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Abstract 

Adapting a derivation due to Feynman, expressions for the relativistic 

energy and momentum of a ponderable object are obtained from work-

energy equivalence and Newton’s Second Law of mechanics. 

Transformation laws of relativistic energy and momentum are found 

and the time dilation relation and the Lorentz transformation of time 

intervals are obtained from the invariant relation connecting the 

Newtonian mass of an object to its relativistic energy and momentum. 

Lorentz transformations of space-time events are then derived and 

discussed. Finally, space-time geometrical and kinematical velocity 

transformation formulas are compared. Although identical in Galilean 

relativity, they are found to differ at order ( )2cv  in special relativity. 



J. H. FIELD 

 

192 

1. Introduction 

The origins of special relativity theory (SRT) are to be found in 

considerations related to classical electromagnetic theory. A system of 

transformation equations where time intervals are predicted to have 

different values for observers in different inertial frames, was proposed 

by Voigt [1] in 1887 in order to render covariant the wave equation. These 

transformations were adapted by Lorentz [2] in order to obtain the 

eponymous space-time transformation equations that are the basis of 

SRT. As demonstrated by Lorentz [2], as well as earlier by Larmor [3] and 

slightly later by Poincaré [4], the Lorentz Transformations (LT) render 

covariant Maxwell’s equations, and so predict that electromagnetic waves 

have the same speed in vacuum, c, in all inertial frames. In Einstein’s 

seminal paper on SRT of 1905 [5], this prediction was elevated (though 

tacitly1) to the status of a postulate and used to derive the LT from first 

principles. 

It was soon realised that Einstein’s ‘second postulate’ concerning the 

constancy of the speed of light was not necessary in order to derive the 

LT. Following the pioneering papers of Ignatowski [6], Frank and Rohe 

[7] and Pars [8], the number of published axiomatic derivations of the LT, 

not invoking light-speed-constancy, is now vast. Work prior to 1968 is 

cited in ref. [9], more recent work in ref. [10] by the present author. The 

majority of these derivations, following that of Einstein in 1905, were 

‘kinematical’ in the sense that no dynamical laws of physics, or the 

properties of particular physical systems, were considered. In contrast, in 

the original applications of the LT by Lorentz [2] and Poincaré [4] to the 

                                                           
1
The actual statement of Einstein’s ‘principle of the constancy of the speed of light’ is [5]: ‘Any ray of 

light moves in the “stationary” system of coordinates with a determined velocity c whether the ray is 

emitted by a stationary or by a moving body’. This is only a statement of source-speed-independence of 

the speed of light in a particular frame. In the subsequent derivation of the LT in ref. [5], the equality of 

the speed of light in the ‘stationary’ system K and the ‘moving’ system k is asserted without further 

comment. 
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electromagnetic structure of the electron, kinematics and dynamics were 

inextricably intertwined. It was stressed by Pais [11] that one of the most 

important conceptual advances contributed by Einstein to the 

development of SRT was the demonstration of the ‘kinematical’ and hence 

universal nature of the LT. 

Some postulates that have been employed by different authors to 

derive the space-time LT are: 

Einstein [5]: 

● The laws of physics are the same in all inertial frames 

● The speed of light is the same in all inertial frames 

● Space-time homogeneity 

● Spatial isotropy 

● The Reciprocity Principle 

Pars [8]: 

● Linear transformation equations 

● Galilean relativity at small velocities 

● Group property of transformations 

Field (1) [10]: 

● The LT is a single-valued function of its arguments 

● Reciprocal space-time measurements of similar rulers and clocks at 

rest in different inertial frames yield identical results 

● Spatial isotropy 

Field (2) [12]: 

● The LT is a single-valued function of its arguments 
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● Equations describing laws of physics are invariant with respect to 

exchange of unidimensional space and time coordinates, or, more 

generally, to exchange of unidimensional spatial and temporal 

components of four-vectors 

In almost all cases the derivations are purely mathematical 

manipulations of equations linear in space-time coordinates, with no 

discussion of the operational meaning of the symbols employed. Einstein 

did not actually state the frame independence of the speed of light - only 

that it is independent of the speed of its source. However, this second 

postulate, as well as the last three listed above, were tacitly invoked in 

his derivation of the LT [5]. The ‘Reciprocity Principle’ (to be further 

discussed below) is the assertion that if the relative velocity of two objects 

A and B in the rest frame of A is v
r

 then that of A in the rest frame of B is 

.v
r

−  The derivation of Pars is the first of many appearing in the literature 

(for example [14, 15, 16]) invoking the group property. This property is 

critically discussed in the Appendix of the present paper. The motivation 

of the two derivations of the LT by the present author cited above was to 

minimise the number of necessary postulates, and to make them as weak 

as possible. Only the second postulate of the first derivation concerns the 

operational meaning (rulers and clocks are invoked) of the space-time 

coordinate symbols. 

Advantages of axiomatic derivations of the LT are the simplicity and 

almost ‘obvious’ nature of the postulates used, and mathematical 

elegance. However, a disadvantage, presciently pointed out in 1921 by 

Pauli [13] is that such derivations shed little light on the physical 

meaning of the equations: 

From the group theoretical assumption, it is only possible to determine 

the general form of the transformation formulae not of their physical 

content. 
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Indeed the still controversial and anti-common-sense nature of some 

predictions of SRT are due, not to the equations of the theory, but rather 

how the equations are physically interpreted. 

In contrast, the derivation of the LT to be presented in the present 

paper is based not on abstract considerations of space-time geometry or 

relativistic invariance but instead on the relativistic generalisation of a 

particular physical law - Newton’s Second Law of Motion of classical 

mechanics. The space-time LT is then derived from the equations of 

relativistic kinematics (i.e., the transformation laws of energy and 

momentum) not, as conventionally done, in the inverse order. The 

‘relativistic generalisation’ is obtained by introducing dimensionally-

correct ansätze for energy and momentum valid for any physically-

allowed velocity of a moving object in any inertial frame. The advantage 

of this approach is that the operational meaning of all coordinate symbols 

in the equations is clear from the outset. 

In the work of Einstein, and in particular in axiomatic derivations of 

later authors, as well as in text books, the LT are presented as 

transformations between an event: ( )tzyx ,,,  observed in one frame S 

and the same event: ( )tzyx ′′′′ ,,,  as observed in another frame S’. In 

order to specify such an event, it is evident that spatial coordinate 

systems must be defined in the different frames. Also the existence of the 

epochs ', tt  of the occurrence of the event presuppose the existence of 

some clocks, at rest in the frames S, S’, respectively, to measure them. 

The problem of the synchronisation of these clocks, in relative motion, 

must then be addressed. As pointed out in previous work by the present 

author [17, 18, 19, 20, 21, 22, 23], and as will be seen below, certain 

incorrect predictions of SRT that have survived, in the literature, text 

books and the popular understanding of SRT from 1905 until the present 

day, are due not to any errors in the LT per se, but rather incorrect 

handling of coordinate systems and clock synchronisation constants when 
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they are used to transform space-time events rather than space-time 

intervals. 

In the axiomatic derivation of SRT in the present paper, firstly the 

formulas for relativistic energy, E, and momentum, p are obtained, as 

well as transformation laws relating different kinematical configurations 

( )p,E  of the same physical object in the same inertial frame. In a second 

step the time dilation (TD) relation and the time LT for space and time 

intervals are derived. Thirdly, on introducing spatial coordinate systems, 

the LT for space-time events are derived. Lastly, relativistic 

transformations of relative velocities, as previously discussed in the 

literature, are derived and discussed. Unlike in previous work, the 

axioms employed make no reference to the special relativity principle, 

light speed, group properties, or any considerations of spatial geometry or 

of symmetry. They are: 

(I) Work-to-energy conversion: .sF ddWdE ⋅==  

(II) Newton’s Second Law of mechanics: .Fp =dtd  

(III) Ansätze, proportional to its Newtonian mass, m, for the velocity 

dependence of the relativistic energy, E, and momentum, p, of a physical 

object. 

Here dE is the change of energy of a physical object due to the work 

dW done by its displacement ds under the action of an impressed force F. 

The derivation proceeds by first obtaining expressions for E and p as a 

function of velocity and then considering the transformation ( ) →p,E  

( )p′′,E  of kinematical configurations of the object in a single reference 

frame, due to the action of the force. The transformation law so obtained 

allows the definition of two kinematical invariants, from the first of which 

the TD relation and the LT for time intervals may be obtained. Because 

these transformation laws contain only space or time intervals, these 
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equations unlike the LT for events do not depend on the definition of 

coordinate systems or of clock synchronisation constants. On introducing 

coordinate systems and synchronised clocks, the LT for space-time events 

are then obtained and compared with the conventional event LT of SRT. 

Finally, predictions of space-time geometry (i.e., for observations of 

spatial positions at different epochs of the same object in different inertial 

frames in the same space-time experiment) are compared and contrasted 

with those of relativistic kinematics. In particular, transformation 

formulas for relative velocities are derived and compared with the 

velocity transformation formulas of conventional SRT as derived by 

Einstein [5]. 

The organisation of the paper is as follows: In the following section, 

explicit formulas for relativistic energy and momentum are derived by 

adapting a calculation of Feynman [25] invoking Newton’s Second Law2. 

An initially unknown universal constant occurring, for dimensional 

reasons, in the initial ansätze is identified with the square of the speed of 

light in free space. In Section 3, the transformation laws of relativistic 

energy and momentum are derived from an invariant relation obtained in 

the previous section. In Section 4, the space-time LT for intervals or 

events are derived and interpreted to demonstrate the spurious nature of 

the ‘length contraction’ and ‘relativity of simultaneity’ effects of 

conventional SRT. In Section 5, space-time geometrical and kinematical 

velocity transformations are compared and contrasted. Group properties 

of different velocity transformations and their physical interpretation are 

discussed in an appendix. 

2. Relativistic Energy and Momentum 

Relativistic energy and momentum as attributes of a physical object 

                                                           
2
A similar calculation was published much earlier by Lewis [24]. This fact came to the notice of the 

author only after the completion of the first version of the present paper. 
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of Newtonian mass m, and velocity v in some inertial frame, are defined 

here according to the ansätze: 

( ) ( ),vmvE γ≡ κ  (2.1) 

( )
( )

( ) .vvp vm
vE

v γ=≡
κ

 (2.2) 

In these equations κ  is a universal constant of dimensions ,TL 22 −  the 

physical significance of which will be elucidated in the following. The 

initially unknown, dimensionless, function ( ) ( )v≡γ vv ,  may be assumed 

to satisfy the condition ( ) .10 =γ  In this way, the classical definition of 

momentum is recovered by (2.2) in the low velocity limit. 

Following a proof due to Feynman [25], the function ( )vγ  and hence 

the velocity dependence of E and p will now be determined from the 

solution of a first order differential equation obtained by combining the 

similar equations describing the conversion of work into energy: 

sF ddWdE ⋅==  (2.3) 

and Newton’s Second Law of mechanics, expressed in terms of 

momentum: 

.F
p

=
dt

d
 (2.4) 

The quantity sd  is the infinitesimal displacement of the object during the 

time interval dt under the action of an arbitrary force F. Since 

dtdsv ≡  (2.1)-(2.4) may be combined to give: 

( ).vvpvsF γ⋅=⋅=⋅=γ= dmddmddE κ  (2.5) 

Canceling throughout the common factor m and multiplying through by 

,γ  (2.5) gives: 
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 ( ) ( ) ( )222

2

1

2
vdddd γ=γ⋅γ=γ=γγ vv

κ
κ  (2.6) 

so that ( )vγ  is the solution of the differential equation: 

 ( ) ( ).222 vdd γ=γκ  (2.7) 

Direct integration of (2.7) with the boundary condition ( ) 10 =γ  gives: 

 [ ( ) ] ( ) .1 222
vvv γ=−γκ  (2.8) 

Solving this equation for ( ),vγ  it is found that: 

 ( ) .

1

1

2

κ

v

v

−

=γ  (2.9) 

The above calculation is identical to that given by Feynman [25] except 

that Feynman assumed initially that ,2c=κ  where c is the speed of light 

in vacuum. In the present work, this identification [10] will be seen to 

follow by assuming that light actually consists of particles - photons. 

Since the relation (2.9) is physical only if ,MAXvv =< κ  the 

physical significance of the constant κ  is clear: ,2
MAXv=κ  where MAXv  

is the maximum possible velocity of a ponderable object in an inertial 

frame allowed by the application of forces that obey Newton’s Second Law. 

To identify the limiting velocity MAXv  with the speed of light in free 

space, (2.2) is written as: 

 ( ) ( ),vvmp βγ= κ  (2.10) 

where ( ) .κvv ≡β  Then use of the identity: 1222 ≡βγ−γ  together 

with (2.1) and (2.10) gives 



J. H. FIELD 

 

200 

 ( ) .222222222 mmpE κκκ =βγ−γ=−  (2.11) 

For any object which is light3 in the sense that ,, mpE κκ >>  (2.1), (2.2) 

and (2.11) give the relation 

 .MAXv
p

p

E

p
v ==≅= κ

κ

κκ
 (2.12) 

If light is therefore identified as the manifestation of the propagation of 

massless (or almost massless) particles in free space, it follows that 

.κ=≅ MAXvc  The second of Einstein’s postulates of special relativity, 

when (see below) it is correctly physically interpreted, is therefore derived 

in the present approach. An experimentally verified corollory is that all 

particles satisfying the conditions mpE κκ >>,  will move isotropically, 

in the inertial frame in which they are produced, at the same speed as 

light in free space. This derivation by the present author of the relation: 

cvMAX ==κ  for massless particles was first given in Ref. [10]. 

3. Transformation Laws of Relativistic 

Energy and Momentum 

It follows from Equation (2.11) that different kinematical 

configurations, ( ) ( )pp ′′,,, EE  of an object of Newtonian mass m are 

related by the equation: 

 ( ) ( ) .222222 mpEpE κκκ =−′=−  (3.1) 

It is germane to consider generation of the configuration ( )p′′,E  from 

( )p,E  by a two parameter boost operation. Since the momentum vectors 

p and p′  define a plane in the inertial frame of observation, it is 

                                                           
3
No pun intended 
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convenient, as shown in Figure 1, to decompose these vectors into 

components parallel to (longitudinal, L, component) and transverse to (T 

component) the vector :pp −′  

,, TLTL pppppp ′+′=′+=  (3.2) 

.sinsin,cos,cos θ′′=′=θ=θ′′=′θ= pppppppp TTLL  (3.3) 

It therefore follows from (3.1)-(3.3) that there are two independent frame-

invariant relations [26] involving, respectively, the longitudinal and 

transverse components of relativistic momentum: 

( ) ( ) ,
2222

LL pEpE ′−′=− κκ  (3.4) 

( ) .
22

TT pp ′=  (3.5) 

Linear transformation equations between ( )LE p,  and ( )LE p′′,  may, in 

general, be written as: 

,21 LpcEcE κ+=′  (3.6) 

,4
3

κ

Ec
pcp LL +=′  (3.7) 

where 321 ,, ccc  and 4c  are dimensionless coefficients. Setting κmE =  

and 0== TL pp  in (3.6) and (3.7) gives, on comparing with the 

relations γ′=β′γ′=′=′γ′=′ 1:, cmppmE L κκ  and .4 β′γ′=c  This 

suggests writing the transformation equations as: 

( ),LpaEE κ+γ ′′=′  (3.8) 

( ),
κ

E
bpp LL

β ′′
+γ ′′=′   (3.9) 

where the two parameters specifying the boost are θ  and ,β ′′  and the 
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dimensionless coefficients a and b are determined by consistency of (3.8) 

and (3.9) with (3.4). Substituting (3.8) and (3.9) in (3.4), it is found that γ ′′  

and β ′′  satisfy the identity: ( ) ( ) ,1
22 ≡β ′′γ ′′−γ ′′  and that β ′′=a  and 

,1=b  so that the complete transformation equations of relativistic 

energy and momentum are: 

 

Figure 1. Geometrical definitions for the transformation of relativistic 

energy-momentum configurations: ( ) ( ).,, pp ′′→ EE  Momenta and 

angles are shown in the plane spanned by the relativistic momentum 

vectors p and .p′  

( ),LpEE κβ ′′+γ ′′=′  (3.10) 

( ),
κ

E
pp LL

β ′′
+γ ′′=′  (3.11) 

.TT pp =′  (3.12) 

On setting ,c=κ  the well-known transformation equations of 
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relativistic energy and momentum are recovered. 

Noting that ,Epκ=β  Ep ′′=β′ κ  and ,Ep ′′′′=β ′′ κ  

multiplying (3.11) by κ  and dividing it by (3.10) gives: 

 ,
cos1

cos
cos

θββ ′′+

β ′′+θβ
=θ′β′  (3.13) 

while dividing (3.12) by (3.10) gives 

 
( )

.
cos1

sin
sin

θββ ′′+γ ′′

θβ
=θ′β′  (3.14) 

Solving (3.13) for β ′′  gives the boost parameter β ′′  in terms of the 

parameters ( )θβ,  and ( )θ′β′,  specifying the configurations: ( )p,E  and 

( ):, p′′E  

 .
coscos1

coscos

θ′θβ′β−

θβ−θ′β′
=β ′′  (3.15) 

The ratio of (3.14) to (3.13) gives the angle θ′  in terms of the boost 

parameter β ′′  and the parameters ( )θβ,  of the original configuration 

( ):, pE  

 
( )

.
cos

sin
tan

β ′′+θβγ ′′

θβ
=θ′  (3.16) 

It is important to contrast the physical meaning of the relations (3.10)-

(3.16), just derived, from the interpretation given to them in conventional 

special relativity theory. The configurations ( )p,E  and ( )p′′,E  are 

different ones of the same object as viewed in the same reference frame. 

The physical meaning of the boost ( )β ′′θ,  is similar to that of an active 

rotation of the position vector of an object in a fixed reference frame. An 

invariant of the latter transformation is the length of the position vector; 

the invariant of the transformation between ( )p,E  and ( )p′′,E  is that 
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defined by Equation (3.1) above. In contrast (3.10) to (3.12) have 

previously been interpreted as giving the energy and momentum ( )p′′,E  

of an object as observed in a frame with boost ( )β ′′−θ,  relative to the 

frame with configuration ( )., pE  In a similar manner, (3.15) has been 

erroneously interpreted as giving the relative velocity, in the rest frame 

of the object with the configuration ( ),, pE  of the object rest frame where 

the configuration is ( )., p′′E  This problem of interpretation will be 

rediscussed below after consideration of the space-time transformation 

equations. 

4. Derivation and Interpretation of the Space-Time 

Lorentz Transformation Equations 

The second member of Equation (2.11) may be written as: 

 ( )[ ] ( )[ ] ( ) .
222

mvvmvm κκκ =γ−γ  (4.1) 

Dividing through by a factor 2mκ  and using the definition of the velocity 

,: dtdsvv ≡  where ds is a spatial displacement of the object, gives: 

 ( ) ( ) κκ =




γ−γ

2
2

dt

ds
vv  (4.2) 

or, on re-arrangement: 

 ( ) ( ) ( )222
τddsdt κκ =−  (4.3) 

where: 

 
( )

.
v

dt
d

γ
≡τ  (4.4) 

Inspection of (4.3) shows that τddt =  when ,0=ds  so that τd  is a time 

interval in the rest frame of the object. Transposition of (4.4) leads to the 
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time dilation (TD) relation: 

( ) τdvdt γ=  (4.5) 

giving the correspondence between a proper time interval τd  (a time 

interval registered by a clock at rest relative to the object) and the time 

interval dt recorded by a clock, relative to which, the object moves at 

speed v. It is important to note that the TD relation has no spatial 

dependence. In consequence, on integrating (4.5) to give the relation 

between clock settings: ( ) ,τvt γ=  an arbitrary pair of clocks 1, 2 with a 

common velocity (and so at rest, at any position, in the same frame) that 

are synchronised so that, at a given instant, 21 ττ =  are also observed to 

be so by a stationary observer: 

( ) ( ) 2211 tvvt =γ=γ= ττ  

- there is no ‘relativity of simultaneity’ effect. 

Space and time intervals along the worldline of a moving clock that 

obeys the TD relation (4.5) satisfy the relation: 

.dtvdtds β== κ  (4.6) 

Combining this equation with (4.4) yields the Lorentz transformation 

equation for time intervals: 

( )
( )

( )
( ) ( ) ( ) .2

2 






 β
−γ=β−γ=

γ

γ
=

γ
=

κ

ds
dtvdtdtv

v

dtv

v

dt
dτ  (4.7) 

Denoting, as is conventional, by S the inertial frame in which the clock 

has speed v, and S’ (with interval of proper time τdtd =′  and 

displacement ds′) that in which it is at rest, then the Lorentz 

transformation for spatial intervals corresponding to (4.7) is: 

 ( ) ( ) 0=−γ=′ vdtdsvsd  (4.8) 
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since the displacement, ,sd ′  of any object at rest in S’ vanishes. Note that 

the factor ( )vγ  on the right side of (4.8) can be replaced by any finite 

constant or function of v without affecting any physical consequence of 

the transformations (4.7) and (4.8). In fact, these equations are physically 

equivalent, respectively, to: 

( )
,

v

dt
d

γ
=τ  (4.9) 

.,0 vdtdssd ==′  (4.10) 

The differential worldline equations in (4.10) are simply the description of 

uniform motion in the frame S, and so are the same in special and 

Galilean relativity. Then the only modification of space-time geometry in 

passing from Galilean to special relativity is the replacement of an 

interval of Newtonian universal time: τddtdT ==  by the transposed 

TD relation (4.9). 

In order to relate the transformation equations for time and space 

intervals (4.7) and (4.8) to those relating observation of a space time event 

in the frame S to the same event as observed in the frame S’, spatial 

coordinate systems must be introduced in these frames to specify the 

positions of events. Choosing Cartesian coordinate systems with arbitrary 

origins but parallel axes, enables space-time coordinates of an event 

( )tzyx ;,,  in S and ( )tzyx ′′′′ ;,,  in S’ to be specified. With the direction 

of the x and x ′  axes parallel to v, the worldline of an object at rest in S’ is 

written in the frame S as: 

( ) ( ) ( ),00 ttvtxtx −+=  (4.11) 

( ) ( ),0tyty =  (4.12) 

( ) ( )0tztz =  (4.13) 

and in the frame S’ as: 
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( ) ( ),0txtx ′=′  (4.14) 

( ) ( ),0tyty ′=′  (4.15) 

( ) ( ).0tztz ′=′  (4.16) 

In virtue of the linearity of the interval transformation Equations, (4.7) 

and (4.8) may be written in terms of the coordinates introduced in (4.11)-

(4.16) as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ,0000 




 −
β

−−γ=′−′=−≡∆ txtxttvtttttt
κ

τττ  (4.17) 

( ) ( ) ( ) ( ) ( ) ( )[ ] 0000 =−−−γ=′−′≡′∆ ttvtxtxvtxtxs  (4.18) 

and (4.9) and (4.10) as: 

( ) ( ) ( ) ( )
( )

,, 0
0

00 ttt
v

tt
tttttt −≡∆

γ

−
=′−′=−≡∆ τττ  (4.19) 

( ) ( ) ( ) ( ) ( ).,0 000 ttvtxtxstxtxs −=−≡∆=′−′≡′∆  (4.20) 

The conventional space-time Lorentz transformation equations for space-

time events, as derived by Einstein [5], to be found in text books on 

special relativity, correspond to a particular choice of coordinate origins 

and clock synchronisation constants in (4.17) and (4.18): 

( ) ( ) ( ) 0,0 0000 ====′ tttxtx τ  

to yield 

( ) ( ) ( ) ( )[ ] ,




 β
−γ==′ txtvttt
κ

τ  (4.21) 

( ) ( ) ( )[ ] 0=−γ=′ vttxvtx  (4.22) 

which, on ignoring the temporal dependence of the coordinates and the 

proper time as well as the '0' =  in the last member of (4.22) gives, on 
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setting ,c=κ  the conventional Lorentz transformations: 

( ) ,




 β
−γ==′ x

c
tvt τ  (4.23) 

( ) [ ].vtxvx −γ=′  (4.24) 

The spurious ‘length contraction’ and ‘relativity of simultaneity’ effects 

arise essentially from the missing conjunction '0' =  on the right side of 

Equation (4.24). Since x ′  specifies the position of an object in a frame in 

which it is rest, it must be independent of time. Since the right side of 

(4.24) vanishes for some value of t ( ),when vxt =  whatever the value 

of x, it must therefore, because the left side of (4.24) is independent of t, 

vanish for all values of t. That is (4.24) is only valid, as an event 

transformation function, when both 0=′x  and .vtx =  

The transformations (4.21) and (4.22) show how an event 

( )0,0 =′=′ tx   in the frame S’ is observed as ( )0,0 == tx  in the frame 

S. This means that clocks at rest placed at the origins of S and S’ are 

synchronised so that ,0=′= tt  when the origins are aligned in the xx ′,  

direction. With the same choice of coordinate origins in the frames S and 

S’ and the same synchronisation condition, but placing an object (on the 

worldline of which the transformed event is to be situated) instead at 

( ) 00 ≠′=′ xx  corresponds to the choice of initialisation constants in the 

general formulas (4.17) and (4.18)4: 

( ) ( ) ( ) 0,0 0000 ==≠=′ tttxtx τ  

to give the transformation equations: 

                                                           
4
Note that the freedom to choose, independently, coordinate origins in the frames S and S’ without 

changing any physical predictions (translational invariance) always allows the choice ( ) ( )00 xx =′  to 

specify the initial conditions of the problem. 
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( ) ( ) ( ) ( ) ( )[ ] ,0 




 −
β

−γ=−′ xtxtvttt
κ

τ  (4.25) 

( ) ( ) ( ) ( ) ( )[ ] 000 =−−γ=−′ vtxtxvxtx  (4.26) 

or, equivalently: 

( ) ( )
( )

,
v

t
ttt

γ
==′ τ  (4.27) 

( ) ( ) ( ) ( ) .0,00 vtxtxxtx =−=−′  (4.28) 

Comparing (4.26) with the conventional space Lorentz transformation 

(4.24), it can be seen that the latter corresponds to the choice ( ) .00 =x  

Since ( ) ( )0xtx =′  for all values of t, it can again be seen that (4.24) can 

only be a valid event transformation if .0=′x  The distance, in S’, 

between an object at the origin of S’ and one at ( )0xx =′  is ( ).0x  As the 

objects are at rest in S’ this separation, ,x ′∆  is time-independent. Since 

the world line of an object at the origin of S’ is, according to (4.22), 

( ) ,vttx =  it follows from (4.28) and (4.22) that, for all values of t: 

( )[ ] [ ] ( ) .00,0, xxxtxxxtxx ′∆===′−=′≡∆   (4.29) 

There is therefore no ‘length contraction’ effect. See refs. [17, 18, 19, 20, 

21, 22, 23] for an explanation of how the spurious and correlated ‘length 

contraction’ and ‘relativity of simultaneity’ effects arise from 

manipulation of the conventional Lorentz transformation equations (4.23) 

and (4.24), under the invalid assumption that 0≠′x  in (4.24), so that 

these equations are erroneously assumed to be valid for all values ( )tx,  

and ( )., tx ′′  
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5. Relativistic Space-Time Geometry is Distinct  

from Relativistic Kinematics 

Consider observation of a point on the worldline of a moving object in 

two inertial frames. Contrary to the usual convention as employed in the 

previous section, and in order to facilitate direct comparison with the 

kinematical transformations considered in Section 3, the inertial frame S 

is assumed to move uniformly with speed v ′′  along the x ′ -axis of the 

frame S’. As shown in Figure 2, the Cartesian coordinate axes xx ′,  and 

yy ′,  are assumed to be parallel. In the following, without any loss of 

generality, only motion in the yx -  plane is considered. At time 

,0=′= tt  the origins O and O’ of the coordinate systems are coincident. 

Starting at this instant, an object moves in a straight line at speed v from 

O to P in S [Figure 2a)] and at speed v’ from O’ to P’ in S’. [Figure 2b)]. 

The postulates to be used in the following space-time calculation in 

order to relate velocities and angles observed in one frame to those 

observed in another are: 

(i) The definition of uniform velocity: 

.
timeelapsed

objectofntdisplaceme
velocity

t

s
v ≡=≡  (5.1) 
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Figure 2. Space-time geometry of the world-lines of a uniformly-moving 

object in different inertial frames: (a) frame S, world-line segment OP, 

speed v; (b) frame S’, world-line segment O’P’, speed v′. The frame S 

moves with speed v ′′  in S’ along the common xx ′,  axis. See text for 

discussion. 
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(ii) The TD relation (4.5) for elapsed time intervals in the frames S 

and S’ defined above: 

 ( ) .tvtt ′′γ≡γ ′′=′  (5.2) 

Considering the xx ′, -components of the displacement, inspection of 

Figure 2b gives: 

.coscoscoscos θ+′′′=θ+′′′=θ′′′=θ′′ vttvstvtvs  (5.3) 

Note the absence, as discussed in the previous section, of any ‘length 

contraction’ effect in Equation (5.3). Using (5.2) and re-arranging gives 

the transformation formula for xx ′, -components of the velocities v and 

:v′  

( ) ( ).coscos vvvvvv xx ′′−′γ ′′=′′−θ′′γ ′′=θ= ′  (5.4) 

For the yy ′- -components of the displacement: 

θ=θ=θ′′′=θ′′ sinsinsinsin vtstvs  (5.5) 

so that application of (5.2) gives: 

 .sinsin yy vvvv ′′γ ′′=θ′′γ ′′=θ=  (5.6) 

Denoting the relative velocity of the moving object and O as u in S and u′  

in S’, so that 

,ˆˆ
yx vjvi +== vu  (5.7) 

( ) ,ˆˆ
yx vjvvi ′′ ′+′′−′=′u  (5.8) 

where ji ˆ,ˆ  are unit vectors parallel to the ( ) ( )yyxx ′′ ,,,  axes, (5.4) and 

(5.6) may be combined to give a simple vector equation for the 

transformation of relative velocities: 
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.uu ′γ ′′=  (5.9) 

Relations derived by combining Equations (5.4) and (5.6) are now 

compared with similar ones for transformations of velocity and angles as 

derived in Section 2 above using relativistic kinematics. The former set of 

relations are denoted by ‘RSTG’, for ‘relativistic space-time geometry’ the 

latter by ‘RKIN’ for ‘relativistic kinematics’. Transformed quantities in 

RSTG relations are distinguished by a tilde accent, those in RKIN 

relations with a circumflex accent. For ease of comparison, all velocities 

are scaled by the factor .1 κ  

● velocity transformation formulas 

( ) ( )RSTG,
~

,
~

β ′′−β′γ ′′=ββ ′′+
γ ′′

β
=β′ ′′ xx

x
x  (5.10) 

( )RKIN,
1

ˆ,
1

ˆ

x

x
x

x

x
x

′

′
′ β′β ′′−

β ′′−β′
=β

ββ ′′+

β ′′+β
=β′  (5.11) 

( )RSTG,
~

,
~

yy
y

y ′′ β′γ ′′=β
γ ′′

β
=β′  (5.12) 

( ) ( )
( )RKIN.

1
ˆ,

1
ˆ

x

y
y

x

y
y

′

′
′ β′β ′′−γ ′′

β′
=β

ββ ′′+γ ′′

β
=β′  (5.13) 

● angle transformation formulas 

( )RSTG,
cos

sin~
tan,

cos

sin~
tan

β ′′−θ′β′

θ′β′
=θ

β ′′γ ′′+θβ

θβ
=θ′  (5.14) 

( ) ( )
( )RKIN.

cos

sinˆtan,
cos

sinˆtan
β ′′−θ′β′γ ′′

θ′β′
=θ

β ′′+θβγ ′′

θβ
=θ′  (5.15) 

In these formulas, the unaccented velocity symbols correspond to initial 

conditions in the space-time experiments described, i.e., to velocities of 

objects created or placed in certain reference frames (the frames S or S’ in 
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Equations (5.10)-(5.15)). All such velocities therefore respect the 

condition: 11 ≤β≤−  imposed by Equation (2.9) above. The same 

condition is seen to be respected by the transformed velocities β̂  in the 

RKIN formulas. Since, however, the velocities β
~

 in the RSTG formulas 

are, by definition relative velocities of different objects in the same 

reference frame they are not subject to the constraint imposed by 

Equation (2.9). It fact it is found that: 

,
~

,2
~

2 ∞≤β≤∞−≤β′≤− ′ xx  (5.16) 

.
~

0,1
~

0 ∞≤β≤≤β′≤ ′ yy  (5.17) 

The limits on x′β′
~

 are found by differentiating the first formula in (5.10) 

w.r.t. ,β ′′  to find the maximum value of the function of β ′′  on the right 

side of this equation. It is found to occur when 1=βx  and .21=β ′′  

Note that with the coordinate axes shown in Figure 2, yβ  and y′β′  are 

positive quantities. 

Neglecting terms of ( )2O β  and higher in (5.10)-(5.15) (that is in 

Galilean relativity) gives identical space-time-geometrical and 

kinematical transformation formulas. Unlike the RKIN formulas the 

RSTG formulas and their inverses are not form-invariant. The RSTG 

formula (5.10) does not respect the ‘Reciprocity Principle’ [9] that holds in 

Galilean relativity. Setting 0=β′ ′x  in (5.11) gives ,ˆ β ′′−=βx  i.e., the 

origin of S’ moves with velocity β ′′−  in the x-direction when (see Figure 2) 

the origin of S moves with velocity β ′′  in the x ′ -direction. Setting 0=β′ ′x  

in the RSTG formula, (5.10) gives instead .
~

β ′′γ ′′−=βx  This violates the 

Reciprocity Principle that states that: ‘If the velocity of B as observed by 

A is u then the velocity of A as observed by B is −u’. 
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As demonstrated in the appendix, the RSTG formulas, unlike the 

RKIN ones, do not constitute a group. 

The RSTG transformation formulas of Equation (5.10) for the case 

0=θ′=θ  have previously been derived in the context of the analysis of 

a circular Sagnac interferometer by Post [27] and Klauber [28]. Setting 

1,0 =β′=θ′=θ ′x  in the RKIN formula (5.11) gives ,1=βx  so 

predicting in accordance with the tacit hypothesis made in Einstein’s 

original 1905 paper on special relativity [5] that: ‘the speed of light is the 

same in all inertial frames’. The incompatiblity of this hypothesis with 

the interference effect observed by Sagnac [29], that is correctly predicted 

by the RSTG formulas in (5.10) (or by their ( )βO  approximations) was 

already pointed out in 1937 by Dufour and Prunier [30], as well as, more 

recently, by Selleri [31], Klauber [28] and the present author [32]. 

According to the argument given at the end of Section 3 of the present 

paper, all particles with rest energy much smaller than their actual 

energy have a fixed speed c in any inertial frame - apparently therefore 

confirming the correctness of Einstein’s second postulate of special 

relativity. How now is the apparent paradox that the latter is inconsistent 

with the results of Sagnac’s experiment to be resolved? The answer lies in 

careful consideration of the exact operational definitions of the various 

symbols appearing in the transformation Equations (5.10)-(5.15). Since 

the unaccented velocities are all those of ponderable or massless objects 

either created or placed in one of the inertial frames S or S’, they are 

subject to the restriction of Equation (2.9): .11 ≤β≤−  However, in the 

RSTG equations the velocities β
~

 and β′
~

 are, in all cases, relative 

velocities of two distinct objects in the same inertial frame as compared to 

the unaccented velocities which are instead ‘frame velocities’, i.e., the 

velocity of a single object in an inertial frame as fixed by the initial 

conditions of the space-time experiment under consideration. For example, 



J. H. FIELD 

 

216 

in the second equation in (5.10), β ′′−β′ ′x  is the x ′  component of the 

relative velocity of the origin O of the frame S and the object considered 

in Figure 2, in the frame S’. The same relative velocity, as observed in the 

frame S is .
~

xβ  The RSTG equations do relate observations of relative 

velocities of the same two objects in different frames, in the same 

experiment. In contrast, as is clear from the considerations of Section 3 

above, the RKIN equations instead relate different kinematical 

configurations ( )p,E  and ( ),, p′′E  in the same frame, of a single object, 

via the boost parameters ( )., β ′′θ  The application of Newton’s second law 

in the derivation of Equation (3.1) shows that the two configurations are 

both specified in the same reference frame: the frame in which this law is 

applied in Equation (2.5). The situation is analogous to the active rotation 

of a spatial vector r into another vector r′ of the same length, by rotation 

through an angle .θ  The invariant of the transformation is: 

rrrr ′⋅′=⋅  

to be compared with the invariant relation (3.1) for relativistic energy and 

momentum. 

The experimental correctness of the RSTG equations and the 

inapplicability of the RKIN ones, for the case of photon propagation in the 

vicinity of the Earth is vouchsafed not only by Sagnac interferometers but 

also by GPS operation [33] and time transfer by microwave signals via a 

satellite in low-Earth orbit [34, 35, 36]. It is a prediction of the 

Schwarzschild metric equation of General Relativity [37, 38] that the ECI 

(Earth Centered Inertial) frame5 is a preferred one for the propagation of 

light at speeds close to c in the vicinity of the Earth. The velocity of light 

signals in the frame of a receiver fixed on the surface of the Earth, and 

                                                           
5This is a frame co-moving with the centroid of the Earth with axes pointing in fixed directions relative to 

the Celestial Sphere. 
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therefore rotating in the ECI frame, is given by the RSTG not the RKIN 

velocity transformations. Indeed, in GPS operation the Galilean (order 

cv ) approximation to the RSTG formulas is used [33]. The possibility to 

further test the RSTG predictions in long-baseline neutrino beams has 

been discussed in a recently published paper [39]. 

To give a concrete example of the very different predictions for space-

time effects of the RSTG and RKIN velocity transformations consider the 

case of two protons colliding, head on, in the LHC collider at CERN. 

Suppose that they are each, initially, at a distance of 5m from their 

collision point. Each one is assumed to have an energy, as during the 

experimental program of 2012, of 4 TeV, corresponding to a velocity in the 

laboratory such that .105.51 8−×−=cv  The relative velocity of the two 

protons in the laboratory frame S is then ( ).105.512 8−×−c  According to 

Equation (5.10), the velocity of the left-moving proton in the rest frame, 

S’, of the right-moving one is: 

( ) ( ) ccv 8528105.512 8 ≅×−γ −  

and since length intervals are invariant, the initial spatial separation of 

the protons, in both S and S’, is 10m. In the laboratory frame, the time 

interval [ ( )] ns16105.515 8 ≅×−=∆ −cmt  elapses until the protons 

collide. The corresponding time interval in the frame S’, according to the 

TD relation is ( ) ,ps75.3=γ∆=′∆ vtt  in agreement with the relative 

velocity and spatial separation in this frame just quoted. Using instead 

the RKIN formula (5.11) to calculate the relative velocity of the two 

protons in the frame S’ gives ( ).1035.11 15−×−c  According to the TD 

relation this corresponds to an initial separation mm13.1=′∆≅ tc  of the 

colliding protons in the frame S’, instead of 10 m. Finally it may be noted 

that, if a conceptual ‘ruler’ of length L′ in the frame S’, is used to measure 

the initial separation of the protons in this frame, then according to the 
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length contraction effect of conventional SRT, the initial separation of the 

protons in the frame S which is, by hypothesis, 10 m, must be equal to 

( )vL γ′  so that ,km6.42m104264 =×=′L  to be compared with 

mm13.1=′L  as required by TD and the RKIN velocity transformation 

formula! So consistent predictions for observations in the frames S and S’ 

are obtained by application of the RSTG velocity transformations, 

whereas contradictory predictions follow from application of the RKIN 

transformation formulas, time dilation and the conventional length 

contraction effect. 
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Appendix 

 

Figure 3. Inertial frames S,S,S ′′′′′′  move parallel to the x axis of the 

frame S. The velocity of S′ relative to S in S, v, of S ′′  relative to S′ in 

,,S v′′  and of S ′′′  relative to S ′′  in v ′′′′ ,S  (indicated by bold arrows) are 

fixed initial conditions. Application of the RSTG transformation formulas 

gives velocities wu ~,~  in S, while application of the RKIN formulas gives 

velocities wu ˆ,ˆ  in S and r′ˆ  in .S′  See text for discussion. 

In order to discuss the group properties and physical interpretation of 

the RSTG and RKIN velocity transformation formulas in Equation (5.10) 



J. H. FIELD 

 

220 

and (5.11) it is convenient to set 0=θ′=θ  (velocities parallel to the 

boost direction) and consider a nested series of inertial frames: 

S,S,SS, ′′′′′′  as shown in Figure 3. The relative velocities vv ′,  and, v ′′  of 

SS,SS ′′′′′  and ,SS ′′′′′  respectively, are fixed initial conditions and the 

velocities u~  and û  of S ′′  relative to S in the frame S or w~  and ŵ  of S ′′′  

relative to S, are calculated according to the first formula in (5.10) (for u~  

and w~ ) or the first formula in (5.11) (for û  and ŵ ). This gives, in an 

evident notation: 

( )RKIN.
ˆ1

ˆ
ˆ,

1
ˆ

vu

vu
w

vv

vv
u

′′

′′

′

′

ββ+

β+β
=β

ββ+

β+β
=β  (A.1) 

Substituting uβ̂  from the first of these equations in the second one it is 

found that 

,
ˆ1

ˆ
ˆ

rv

rv
w

′

′

ββ+

β+β
=β  (A.2) 

where 

.
1

ˆ

vv

vv
r

′′′

′′′
′ ββ+

β+β
=β  (A.3) 

Comparing (A.1)-(A.3) shows that successive applications of the 

transformation relations (substituting uβ̂  in the formula for wβ̂  in (A.1)) 

gives the form-invariant equation for ,ˆ
wβ  again in terms of velocities in 

( )vβS  and ( ).ˆS r′β′  The RKIN transformations are therefore form-

invariant. The transformations in (A.1) can be formally written in a more 

symmetrical manner as [10]: 

 0=βββ−β+β−β CBACBA  (A.4) 

equivalent to the three transformations: 
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.
1

,
1

,
1 AB

AB
C

AC

AC
B

CB

CB
A ββ−

β−β
=β

ββ+

β+β
=β

ββ−

β−β
=β  (A-5) 

Setting 0=βC  gives the identity operator BA β=β  while substituting 

the equation for Bβ  in that for Aβ  recovers Aβ  independently of the 

value of .Cβ  The second transformation in (A.5) is therefore the inverse of 

the first. The transformations in (A.4) or (A.5) are therefore form 

invariant and contain both identity and inverse operations, so that they 

constitute a group. 

Applying the initial conditions specified above to the first RSTG 

transformation in (5.10) gives: 

 
( )

( )RSTG.
~~

,
~

u
v

wv
v

u v
β+

γ ′′

β
=ββ+

γ

β
=β ′′′  (A.6) 

The operational definition of uβ
~

 is the velocity of the frame S ′′  observed 

in S. The quantity γ ′′β ′′v  is the velocity of the frame S ′′′  relative to S ′′  

as observed in the frame S. The velocity, v ′′β  of S ′′′  in ,S ′′  as fixed by the 

initial conditions, is scaled by the TD factor γ ′′  between the frames S ′′  

and .:S tt ′′∆γ ′′=∆ 6 The TD factor γ ′′  is given, in terms of the fixed 

velocities v and v′  by the transformation equation: 

( ) ( ) ( )[ ].0 vvvV vv ′γββ+′γγ=γ ′′≡′′ ′  (A.7) 

As can be seen in Figure 3, this is the Lorentz transformation of the 

temporal component of the dimensionless 4-vector velocity of the frame 

( ) ( ) ( )( ),;;:S 0 vvVV v ′γβ′γ≡′′′′ ′  between the frames S’ and S. The 

transformation formula (A.7) follows from that of relativistic energy, 

(3.10), on dividing through by the factor .mκ  Combining (A.6) and (A.7) 

                                                           
6
Note the different meaning of the symbol γ ′′  here as compared to that in Equation (5.2). 
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the observed velocity, wβ
~

 of the frame ,S ′′′  in the frame S, in terms of the 

initial velocities vv ′,  and v ′′  is: 

( ) v
vv

w v
β+

γ

β
+

γ ′′

β
=β ′′′~

 

( ) ( ) [ ] ( )
.

1 v
v

vv

v

vvv
β+

γ

β
+

ββ+′γγ

β
= ′

′

′′  (A.8) 

Comparison of this formula with that for uβ
~

 in (A.6) shows that RSTG 

velocity transformations are not form-invariant. Furthermore, applying 

first the transformation giving uβ
~

 in (A.6), and then the same 

transformation with the replacement: ,vv −→  gives 

( ) ( ) vv
v

vv
′

′ β≠






 −
γ

β+
γ

β
1

1
2

 (A.9) 

which, unlike the same sequence of operations for the RKIN 

transformation giving uβ̂  in (A.1), does not yield the inverse 

transformation. Since the left side of (A.9) does reduce to v′β  in the 

Galilean limit ( ) ,1→γ v  the breakdown of the group property evident in 

(A.8) and (A.9) is a purely relativistic, ( ),O 2β  effect. 

Defining: 

( )
γ ′′

−γ ′′
≡β ′′

1
2

 (A.10) 

and using (A.7) to eliminate γ ′′  on the right side of this equation it is 

found that 

 u
vv

vv β=
ββ+

β+β
=β ′′

′

′ ˆ
1

 (A.11) 
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which enables (A.8) to be written as: 

 
( ) ( )

.
ˆ

~
v

vv
w vu

β+
γ

β
+

γ

β
=β ′′′  (A.12) 

It is then seen that the RKIN velocity transformation formula in (A.1) 

enables calculation of the TD factor γ ′′  that appears in the RSTG 

transformation which correctly describes velocities observed in different 

frames in the same space-time experiment. This is a correct space-time 

physics (not kinematical) application of the RKIN velocity 

transformation. 

Dividing the relativistic momentum transformation formula through 

by the factor κm  yields the Lorentz transformation of the spatial 

component of the 4-vector velocity ( ):;0 VV ′′  

 ( ) ( ) ( )[ ].vvvV vv ′γβ+β′γγ=β ′′γ ′′≡′′ ′  (A.13) 

The ratio of Equation (A.13) to (A.7) recovers Equation (A.11) above. In 

fact Equation (A.7), (A.11) and (A.13) are algebraically equivalent: if any 

one of the equations is postulated then the remaining two may be derived 

by purely algebraical manipulation. 

It is instructive to compare the Lorentz transformation equations for 

the 4-vector velocity ( ),;0 VV ′′  (A.7) and (A.13): 

( ) [ ],00 VVvV v ′β+′γ=′′  (A.14) 

( ) [ ]0VVvV v ′β+′γ=′′  (A.15) 

with the inverse of the conventional space-time LT in (4.23) and (4.24): 

( ) [ ],00 xxvx v ′β+′γ=  (A.16) 

( ) [ ],0xxvx v ′β+′γ=  (A.17) 
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where tx κ≡0  and .0 tx ′≡′ κ  Although the right sides of (A.14) and 

(A.16) or (A.15) and (A.17) are formally identical, the physical meanings 

of the equations are completely different. Quantities in three inertial 

frames, SS, ′  and S ′′  are connected by Equation (A.14) and (A.15), 

quantities in only two, S and S′  by (A.16) and (A.17). Since x ′  is, by 

definition, time-independent, then, as explained in Section 4 above, it 

necessarily vanishes. In contrast in (A.14) and (A.15) the vanishing of V ′  

requires 0=′v  so that the frames S′  and S ′′  are identical. The space-

time transformation Equations (A.16) and (A.17), for ,0=′x  are 

equivalent to the equations: 

( ) ( )TD,00 xvx ′γ=  (A.18) 

( )SinWorldline,0 ′=′x  (A.19) 

( ) ( ),SinWorldline00 xxvx vv β=′βγ=  (A.20) 

whereas setting 0=′V  in (A.16) and (A.17) corresponds to: 

( ) ( ) .,00 vvVVvVV βγ=′→′′γ=′→′′  

The choice 0=′x  on (A.16) and (A.17) corresponds only to a particular 

choice of co-ordinate system and leaves the physical content of the 

equations unchanged. On the other hand, setting 0=′V  in (A.14) and 

(A.15) changes the physical meaning of the equations - it actually 

destroys the transformation information relating quantities in the frames 

S, S’ and S” that they contain. It can be seen here that equations with an 

identical mathematical structure can have a widely disparate physical 

significance. 
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