation parameters le, 905, K,

k and k.
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N .
_Sklzim “ drei®ze ‘”eiurre—a'r

(53)

The above integral can be evaluated with help of standard identity for Gamma

function
[(y +1) = yI(y), (54)

one gets
fTWlSted( ) — (_lj (@Z)i(x)/a F(_i_(oj eTm)/Za 1+ Sklzi(l) |:£ _ 1:| . (55)

AN a a 2xaz L a
Then, one can check that the thermal spectrum takes the form
PTWlsted( ©)= 1 1— sklzi('0 +0O K2 (56)
O x T T 1 2xenrs? ’

with Hawking temperature 7 = a/2n associated with the acceleration of generalized

twist-deformed Rindler observer (i).

(i) The Hawking radiation spectrum associated with twist deformation (ii).

Then O.,.(t, 2,0, 0,) = Oeol,,fc(‘c, z,04,0,) (see formula (38)) and the
function f ’TWiSted (®) looks as follows

at

Twisted . 1 od [+ iDze” i _
fe()\:m “w) = f(o)+ 1(901 + % (Oy12 — Oz ))LI_ZJ'_OO dre'®e " piot ,—at

O (™ b ot —at
(901 + — (Slle - 5k121 )ZJ’ dre'®* e e . (57)

One can perform the above integral with respect time <

i Wlsted( ) = ( aj ((sz)im/ar(_ %D)em/m

1 o [in
.(1-{—(601 +%(8111k —Sklzl)jaz—z[%—l}], (58)

and, consequently, the power spectrum takes the form

1 1 1 (0]
LU (g +- (5,2 -8
T e"’/T—l( ( o1+ 5= Bnz klZl)) TCTZZ)

Tw1sted
P, 0) =
ook @)
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+ (9(931, &2 ) (59)

with Hawking temperature T = a/2%.

(iii)) The thermal spectrum corresponding to the generalized deformation of

Rindler space (iii).
In the last case O.,.(T, z, 0, 0,) = Oeol_j(’t, z,07,0,) (see formula (41))

and, we have

TW1sted (0)) f((D) 16 IGOIOJ(DJ‘ dte idze™ ™" elmte—a‘c

18,0010 [ itee= i
_ HYivot J dtei®ze 10T ,mat (60)
<

After integration (see identity for Gamma function (54)), one gets
fe Twisted (@) = ( 1 ) (G)Z)i())/u F(— i_m)enwﬁa [1 + 81’16010) [ﬂ _ 1}]’ 61)
a a az? a

and

PTWISted( o) = % (D/; : (1 _ 81‘160;0)] + 0(9(2)1 )’ (62)
e —

respectively.

Of course, for deformation parameter 6, approaching zero, and parameters K

and k running to infinity, the above corrections disappear. Besides, one can observe,
that for deformation parameters k and & going to infinity, we get the thermal

spectrum for canonical Rindler space-time provided in [8].
5. Final Remarks

In this article, we provide linear version of three generalized twist-deformed
Rindler spaces. All of them correspond to the generalized twist-deformed Minkowski
space-times derived in [36]. Further, we demonstrated that there appear corrections

to the Hawking thermal radiation, which are linear in deformation parameters 901, K

and K.
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It should be noted, that the above results can be extended in different ways. First
of all, for example, one can find the complete form of (generalized) Rindler space-

times with the use of complete twist differential operators

Z_l =exp0.,.(z,0,), (63)

which appear, respectively, in the formulas (30), (37) and (40). However, due to the

complicated form of operators O.,.(z, ) such a problem seems to be quite difficult

to solve from technical point of view. Besides, following the paper [11] (the case of
commutative Rindler space), one can find additional physical applications for such
deformed generalized Rindler space-times. The studies in these directions have been
already started and are in progress.
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