
Fundamental Journal of Modern Physics 

ISSN: 2249-9768 

Volume 23, Issue 1, 2025, Pages 1-16 

This paper is available online at http://www.frdint.com/ 

Published online March 16, 2025 

:esphras and Keywords galaxy, geon, rotation curve, dark matter.  

Received February 14, 2025; Accepted March 5, 2025 

 © 2025 Fundamental Research and Development International 

 

GALACTIC GEONS: REVISITING THE DARK 

MATTER PARADIGM 

R. VAN NIEUWENHOVE 

Independent researcher 

(Previously at Belgian Nuclear Research Centre SCK-CEN) 

Skipper 27, 2480 Dessel 

Belgium 

e-mail: rvnieuwe@gmail.com 

Abstract 

This study presents the mathematical derivation of geons, 

gravitationally stable spacetime structures, as an alternative to dark 

matter. Assuming galaxies are embedded in galactic-sized geons, the 

observed flat galaxy rotation curves can be explained without requiring 

the standard dark matter halo. This concept has been applied to the 

case of the Milky Way and profiles of density, pressure and rotation 

velocity have been derived, demonstrating a close correspondence with 

the observations. The geon’s Gaussian density profile naturally explains 

the flat central density cores observed in dwarf galaxies, providing a 

compelling solution to the core-cusp problem. Furthermore, the early 

formation of geons shortly after the Big Bang offers a framework for 

understanding the rapid emergence of massive galaxies, addressing the 

challenges posed by recent James Webb Space Telescope observations. 

These findings suggest that geons could serve as both the gravitational 

scaffolding for galaxy formation and a replacement for cold dark matter, 
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unifying multiple cosmological phenomena under a single theoretical 

framework. 

1. Introduction 

The enigmatic nature of galaxy rotation curves, first observed in the 

1970s, remains one of the most compelling puzzles in astrophysics. 

Measurements of rotational velocities in galaxies exhibit a surprising 

flatness at large radii, deviating from the expected Keplerian decline. 

This phenomenon has traditionally been attributed to the presence of 

unseen mass, commonly referred to as dark matter. However, despite 

decades of dedicated research, direct detection of dark matter particles 

has proven elusive [1], motivating alternative explanations rooted in the 

fundamental physics of gravitation. 

In this context, we revisit the concept of gravitational geons, self-

sustaining field configurations governed purely by Einstein’s Field 

Equations (EFE) [2]. Originally introduced by John Archibald Wheeler in 

1955, geons “(gravitational electromagnetic entity)” were envisioned as 

stable, localized energy constructs formed from gravitational and 

electromagnetic fields [3]. However, these geons were primarily 

considered in small-scale scenarios, often limited by their susceptibility to 

radiation leakage and other instabilities. Wheeler did not present explicit 

geon solutions to the vacuum Einstein field equation, a gap which was 

partially filled by Brill and Hartle in 1964 [4]. In their paper they applied 

their method to the case of a static spherically symmetric background 

geometry and found that gravitational waves can remain confined in a 

region for a time much longer than the region’s light-crossing time. This 

so-called gravitational geon is generated by a large number of high 

frequency, small amplitude gravitational waves. The time average of the 

curvature due to these waves creates the background geometry of the 

geon, and this background geometry traps the waves for a long time in a 

region of space called the “active” region. 
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In this paper, we will investigate a geon type of solution which is very 

different in nature from previously investigated types of geons. Here we 

will focus on a spherically symmetric, stationary geon with a spatial 

extension similar to that of galaxies, or even larger. The existence of such 

geons was already conjectured in 1998 [5], although a mathematical proof 

was not provided. Strictly speaking, the only non-trivial, matter-free 

solutions to the Einstein Field Equations are the Schwarzschild and Kerr 

spacetimes. Nevertheless, we will here introduce a modification to the 

EFE in which the momentum-energy content within the vacuum is 

treated as an effective stress-energy tensor which has similarities to the 

cosmological term. In that case, we find exact, non-trivial, analytical 

solutions to the EFE. Imagining that galaxies are embedded within such 

geons, we will demonstrate that it is possible to explain the observed, 

relatively flat, galaxy rotation curves. Further, it will be argued that such 

galactic sized geons can play a role in galaxy formation, providing an 

explanation for the observation of galaxies in the early universe (300 

million years after the Big Bang), which are difficult to explain within the 

standard ΛCDM model [6-8]. 

2. Mathematical Geon Description 

The Einstein Field Equations (EFE) contain 10 independent 

equations due to the symmetric 44 ×  tensor .µνG  However, under the 

assumptions of spherical symmetry, stationarity, and no rotation, the 

system simplifies significantly: 

- Spherical Symmetry: Ensures that the metric components depend 

only on the radial coordinate ,r  reducing complexity. 

- Stationarity: Implies time-independence, eliminating time 

derivatives. 

- No Rotation: Eliminates cross-terms like .θtG  
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This symmetry reduces the independent components of µνG  to: 

- The tt -component (energy density). 

- The rr -component (radial pressure). 

- The θθ - or φφ -component (angular pressure). 

The conservation of energy-momentum, ,0=∇ µν
νT  ensures 

consistency among the equations, leaving three independent equations. 

We will use a stress-energy tensor of the form =µνT  

( ).sin,,, 22222 θρ Λφ rprpepediag ttr  

The metric ansatz for a spherically symmetric, stationary spacetime 

is: 

 ( ) ( ) ( ).sin 222222222 φθ+θ++−= Λφ ddrdredteds rr  (1) 

The Einstein Field equations are given by 

 µνµνµν π=Λ+ TgG 8  (2) 

in which Λ  is the cosmological constant. In the following derivations, Λ  

is initially not considered. 

Since we want a non-trivial solution without singularity at the origin, 

we choose a profile for the energy density which has a finite value at the 

origin, for which the derivative at 0=r  is zero and which decays for 

larger values of .r  Here we chose a Gaussian density profile for the geon: 

 ( ) ,
22

0
Rrer −ρ=ρ  (3) 

where 0ρ  is the central density and a  determines the characteristic size. 

The tt -equation is: 
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 [ ( )] ( ).81
1 2

2
rer

dr

d

r
πρ=− Λ−  (4) 

Substitute ( ) :
22

0
Rrer −ρ=ρ  

 [ ( )] .81
1 22

0
2

2

Rreer
dr

d

r

−Λ− πρ=−  (5) 

Define the mass function: 

 ( ) ( )Λ−−= 21
2

1
errm  (6) 

which represents the enclosed mass at radius .r  The equation becomes: 

 ( ).4 2 rr
dr

dm
ρπ=  (7) 

Substituting ( ):rρ  

 .4
22

0
2 Rrer

dr

dm −ρπ=  (8) 

Integrating: 

 ( ) .4
0

2
0

22
dxexrm

r
Rx∫ −πρ=  (9) 

The integral has a known solution: 

 ( ) .
24

4
2233

0











−







π
πρ= − Rre

R

R

r
erf

R
rm  (10) 

Taking the integral from 0  to infinity, the integral becomes: 

 .3
0

23 RM geon ρπ=  (11) 

Thus, ( )re Λ−2  can be determined from: 

 
( )

.
2

12

r

rm
e −=Λ−  (12) 
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The rr -equation is: 

 ( ) ( ) ( ).81
12 2

2

2 rpe
r

er
r rπ=−−φ′ Λ−Λ−  (13) 

Substitute equation (12) 

 ( ) ( ) ( ) ( ).8
212

1
2

2
rp

r

rm

rr

rm
r

r rπ=







−








−φ′  (14) 

Simplify: 

 ( )
( )

( ) ( )
.

2
8

2
12

3 







+π









−

=φ′
r

rm
rp

r

rm

r
r r  (15) 

The θθ -equation is: 

 ( ).822 rp
rr

e tπ=






 Λ′
−

φ′
+Λ′φ′−φ′+φ ′′Λ−  (16) 

Using equation (12), computing derivatives of ( )rφ  and ( ),rΛ  this 

equation provides consistency between ( ),rpt  ( ),rpr  and ( ).rρ  

In addition, one has to satisfy the conservation equation: 

 .0=∇ µν
νT  (17) 

For the radial component ,r=µ  we get: 

 ( ) ( ).2
rtr

r pp
rdr

d
p

dr

dp
−+

φ
+ρ−=  (18) 

Next, we need to introduce the equation of state, relating the energy 

density to the pressure. One could consider ρ+=rp  or .ρ−=rp  After 

some algebra, one can show that both choices lead to a solution of the 

EFE. Since we are aiming at a geon type solution, we will use therefore 

the second option, namely 
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 .ρ−=rp  (19) 

In this way, we are sure that we are not dealing with some ordinary 

gas or plasma. 

A common misconception in gravitational physics is that a negative 

radial pressure, such as the equation of state (equation (19)), necessarily 

leads to instability. While negative pressure is often associated with 

repulsive effects in cosmology, in localized gravitational systems, it can 

contribute to a stable equilibrium when properly balanced. For instance, 

the Tolman-Oppenheimer-Volkoff (TOV) equation describes equilibrium 

in relativistic stars, allowing stable configurations with anisotropic 

pressures, including negative radial pressure in certain regimes [9, 10]. 

Additionally, various stable gravitational structures exhibit regions of 

negative pressure. A key example is the gravastar model [10], in which an 

interior de Sitter-like vacuum state ( )ρ−=P  is enclosed by a thin shell, 

maintaining a stable structure without collapse. Similarly, traversable 

wormhole solutions require exotic matter with negative pressure to 

support their throats [11, 12], yet under appropriate conditions, such 

configurations can be dynamically stable. Furthermore, cosmological de 

Sitter space, which dominates the large-scale universe today due to dark 

energy ( ),ρ−=P  is itself a maximally symmetric and stable solution of 

Einstein’s equations [13]. These examples demonstrate that negative 

pressure does not inherently lead to instability and can instead be a key 

ingredient in constructing equilibrium configurations in General 

Relativity. 

Using this choice of equation of state, we can now work out the 

solution. Since both the density and the radial pressure are already 

defined, we only need to find the tangential pressure .tp  This can be 

obtained either from the θθ -equation or from the pressure balance 

equation (18) which is in fact the generalized Tolman-Oppenheimer-

Volkov equation [14]. This results in the following expression for ;tp  
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 .1
2

2














−ρ−=
R

r
pt  (20) 

When choosing ρ+=rp  one obtains ( ).1 22 Rrpt −ρ+=  

In fact, there are some higher order corrections to tp  containing 

terms like ,22rρ  ,mρ  42rm  but when converting back from geometrized 

units to SI units, these are to be multiplied by very small factors such as 

2cG  or .4cG  It is worth mentioning that these solutions were never 

derived before. 

The energy-momentum tensor µνT  might be interpreted as an 

effective vacuum energy plus an anisotropic correction: 

 ,corrTgT µνµνµν +ρ−=  (21) 

where the correction term corrTµν  accounts for the deviation in :tp  

 .,,0,0
2

2

2

2














ρρ=µν
R

r

R

r
diagT corr  (22) 

In this interpretation, the term µνρ− g  behaves as a vacuum energy 

(proportional to the metric tensor) and thus consistent with the EFE 

including the cosmological constant (see equation (2)). However, in this 

case, ρ  is not a constant but depends on .r  In the scalar field theories 

[15], Λ  is replaced by a dynamic scalar field whose energy density 

evolves over time and space and in ( )Rf  gravity theories [16], the 

cosmological constant emerges as a dynamic entity related to the form of 

( ).Rf  The correction corrTµν  represents anisotropic stresses or deviations 

from a pure cosmological constant. In many modified gravity theories, 

corrections to the Einstein equations involve higher-order curvature 
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terms such as 2R  or .µν
µνRR  These terms introduce modifications to the 

stress-energy tensor that naturally depend on the radial coordinate ,r  

often scaling as .2r  The anisotropic correction term 
2

2

~
R

r
T ρθ

θ  suggests 

a second-order geometric effect arising from such modifications, where 

curvature contributions feed back into the stress-energy distribution, 

leading to additional pressure anisotropies in the angular components. 

It is interesting to note that we are still free in the choice of the 

energy density at the origin, as well as in the value of the scale length R  

in the Gaussian energy density profile. So, these solutions can describe 

very small entities (scale of atoms) to very large entities (scale of galaxies 

or larger). Also, it is very likely that solutions, similar to this one, can be 

found in which the geon rotates. Because of the higher complexity, this 

path was not explored further. 

3. Application to the Milky Way 

In the following we will imagine that our galaxy is embedded in a 

geon, extending beyond the galaxy. As an example, we will take the case 

of the Milky Way (MW). 

There is still a significant uncertainty in the total mass of the MW, 

and here we will consider some reasonable values for total, baryonic and 

bulge mass only for the sake of providing an idea of the effect of the geon 

on the galaxy rotation curve. Our aim is thus not to provide a detailed 

modelling of the MW. On the other hand, there are recent rotation curve 

results by the Gaia DR3 measurements [17] which we will use as a 

guidance. These results show rotation velocities of the order of ,skm230  

some decline beyond kpc15  and a pronounced decline beyond kpc.19  In 

our very simplistic model, we will use here a uniform baryonic mass of 

10104.6 × M๏ up to a radius of kpc.4  If we assume for instance a total 
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mass of the MW of 11102.06 × M๏ and a baryonic mass 10104.6 × M๏ we 

will choose the mass of the geon to be the difference between the two, 

namely 11101.6 × M๏. Thus, the geon mass takes the roll of “dark matter”. 

Then we chose a suitable scale length ( )R  of the Gaussian energy density 

profile, and we adjusted the central density such as to obtain the required 

total mass of the geon (using equation (11)). The scale length in this case 

should be somewhere between 8 and kpc12  and in what follows, we 

choose the value kpc.9=R  In fact, at this point, we use it as a fitting 

parameter to the MW rotation curve. However, this might also hint to a 

connection between the mass accumulated in the geon (see next section) 

and the properties of the geon. In the weak field approximation, we can 

safely assume that the gravitational force on a test mass is the sum of the 

forces due to the central (baryonic) mass and the force due to the geon. 

The force on a test mass can be obtained by using the equation for ( )rφ′  

(equation (15)) in which we substitute ρ−=rp  and where we use the 

approximation that ,12 <<rm  resulting in 

 ( ) .4
2 








+ρπ−=φ′=
r

m
rmrmF testtest  (23) 

When reverting to SI units, the first term needs to be multiplied by 2cG  

and the second term by .G  Then we find that the first term becomes 

negligible, resulting in the simple equation: 

 .
2r

mm
F test=  (24) 

Thus, the force on test mass, due to the geon, is just the Newtonian 

gravitational force, induced by the enclosed mass. 

The profiles of the density (Gaussian, with scale length )kpc9  and 

the calculated enclosed mass are shown in Figure 1. 
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Figure 1. Density and enclosed mass of the geon. The units are scaled. 

The density ( )3mkgin  is obtained by multiplying the scaled values by 

.10 21−  The enclosed mass (in solar masses) is obtained by multiplying the 

scaled values by .1011  

The calculated pressure profiles are shown in Figure 2. Note the 

region in which the tangential pressure changes sign. 

 

Figure 2. Radial and tangential pressure profiles of the geon. The units 

are scaled. The pressures (in Pa) are obtained by multiplying the scaled 

values by .10 38−  

Finally, the impact of the geon on the Milky Way rotation curve 

(simplistic model) is shown in Figure 3. The additional mass of the geon 



R. VAN NIEUWENHOVE 

 

12 

results in a relatively flat rotation curve and a decline in the region 

kpc20-15  (in agreement with recent observations [17]). 

 

Figure 3. Calculated velocity profiles for the Milky Way (simplistic 

model), showing the Newtonian decay and the relatively flat profiles 

obtained by the additional force of the geon. 

4. Early Galaxy Formation and the role of Geons 

The ΛCDM model predicts a hierarchical structure formation process. 

Dark matter halos form first, through gravitational collapse, providing 

the scaffolding for baryonic matter to cool and condense into stars and 

galaxies. However, recent observations from the James Webb Space 

Telescope (JWST) of massive, mature galaxies at only 250-300 million 

years after the Big Bang seem to challenge this scenario [18]. 

The rate of star formation in these galaxies appears inconsistent with 

the cooling timescales of baryonic gas expected under the ΛCDM model. 

These galaxies show signs of well-developed morphologies, such as disk-

like or compact structures, which are surprising given the chaotic 

environments expected during early galaxy formation. 

Geons, hypothesized as localized configurations of spacetime, offer an 

alternative mechanism for structure formation. Unlike dark matter, 

geons are fundamentally gravitational phenomena and may have unique 
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properties that make them ideal candidates for explaining early galaxy 

formation. 

In this hypothesis, geons could form very early in the universe’s 

history, shortly after the inflationary phase ended ( ).seconds10 32−≈  

During this period, quantum fluctuations in the spacetime fabric - 

amplified by inflation - could generate regions of intense curvature. These 

regions might stabilize into geons through quantum gravitational effects. 

Importantly, geons could form seconds to minutes after the Big Bang, far 

earlier than the formation of large dark matter halos (between 100000 yrs 

to 300 Myrs after the Big Bang). Geons forming almost immediately after 

inflation, could begin clustering well before recombination. Once baryonic 

matter decoupled from radiation, geons would already have deep 

potential wells in place, potentially allowing them to attract baryonic 

matter more efficiently than dark matter halos. This earlier gravitational 

influence might explain how galaxies could form more rapidly and 

maturely than expected under the standard dark matter model. 

The size and “depth” of a geon (related to its curvature profile and 

energy density) could determine the amount of baryonic matter it 

captures. This provides a physical basis for the observed relation between 

galaxy size and mass. 

5. Geons as a Solution to the Cusp-core Problem 

The Navarro-Frenk-White (NFW) profile [19], which describes the 

density of dark matter halos based on simulations, predicts a cuspy 

central density scaling as .1 r  At small radii, this results in a steep rise 

in the density near the halo center. In contrast, observations of dwarf 

galaxies and low-surface-brightness galaxies often show a core, where the 

density flattens to a roughly constant value near the center [20]. This 

discrepancy challenges the validity of the standard cold dark matter 

model or suggests that additional physical processes (e.g., baryonic 
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feedback, alternative dark matter models, or geons) are needed to explain 

the observations [21]. One of the most promising solutions to this cold 

dark matter issue is the stellar feedback mechanism but it seems to be 

only designed for gas-rich dwarfs, while the problem still remains for gas-

poor dwarf spheroidal galaxies. Here, geons with a Gaussian density 

profile could provide a natural solution since the gradient of the density 

becomes zero at the centre. 

6. Discussion 

The geon solutions rely implicitly on assumptions about the quantum 

vacuum’s properties. While the vacuum is often treated as homogeneous 

and isotropic, its complexity at microscopic scales suggests the potential 

for anisotropic effects, such as direction-dependent pressures. These 

effects could play a significant role in the stability and structure of geons 

and might have observable consequences in galaxy dynamics. 

Understanding the interplay between these effects and the broader 

cosmic environment remains an intriguing direction for future research. 

Geons also offer testable predictions that could distinguish them from 

standard dark matter models. Their smooth density profiles may produce 

gravitational lensing patterns and rotation curves subtly different from 

those predicted by dark matter halos with Navarro-Frenk-White profiles. 

Additionally, their role in early galaxy formation could leave imprints on 

the large-scale structure of the universe or in the properties of high-

redshift galaxies observed by telescopes like the James Webb Space 

Telescope. 

Their behavior across different scales, ranging from dwarf galaxies to 

galaxy clusters, requires deeper analysis. Integrating geons into the 

broader cosmological framework, particularly in relation to dark energy 

and cosmic expansion, is also an open question. 
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7. Conclusions 

It has been shown that a geon type solution exists to the Einstein 

Field Equations with a Gaussian density profile and for which the radial 

pressure is minus the energy density, being reminiscent of a vacuum 

equation of state. Real geon solutions could exist within the framework of 

modified or extended gravity theories. Such galactic sized geons can take 

over the role of dark matter, being distributed gravitational structures 

with a significant mass content. It has been shown that the observed 

relatively flat galaxy rotation curves can be explained when considering 

the galaxies to be embedded in large geons. In particular, the rotation 

curve for the Milky Way has been modelled using a simple baryonic mass 

profile embedded in a geon. Besides explaining the flat rotation curves, 

the geon concept can also offer an explanation to the observation of 

mature galaxies in the early universe, and it offers also a solution to the 

core-cusp problem in gas-poor dwarf spheroidal galaxies. 
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