FIXED POINT THEOREMS FOR $(\delta, 1 - \delta)$ **WEAK CONTRACTIONS IN THE SENSE OF AMPADU ON PARTIAL METRIC SPACES**

CLEMENT BOATENG AMPADU

31 Carrolton Road Boston, MA 02132-6303 USA e-mail: drampadu@hotmail.com

Abstract

In this paper, we obtain some fixed point theorems in partial metric spaces using the concept of $(\delta, 1 - \delta)$ -weak contraction introduced in Ampadu [1]. Further taking inspiration from Berinde [2], we introduce a nonlinear type $(\delta, 1 - \delta)$ -weak contraction and give a fixed point result in partial metric spaces using this new concept.

1. Introduction

Recall that the concept of $(\delta, 1 - \delta)$ -weak contraction was introduced as follows:

Definition 1.1 (Ampadu [1]). Let (X, d) be a metric space. A map

Received October 8, 2017; Accepted April 15 2018

© 2019 Fundamental Research and Development International

Keywords and phrases: fixed point, partial metric spaces, $(\delta, 1 - \delta)$ weak contraction.

²⁰¹⁰ Mathematics Subject Classification: 54H25, 47H10.

T : *X* \mapsto *X* is called a (δ , 1 – δ)-weak contraction, if there exists $\delta \in (0, 1)$ such that the following holds for all $x, y \in X$

$$
d(Tx, Ty) \leq \delta d(x, y) + (1 - \delta)d(y, Tx).
$$

A uniqueness theorem related to $(\delta, 1 - \delta)$ -weak contraction was obtained as follows:

Theorem 1.2 (Ampadu [1]). Let (X, d) be a metric space, and $T: X \mapsto X$ be $a \left(\delta, 1-\delta \right)$ -weak contraction. *T* has a unique fixed point, provided (X, d) is *complete*.

Definition 1.3 (Altun and Acar [3]). A map φ : $[0, \infty) \mapsto [0, \infty)$ is called a comparison function if it satisfies the following:

- (a) φ is monotone increasing,
- (b) $\lim_{n\to\infty} \varphi^n t = 0$ for all $t \in [0, \infty)$.

Definition 1.4 (Altun and Acar [3])**.** A map φ : $[0, \infty) \mapsto [0, \infty)$ is called a *(c)*comparison function if it satisfies the following:

- (a) φ is monotone increasing,
- (b) $\sum_{n=0}^{\infty} \varphi^n(t)$ $i = 0$ $\varphi^{n}(t)$ is convergent for all $t \in [0, \infty)$.

Remark 1.5. Properties and examples of comparison and (*c*)-comparison functions can be found in Berinde [4].

Definition 1.6 (Berinde [2]). Let (X, d) be a metric space, and *T* be a self-map of *X*. T is called a (φ, L) -weak contraction, if there exists a comparison function φ and some $L \ge 0$ such that for all $x, y \in X$, the following inequality holds:

$$
d(Tx, Ty) \le \varphi(d(x, y)) + Ld(y, Tx).
$$

Remark 1.7. In order to check the weak φ -contractiveness of a mapping *T*, it is necessary to check the inequality in the previous definition*,* and the following dual one for all $x, y \in X$

$$
d(Tx, Ty) \le \varphi(d(x, y)) + Ld(x, Ty).
$$

Related to the above definition, the following existence theorem was obtained:

Theorem 1.8 (Berinde [2])**.** *Let* (*X* , *d*) *be a complete metric space and* $T: X \mapsto X$ be a (φ, L) -weak contraction with φ , *a* (*c*)-comparison function, then *T has a fixed point*.

Definition 1.9 (Matthews [5])**.** A partial metric on a nonempty set *X* is a function $\rho: X \times X \mapsto \mathbb{R}^+$ such that for all $x, y, z \in X$ the following holds:

(a) $x = y \Leftrightarrow \rho(x, x) = \rho(x, y) = \rho(y, y)$, (b) $\rho(x, x) \leq \rho(x, y)$, (c) $\rho(x, y) = \rho(y, x)$, (d) $\rho(x, y) \leq \rho(x, z) + \rho(z, y) - \rho(z, z)$.

Moreover, the pair (X, ρ) is called a partial metric space, where *X* is a nonempty set and ρ satisfies the above axioms.

It is well known if $\rho(x, y) = 0$, then from (a) and (b) of the previous definition, $x = y$. But if $x = y$, $\rho(x, y) \neq 0$.

Example 1.10 (Altun and Acar [3]). Let $X = \mathbb{R}^+$ and define $\rho : X \times X \mapsto \mathbb{R}^+$ by $\rho(x, y) = \max\{x, y\}$ for all $x, y \in \mathbb{R}^+$, then (\mathbb{R}^+, ρ) is a partial metric space.

Example 1.11 (Altun and Acar [3]). For any real numbers $a \leq b$, let *I* denote the set of all intervals $[a, b]$. Define $\rho: I \times I \mapsto \mathbb{R}^+$ *by* $\rho([a, b], [c, d]) = \max\{b, d\} - \min\{a, c\}$, then (I, ρ) is a partial metric space.

Remark 1.12. For other examples of partial metric spaces, see Escardo [6] and Matthews [5].

Remark 1.13 (Altun and Acar [3]). Each partial metric $ρ$ on *X* generates a T_0 topology τ_{ρ} on *X* which has as a base the family of open ρ -balls $\{B_{\rho}(x, \varepsilon) : x \in$ $X, \varepsilon > 0$, where $B_{\rho}(x, \varepsilon) = \{y \in X : \rho(x, y) < \rho(x, x) + \varepsilon\}$ for all $x \in X$ and $\varepsilon > 0$.

Example 1.14 (Altun and Acar [3]). If ρ is a partial metric on *X*, then the functions ρ^s , ρ^w : $X \times X \mapsto \mathbb{R}^+$ defined by

$$
\rho^{s}(x, y) = 2\rho(x, y) - \rho(x, x) - \rho(y, y)
$$

and

$$
\rho^{w}(x, y) = \rho(x, y) - \min\{\rho(x, x), \rho(y, y)\}
$$

are ordinary equivalent metrics on *X*.

Definition 1.15 (Altun and Acar [3]). A sequence $\{x_n\}$ in a partial metric space (*X*, $ρ$) converges, with respect to $τ_{ρ^s}$, to a point *x* ∈ *X* iff

$$
\lim_{n, m \to \infty} \rho(x_n, x_m) = \lim_{n \to \infty} \rho(x, x_n) = \rho(x, x).
$$

Definition 1.16 (Altun and Acar [3]). A sequence $\{x_n\}$ in a partial metric space (X, ρ) is called Cauchy if $\lim_{n, m \to \infty} \rho(x_n, x_m) < \infty$. If $\lim_{n, m \to \infty} \rho(x_n, x_m) =$ 0, then $\{x_n\}$ is called a 0-Cauchy sequence in (X, ρ) .

Definition 1.17 (Altun and Acar [3]). A partial metric space (X, ρ) is said to be complete if every Cauchy sequence $\{x_n\}$ in *X* converges, with respect to τ_p , to a point $x \in X$ such that $\rho(x, x) = \lim_{n, m \to \infty} \rho(x_n, x_m)$.

Definition 1.18 (Altun and Acar [3]). A partial metric space (X, ρ) is said to be

0-complete if every Cauchy sequence $\{x_n\}$ in *X* converges, with respect to τ_ρ , to a point $x \in X$ such that $\rho(x, x) = 0$.

Remark 1.19 (Romaguera [7])**.** (*X* , ρ) is 0*-*complete iff every 0*-*Cauchy sequence converges with respect to τ_{ρ^s} .

Remark 1.20 (Altun and Acar [3]). Every 0-Cauchy sequence in (X, ρ) is a Cauchy sequence in (X, ρ) . It follows that if (X, ρ) is complete then it is 0complete*.* Moreover, a 0*-*complete partial metric space may not be complete, for example, see Romaguera [7].

Remark 1.21 (Altun and Acar [3]). A sequence $\{x_n\}$ is Cauchy in a partial metric space (X, ρ) iff it is Cauchy in the metric space (X, ρ^s) . Moreover, (X, ρ) is complete iff (X, ρ^s) is complete. See Matthews [5].

2. Main Results

Definition 2.1. Let (X, ρ) be a partial metric space. A map $T : X \mapsto X$ will be called a $(\delta, 1 - \delta)$ -weak contraction if there exists $\delta \in (0, 1)$ such that for all $x, y \in X$ the following inequality holds:

$$
\rho(Tx, Ty) \le \delta \rho(x, y) + (1 - \delta) \rho^{w}(y, Tx).
$$

Now we show that any Kannan mapping is a $(\delta, 1 - \delta)$ -weak contraction in the sense of Definition 2.1.

Proposition 2.2. *Let* (X, ρ) *be a partial metric space, and* $T : X \mapsto X$ *be a* $a \in [0, \frac{1}{2})$ such that

Kannan mapping, that is, there exists $a \in [0, \frac{1}{2})$

$$
\rho(Tx, Ty) \le a[\rho(x, Tx) + \rho(y, Ty)]
$$

for all x, y \in *X. Then T is a* $(\delta, 1-\delta)$ *-weak contraction.*

Proof. Since $a < \frac{1}{2}$ and $\frac{1}{4} < \frac{1}{2}$, 1 4 $\frac{1}{4} < \frac{1}{2}$, we can take $a < \frac{1}{4}$. $a < \frac{1}{4}$. Now observe we have the following:

$$
\rho(Tx, Ty) \le a[\rho(x, Tx) + \rho(y, Ty)]
$$

\n
$$
\le a[\rho(x, y) + \rho(y, Tx) - \rho(y, y) + \rho(y, Tx) + \rho(Tx, Ty) - \rho(Tx, Ty)].
$$

From the above we deduce the following:

$$
(1-a)\rho(Tx, Ty) \le a\rho(x, y) + 2a\rho(y, Tx) - a[\rho(y, y) + \rho(Tx, Tx)]
$$

\n
$$
\le a\rho(x, y) + 2a\rho(y, Tx) - 2a \min{\rho(y, y), \rho(Tx, Tx)}
$$

\n
$$
= a\rho(x, y) + 2a[\rho(y, Tx) - \min{\rho(y, y), \rho(Tx, Tx)}]
$$

\n
$$
= a\rho(x, y) + 2a\rho^{w}(y, Tx)
$$

\n
$$
\le a\rho(x, y) + (1 - 2a)\rho^{w}(y, Tx).
$$

From the above, we have

$$
\rho(Tx, Ty) \le \frac{a}{1-a}\rho(x, y) + \frac{(1-2a)}{1-a}\rho^W(y, Tx).
$$

Thus with $\delta := \frac{a}{1-a}$ *a* $\delta := \frac{a}{1-a}$ and $1-\delta := \frac{(1-2a)}{1-a}$, $1 - \delta := \frac{(1 - 2a)}{1 - a}$ *a* − $-\delta := \frac{(1-2a)}{1}$, *T* is a $(\delta, 1-\delta)$ -weak contraction. o

Now we introduce the nonlinear type $(\delta, 1-\delta)$ -weak contraction in metric space as follows:

Definition 2.3. Let (X, d) be a metric space, and *T* be a self-map of *X*. *T* is called a $(\varphi, 1-\delta)$ -weak contraction, if there exists a comparison function φ and some $\delta \in (0, 1)$ such that for all $x, y \in X$, the following inequality holds:

$$
d(Tx, Ty) \le \varphi(d(x, y)) + (1 - \delta)d(y, Tx).
$$

From the above, we have the following in the setting of partial metric spaces:

Definition 2.4. Let (X, ρ) be a partial metric space, and *T* be a self-map of *X*. *T* is called a $(\varphi, 1 - \delta)$ -weak contraction, if there exists a comparison function φ and some $\delta \in (0, 1)$ such that for all $x, y \in X$, the following inequality holds:

$$
\rho(Tx, Ty) \leq \varphi(\rho(x, y)) + (1 - \delta)\rho^{w}(y, Tx).
$$

Now we have the following existence and uniqueness fixed point result for a map satisfying the definition immediately above as follows:

Theorem 2.5. *Let* (*X* , ρ) *be a* 0*-complete partial metric space and* $T: X \mapsto X$ be a $(\varphi, 1-\delta)$ *-weak contraction with a (c)-comparison function, then T has a fixed point*. *Moreover*, *the fixed point is unique iff the* (*c*)-*comparison function is given by* $\varphi(t) = \delta t$ *, where* $\delta \in (0, 1)$ *.*

Proof. Let $x_0 \in X$ and $x_n = Tx_{n-1}$ for all $n \in \mathbb{N}$. Since *T* is a $(\varphi, 1 - \delta)$ -weak contraction, then we have the following:

$$
\rho(x_n, x_{n+1}) = \rho(Tx_{n-1}, Tx_n)
$$

\n
$$
\leq \varphi(\rho(x_{n-1}, x_n)) + (1 - \delta)\rho^w(x_n, Tx_{n-1})
$$

\n
$$
= \varphi(\rho(x_{n-1}, x_n)).
$$

By induction, we obtain $\rho(x_n, x_{n+1}) \le \varphi^n(\rho(x_0, x_1))$ for all $n \in \mathbb{N}$. By triangle inequality, for $m > n$, we have

$$
\rho(x_n, x_m) \le \sum_{k=n}^{m-1} \rho(x_k, x_{k+1}) - \sum_{k=n}^{m-2} \rho(x_{k+1}, x_{k+1})
$$

$$
\le \sum_{k=n}^{m-1} \rho(x_k, x_{k+1})
$$

$$
\le \sum_{k=n}^{\infty} \rho(x_k, x_{k+1})
$$

$$
\leq \sum_{k=n}^{\infty} \varphi^k(\rho(x_0, x_1)).
$$

Since φ is a (*c*)-comparison function, then $\sum_{k=n}^{\infty} \varphi^k(\rho(x_0, x_1))$ = *k* $\int_{k=n}^{\infty} \varphi^{k}(\rho(x_0, x_1))$ is convergent, and so $\{x_n\}$ is a 0-Cauchy sequence in *X*. Since *X* is 0-complete, then $\{x_n\}$ converges, with respect to τ_p , to a point $z \in X$ such that $\lim_{n \to \infty} \rho(x_n, z) = \rho(z, z) = 0$. Now we claim that $\rho(z, Tz) = 0$. Suppose not, suppose $\rho(z, Tz) > 0$. Since φ is a (*c*)-comparison function, then $\varphi(t) < t$ for $t > 0$. Also since $\lim_{n \to \infty}$ $\rho(x_n, z) = \rho(z, z) = 0$, then there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$, ρ $(x_n, z) < \frac{\rho(z, Tz)}{2}$. $f(x_n, z) < \frac{\rho(z, Tz)}{2}$. Now observe we have the following:

$$
\rho(z, Tz) \le \rho(z, x_{n+1}) + \rho(x_{n+1}, Tz)
$$

= $\rho(z, x_{n+1}) + \rho(Tx_n, Tz)$
 $\le \rho(z, x_{n+1}) + \phi(\rho(x_n, z)) + (1 - \delta)\rho^w(z, x_{n+1})$
 $< \rho(z, x_{n+1}) + \frac{\rho(z, Tz)}{2} + (1 - \delta)\rho^w(z, x_{n+1}).$

Taking limits in the above as $n \to \infty$, we deduce

$$
0 < \rho(z, Tz) < \frac{\rho(z, Tz)}{2}
$$

which is a contradiction. It follows that $\rho(Tz, z) = 0$, and thus $z = Tz$. For the uniqueness of the fixed point, suppose *k* is another fixed point of *T*, if $\rho(z, k) = 0$, then $z = k$ is clear. So we assume $p(z, k) > 0$. Now observe we have the following:

$$
0 < \rho(z, k)
$$
\n
$$
= \rho(Tz, Tk)
$$
\n
$$
\leq \varphi(\rho(z, k)) + (1 - \delta)\rho^{w}(k, Tz)
$$

FIXED POINT THEOREMS FOR $(\delta, 1 - \delta)$ WEAK ... 23 $= \delta \rho(z, k) + (1 - \delta) [\rho(k, Tz) - \min\{\rho(k, k), \rho(Tz, Tz)\}]$ $= \delta \rho(z, k) + (1 - \delta) [\rho(k, z) - \min\{\rho(k, k), \rho(z, z)\}]$

$$
\leq \delta \rho(z, k) + (1 - \delta) \rho(k, z)
$$

$$
= \rho(z, k)
$$

which is a contradiction, so $z = k$ and uniqueness follows. $\qquad \qquad$ 0

Since any map satisfying Definition 2.1 also satisfies Definition 2.4, we have the following:

Corollary 2.6. *Let* (*X,* ρ) *be a* 0*-complete partial metric space and* $T: X \mapsto X$ *satisfy Definition* 2.1*, then T* has a unique fixed point.

Finally we illustrate the above Corollary with the following.

Example 2.7. Let $X = [\frac{1}{2}, 1].$ $X = \left[\frac{1}{2}, 1\right]$. If $x \neq y$, put $\rho(x, y) = \max\{x, y\}$; if $x = y$, put $\rho(x, y) = 0$. It is clear that ρ is a partial metric and (X, ρ) is 0-complete. Also $\rho^{w}(x, y) = \rho(x, y)$. If $x \in \left[\frac{1}{2}, 1\right)$, $x \in \left[\frac{1}{2}, 1\right)$, put $Tx = 0$; if $x = 1$, put $Tx = 1$. Clearly all the conditions of the Corollary immediately above are satisfied and $x = 1$ is the unique fixed point. It remains to show the contractive condition of the Corollary holds. Observe we must check for some $\delta \in (0, 1)$ that

$$
\rho(Tx, Ty) \le \delta \rho(x, y) + (1 - \delta) \rho^w(y, Tx)
$$

holds for all $x, y \in X$. It might be necessary also to check the dual of the inequality immediately above, that is,

$$
\rho(Tx, Ty) \le \delta \rho(x, y) + (1 - \delta) \rho^{w}(x, Ty).
$$

Therefore it is sufficient to check that for some $\delta \in (0,1)$ and for all $x, y \in X$, the following holds:

$$
\rho(Tx, Ty) \leq \delta \rho(x, y) + (1 - \delta) \min{\rho^w(y, Tx), \rho^w(x, Ty)}.
$$

Case 1. $x = y$. In this case $\rho(Tx, Ty) = 0$, and the result is clear.

For the remaining cases, we assume $x \neq y$.

Case 2. $x, y \in \left[\frac{1}{2}, 1\right)$. $x, y \in \left[\frac{1}{2}, 1\right)$. In this case we also have $\rho(Tx, Ty) = 0$, and the result is clear.

Case 3. $x \in \left[\frac{1}{2}, 1\right)$ $x \in \left[\frac{1}{2}, 1\right)$ and $y = 1$ or $y \in \left[\frac{1}{2}, 1\right)$ $y \in \left[\frac{1}{2}, 1\right)$ and $x = 1$. In this case by symmetry we may exchange "*x*" with "*y*", thus only need to consider $x \in \left[\frac{1}{2}, 1\right)$ $x \in \left[\frac{1}{2}, 1\right)$ and *y* = 1. Now observe we have the following with $\delta = \frac{1}{2}$

$$
\rho(Tx, Ty) = 1
$$

= $\frac{1}{2} + \frac{1}{2}$
= $\frac{1}{2} \max\{x, 1\} + \frac{1}{2} \min\{\max\{1, 0\}, \max\{x, 1\}\}\$
= $\frac{1}{2} \rho(x, y) + \frac{1}{2} \min\{\rho(y, Tx), \rho(x, Ty)\}\$
= $\frac{1}{2} \rho(x, y) + \frac{1}{2} \min\{\rho^w(y, Tx), \rho^w(x, Ty)\}.$

3. Concluding Remarks

This paper improves upon the existence results given by Theorem 3 and Corollary 1 contained in Altun and Acar [3].

References

[1] Clement Boateng Ampadu, An almost contraction mapping theorem in metric spaces

with unique fixed point, Fundamental J. Math. Math. Sci. 11(2) (2019), 47-50.

- [2] V. Berinde, Approximating fixed points of weak ϕ-contractions using the Picard iteration, Fixed Point Theory 4(2) (2003), 131-142.
- [3] Ishak Altun and Özlem Acar, Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topology and its Applications 159 (2012), 2642- 2648.
- [4] V. Berinde, Iterative Approximation of Fixed Points, Springer-Verlag, Berlin-Heidelberg, 2007.
- [5] S. G. Matthews, Partial metric topology, Proc. 8th summer conference on general topology and applications, Ann. New York Acad. Sci. 728 (1994), 183-197.
- [6] M. H. Escardo, Pcf extended with real numbers, Theoret. Comput. Sci. 162 (1996), 79-115.
- [7] S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl. (2010), Article ID 493298, 6 pp.