EXPANDING COUNTERPART OF THE HARDY-ROGERS MAPPING THEOREM IN CONE HEPTAGONAL METRIC SPACE

CLEMENT BOATENG AMPADU

31 Carrolton Road Boston, MA 02132-6303 USA e-mail: drampadu@hotmail.com

Abstract

Very recently, we introduced a concept of Cone Heptagonal Metric Space and obtained the Chatterjea Mapping Theorem in this setting [1]. In the present paper, we obtain the expanding counterpart of the Hardy-Rogers Mapping Theorem [2, Theorem 1(a)].

1. Introduction

Let (X, d) be a metric space. Recall Hardy and Rogers $[2]$ that a map $T: X \mapsto X$ is called a Hardy-Rogers contraction if

 $d(Tx, Ty) \leq ad(x, Tx) + bd(y, Ty) + cd(x, Ty) + ed(y, Tx) + fd(x, y)$

for all $x, y \in X$, where $a, b, c, e, f \ge 0$ and satisfy $\alpha := a + b + c + e + f < 1$.

Remark 1.1. If $\alpha = 1$ and

 $d(Tx, Ty) < ad(x, Tx) + bd(y, Ty) + cd(x, Ty) + ed(y, Tx) + fd(x, y),$

Keywords and phrases: cone heptagonal metric space, fixed point, weakly compatible mapping, expansion mapping.

2010 Mathematics Subject Classification: 47H10, 54H25.

Received December 18, 2016; Accepted February 18, 2017

© 2017 Fundamental Research and Development International

then we say $T: X \mapsto X$ is Hardy-Rogers non-expansive. On the other hand if $\alpha > 1$ and

$$
d(Tx, Ty) \ge ad(x, Tx) + bd(y, Ty) + cd(x, Ty) + ed(y, Tx) + fd(x, y),
$$

then we say $T: X \mapsto X$ is Hardy-Rogers expansive.

In Hardy and Rogers [2, Theorem 1], the authors proved under certain conditions on (X, d) that if $T : X \mapsto X$ is a Hardy-Rogers contraction or Hardy-Rogers non-expansive, then *T* has a unique fixed point.

In the present paper, we consider (X, d) a cone heptagonal metric space, and show under certain conditions on (X, d) , that if $T : X \mapsto X$ is Hardy-Rogers expansive, then *T* has a unique fixed point.

At first, we obtain a theorem related to the following, and obtain the main result as a Corollary.

Definition 1.2. Let (X, d) be a metric space, and $T, g: X \mapsto X$ be two selfmaps on *X*. We will say *T* is Hardy-Rogers expansive with respect to *g* if

$$
d(Tx, Ty) \ge ad(gx, Tx) + bd(gy, Ty) + cd(gx, Ty) + ed(gy, Tx) + fd(gx, gy)
$$

for all $x, y \in X$, where $a, b, c, e, f \ge 0$ and satisfy $\alpha := a + b + c + e + f > 1$.

Remark 1.3. Note that if *g* is the identity in the above, then we simply refer to *T* as Hardy-Rogers expansive.

This paper is organized as follows. Section 2 gives some preliminary ideas that would be useful in the sequel. By way of Example 2.9, we showed in [1] that the notion of cone heptagonal metric space is a proper extension of cone hexagonal metric space. Example 2.10 and Example 2.11 also show that the notion of cone heptagonal metric space is a proper extension of cone hexagonal metric space. The expanding counterpart of the Hardy-Rogers mapping theorem, Hardy and Rogers [2, Theorem 1(a)] is obtained as Corollary 3.2. Finally we illustrate Theorem 3.1 with Example 3.3.

2. Preliminaries

Notation 2.1. *E* will denote a real Banach space.

Definition 2.2. $P \subset E$ will be called a cone iff

- (a) *P* is closed, nonempty, and $P \neq \{0\}$,
- (b) $a, b \in \mathbb{R}, a, b \ge 0$, and $x, y \in P$ implies $ax + by \in P$,
- (c) $x \in P$ and $-x \in P$ implies $x = 0$.

Notation 2.3. \leq will denote a partial ordering with respect to *P* and will be defined by $x \le y$ iff $y - x \in P$. We shall write $x < y$ to indicate that $x \le y$ but $x \neq y$, while $x \ll y$ will stand for $y - x \in \text{int}(P)$, where $\text{int}(P)$ denotes the interior of *P*.

Definition 2.4. A cone *P* is called normal if there is a number $k > 0$ such that for all $x, y \in E$, the inequality $0 \le x \le y$ implies that $||x|| \le k||y||$. The least positive number *k* satisfying $||x|| \le k||y||$ is called the normal constant of *P*.

Remark 2.5. In this paper, we always assume that *E* is a real Banach space and *P* is a solid cone in *E* with $int(P) \neq \Phi$ and \leq is a partial ordering with respect to *P*.

Definition 2.6. Let *X* be a nonempty set. Suppose the mapping $d : X \times X \mapsto E$ satisfies

(a) $0 < d(x, y)$ for all $x, y \in X$ and $d(x, y) = 0$ iff $x = y$,

(b)
$$
d(x, y) = d(y, x)
$$
 for all $x, y \in X$,

(c)
$$
d(x, y) \le d(x, z) + d(z, y)
$$
 for all $x, y, z \in X$.

Then *d* is called a cone metric on *X*, and (*X* , *d*) is called a cone metric space.

Remark 2.7. If we replace (c) of the previous definition with the following, which we call the heptagonal property, $d(x, y) \leq d(x, z) + d(z, w) + d(w, u) +$ $d(u, v) + d(v, t) + d(t, y)$ for all *x*, *y*, *z*, *w*, *u*, *v*, $t \in X$ and for all distinct points *z*, *w*, *u*, *v*, $t \in X - \{x, y\}$, then we say *d* is a cone heptagonal metric on *X*, and we call (X, d) a cone heptagonal metric space.

Remark 2.8. A metric space is a cone metric space with $E = \mathbb{R}$ and $P = [0, +\infty).$

```
Example 2.9. Let X = \{r, s, t, u, v, w, k\}, E = \mathbb{R}^2 and P = \{(x, y) : x, y\}\geq 0} be a cone in E. Define d : X \times X \mapsto E by
d(x, x) = 0 for all x \in X,
d(r, s) = d(s, r) = (6, 12),d(r, t) = d(r, u) = d(r, v) = d(r, w) = d(s, t) = d(s, u) = d(s, v) = d(s, w) = d(t, u) =d(t, v) = d(t, w) = d(u, v) = d(u, w) = d(v, w) = d(t, r) = d(u, r) = d(v, r) = d(w, r) =d(t, s) = d(u, s) = d(v, s) = d(w, s) = d(u, t) = d(v, t) = d(w, t) = d(v, u) = d(w, u) =d(w, v) = (1, 2),d(k, r) = d(k, s) = d(k, t) = d(k, u) = d(k, v) = d(k, w) = d(r, k) = d(s, k) = d(t, k) =d(u, k) = d(v, k) = d(w, k) = (5, 10).
```
Then it is easy to see that (X, d) is a cone heptagonal metric space, but it is not a cone hexagonal metric space, since it lacks the hexagonal property of Auwalu and Hincal [3] since $(6, 12) = d(r, s) > d(r, t) + d(t, u) + d(u, v) + d(v, w) + d(w, s) =$ $(1, 2) + (1, 2) + (1, 2) + (1, 2) + (1, 2) + (1, 2) = (5, 10)$ as $(6, 12) - (5, 10) = (1, 2) \in P$.

Example 2.10. Let $X = \mathbb{R}$, $E = \mathbb{R}^2$ and $P = \{(x, y) : x, y \ge 0\}$. Define $d: X \times X \mapsto E$ as follows

$$
d(x, y) = \begin{cases} 0 & \text{if } x = y, \\ (6a, 6) & \text{if } x \text{ and } y \text{ are both in } \{1, 2\}, x \neq y, \\ (a, 1) & \text{if } x \text{ and } y \text{ are not both at time in } \{1, 2\}, x \neq y, \end{cases}
$$

where $a > 0$ is a constant. Then (X, d) is a cone heptagonal metric space, but not a cone hexagonal metric space. Observe that, $(6a, 6) = d(1, 2) > d(1, 3) + d(3, 4)$ $+d(4,5) + d(5,6) + d(6,1) = (5a,5)$, thus the hexagonal property of Auwalu and Hincal [3] does not hold.

Example 2.11. Let $X = \mathbb{N}$, $E = \mathbb{C}_{\mathbb{R}}^1[0, 1]$ with $||x|| = ||x||_{\infty} + ||x'||_{\infty}$ and

 $P = \{x \in E : x(t) \ge 0\}$ for $t \in [0, 1]$. Then this cone is not normal. Define $d: X \times X \mapsto E$ as follows

$$
d(x, y) = \begin{cases} 0 & \text{if } x = y, \\ 6e^t & \text{if } x \text{ and } y \text{ are both in } \{1, 2\}, x \neq y, \\ e^t & \text{if } x \text{ and } y \text{ are not both at time in } \{1, 2\}, x \neq y. \end{cases}
$$

Then (X, d) is a cone heptagonal metric space, but not a cone hexagonal metric space, since it lacks the hexagonal property of Auwalu and Hincal [3].

Definition 2.12. Let (X, d) be a cone heptagonal metric space, and $\{x_n\}$ be a sequence in *X* and $x \in X$. If for every $c \in E$ with $0 \ll c$, there is a natural number *N* such that for all $n > N$, $d(x_n, x) \ll c$, then $\{x_n\}$ is said to be convergent to *x* and *x* is the limit of $\{x_n\}$. We sometimes write $\lim_{n\to\infty} x_n = x$.

Definition 2.13. Let (X, d) be a cone heptagonal metric space, and $\{x_n\}$ be a sequence in *X*. If for every $c \in E$ with $0 \ll c$, there is a natural number *N* such that for all *n*, $m > N$, $d(x_n, x_m) \ll c$, then $\{x_n\}$ is said to be a Cauchy sequence in *X*.

Definition 2.14. Let (X, d) be a cone heptagonal metric space. If every Cauchy sequence in *X* converges to a point in *X*, then *X* is called a complete cone heptagonal metric space.

Definition 2.15. Let *f* and *g* be two self-maps of a nonempty set *X*. If $fx = gx = y$ for some $x \in X$, then *x* is called a coincidence point of *f* and *g* and *y* is called the point of coincidence of *f* and *g*.

Definition 2.16. Two self-maps *f* and *g* of a nonempty set *X* are said to be weakly compatible if they commute at their coincidence points, that is, $fx = gx$ implies that *fgx* = *gfx*.

In the sequel, we will need the following from M. Abbas and G. Jungck [4].

Proposition 2.17. *If f and g are weakly compatible self*-*maps of a nonempty set X* such that they have a unique point of coincidence, that is, $fx = gx = y$, then y is *the unique common fixed point of f and g*.

In the sequel, we will need the following from Malhotra et al. [5].

Remark 2.18. Let *P* be a cone in a real Banach space *E* and let $a, b, c \in E$, then

(a) If $a \leq b$ and $b \ll c$, then $a \ll c$,

(b) If $a \ll b$ and $b \ll c$, then $a \ll c$,

(c) If $0 \le u \ll c$, for each $c \in \text{int}(P)$, then $u = 0$,

(d) If $c \in \text{int}(P)$ and $a_n \to 0$, then there exists $n_0 \in \mathbb{N}$ such that for all $n > n_0$, we have $a_n \ll c$,

(e) If $0 \le a_n \le b_n$, for each *n* and $a_n \to a$, $b_n \to b$, then $a \le b$,

(f) If $a \leq \lambda a$, where $0 < \lambda < 1$, then $a = 0$.

3. Main Results

Theorem 3.1. *Let* (*X* , *d*) *be a complete cone heptagonal metric space and let* $T, g: X \mapsto X$ *satisfy*

 $d(Tx, Ty) \ge ad(gx, Tx) + bd(gy, Ty) + cd(gx, Ty) + ed(gy, Tx) + fd(gx, gy)$

for all $x, y \in X$, where $a, b, c, e, f \ge 0$ and satisfy $a + b + 2e + f > 1$, $f + c + e > 1$, $f > 1$, $b + c < 1$, and $a + e < 1$. If $g(X) \subseteq T(X)$ and either $T(X)$ or $g(X)$ is complete, then *T* and *g* have a unique point of coincidence in *X*. If *T* and *g* are weakly compatible, then they have a unique common fixed point in *X*.

Proof. Let $x_0 \in X$, since $g(X) \subseteq T(X)$, we can choose $x_1 \in X$ such that $gx_0 = Tx_1$. Continuing this process we can construct a sequence $\{x_n\}$ in *X* such that $Tx_n = gx_{n-1}$, for all $n \ge 1$. If $gx_{n-1} = gx_n$ for some $n \ge 1$, then $Tx_n = gx_n$ and *x_n* is a coincidence point of *T* and *g*. Hence assume that $x_n ≠ x_{n-1}$ for all $n ≥ 1$. Now observe that

> $d(gx_{n-1}, gx_n) = d(Tx_n, Tx_{n+1})$ $\geq ad(gx_n, Tx_n) + bd(gx_{n+1}, Tx_{n+1}) + cd(gx_n, Tx_{n+1}) + ed(gx_{n+1}, Tx_n)$

$$
+fd(gx_n, gx_{n+1})
$$

\n
$$
\ge ad(gx_n, gx_{n-1}) + bd(gx_{n+1}, gx_n) + cd(gx_n, gx_n) + ed(gx_{n+1}, gx_{n-1})
$$

\n
$$
+fd(gx_n, gx_{n+1})
$$

\n
$$
\ge ad(gx_n, gx_{n-1}) + (b+f)d(gx_{n+1}, gx_n) + ed(gx_{n+1}, gx_{n-1}).
$$

From the above, one has,

$$
(b+f)d(gx_{n+1}, gx_n) \le (1-a)d(gx_{n-1}, gx_n) - ed(gx_{n+1}, gx_{n-1}).
$$

Now using the triangle inequality in the expression immediately above, one deduces that

$$
(b + f + e)d(gx_{n+1}, gx_n) \le (1 - a - e)d(gx_{n-1}, gx_n).
$$

Thus, it follows that $d(gx_{n+1}, gx_n) \leq \gamma d(gx_{n-1}, gx_n)$, where, $\gamma := \frac{1}{b+f+e} \in$ $\gamma := \frac{1-a-e}{b+f+e}$ $:=\frac{1-a-e}{1+c}$

(0, 1), and by induction, we have $d (gx_{n+1}, gx_n) \leq \gamma^n d (gx_0, gx_1)$. Now observe that

$$
d(gx_{n-1}, gx_{n+1}) = d(Tx_n, Tx_{n+2})
$$

\n
$$
\geq ad(gx_n, Tx_n) + bd(gx_{n+2}, Tx_{n+2}) + cd(gx_n, Tx_{n+2}) + ed(gx_{n+2}, Tx_n)
$$

\n
$$
+ fd(gx_n, gx_{n+2})
$$

\n
$$
\geq ad(gx_n, gx_{n-1}) + bd(gx_{n+2}, gx_{n+1}) + cd(gx_n, gx_{n+1}) + ed(gx_{n+2}, gx_{n-1})
$$

\n
$$
+ fd(gx_n, gx_{n+2}).
$$

From the above, we deduce that

$$
fd(gx_n, gx_{n+2})
$$

\n
$$
\leq d(gx_{n-1}, gx_{n+1}) - ad(gx_n, gx_{n-1}) - bd(gx_{n+2}, gx_{n+1})
$$

\n
$$
-cd(gx_n, gx_{n+1}) - ed(gx_{n+2}, gx_{n-1})
$$

\n
$$
\leq d(gx_{n-1}, gx_n) + d(gx_n, gx_{n+2}) + d(gx_{n+2}, gx_{n+1}) - ad(gx_n, gx_{n-1})
$$

\n
$$
-bd(gx_{n+2}, gx_{n+1}) - cd(gx_n, gx_{n+1}) - ed(gx_{n+2}, gx_{n-1}).
$$

From the above, we deduce that

$$
(f-1)d(gx_n, gx_{n+2})
$$

\n
$$
\leq (1-a)d(gx_n, gx_{n-1}) + (1-b)d(gx_{n+2}, gx_{n+1})
$$

\n
$$
-cd(gx_n, gx_{n+1}) - ed(gx_{n+2}, gx_{n-1})
$$

\n
$$
\leq (1-a)d(gx_n, gx_{n-1}) + (1-b)d(gx_{n+2}, gx_{n+1})
$$

\n
$$
-c[d(gx_n, gx_{n+2}) + d(gx_{n+2}, gx_{n+1})]
$$

\n
$$
-e[d(gx_n, gx_{n-1}) + d(gx_n, gx_{n+2})].
$$

From the above, one deduces that

$$
(f + c + e - 1)d(gx_n, gx_{n+2})
$$

\n
$$
\leq (1 - a - e)d(gx_n, gx_{n-1}) + (1 - b - c)d(gx_{n+2}, gx_{n+1}).
$$

It follows that $d(gx_n, gx_{n+2}) \leq \alpha_1 d(gx_n, gx_{n-1}) + \alpha_2 d(gx_{n+2}, gx_{n+1})$, where

$$
\alpha_1 := \frac{1 - a - e}{f + c + e - 1} > 0 \text{ and } \alpha_2 := \frac{1 - b - c}{f + c + e - 1} > 0. \text{ Now observe that}
$$
\n
$$
d(gx_{n-1}, gx_{n+2}) = d(Tx_n, Tx_{n+3})
$$
\n
$$
\geq ad(gx_n, Tx_n) + bd(gx_{n+3}, Tx_{n+3}) + cd(gx_n, Tx_{n+3}) + ed(gx_n, gx_{n+3}, Tx_n)
$$
\n
$$
+ fd(gx_n, gx_{n-1}) + bd(gx_{n+3}, gx_{n+2}) + cd(gx_n, gx_{n+2}) + ed(gx_{n+3}, gx_{n-1})
$$
\n
$$
+ fd(gx_n, gx_{n+3}).
$$

From the above, we deduce that

$$
fd(gx_n, gx_{n+3})
$$

\n
$$
\leq d(gx_{n-1}, gx_{n+2}) - ad(gx_n, gx_{n-1}) - bd(gx_{n+3}, gx_{n+2})
$$

\n
$$
-cd(gx_n, gx_{n+2}) - ed(gx_{n+3}, gx_{n-1})
$$

\n
$$
\leq d(gx_{n-1}, gx_n) + d(gx_n, gx_{n+3}) + d(gx_{n+3}, gx_{n+2}) - ad(gx_n, gx_{n-1})
$$

$$
-bd(gx_{n+3},gx_{n+2})-cd(gx_n,gx_{n+2})-ed(gx_{n+3},gx_{n-1}).
$$

From the above, we deduce that

$$
(f-1)d(gx_n, gx_{n+3})
$$

\n
$$
\leq (1-a)d(gx_n, gx_{n-1}) + (1-b)d(gx_{n+3}, gx_{n+2})
$$

\n
$$
-cd(gx_n, gx_{n+2}) - ed(gx_{n+3}, gx_{n-1})
$$

\n
$$
\leq (1-a)d(gx_n, gx_{n-1}) + (1-b)d(gx_{n+3}, gx_{n+2})
$$

\n
$$
-c[d(gx_n, gx_{n+3}) + d(gx_{n+3}, gx_{n+2})]
$$

\n
$$
-e[d(gx_n, gx_{n-1}) + d(gx_n, gx_{n+3})].
$$

From the above, one deduces that

$$
(f + c + e - 1)d(gx_n, gx_{n+3})
$$

\n
$$
\leq (1 - a - e)d(gx_n, gx_{n-1}) + (1 - b - c)d(gx_{n+3}, gx_{n+2}).
$$

It follows that
$$
d(gx_n, gx_{n+3}) \le \alpha_1 d(gx_n, gx_{n-1}) + \alpha_2 d(gx_{n+3}, gx_{n+2})
$$
, where
\n
$$
\alpha_1 := \frac{1 - a - e}{f + c + e - 1} > 0 \text{ and } \alpha_2 := \frac{1 - b - c}{f + c + e - 1} > 0.
$$
 Similarly, we have,
\n
$$
d(gx_n, gx_{n+4}) \le \alpha_1 d(gx_n, gx_{n-1}) + \alpha_2 d(gx_{n+4}, gx_{n+3}),
$$

\n
$$
d(gx_n, gx_{n+5}) \le \alpha_1 d(gx_n, gx_{n-1}) + \alpha_2 d(gx_{n+5}, gx_{n+4}),
$$

where $\alpha_1 := \frac{1}{f + c + e - 1} > 0$ $_1 := \frac{1 - a - e}{f + c + e - 1}$ $\alpha_1 := \frac{1 - a - f}{f + c + e}$ $\frac{a-e}{1+e-1} > 0$ and $\alpha_2 := \frac{1-b-c}{f+c+e-1} > 0$. $_2 := \frac{1-b-c}{f+c+e-1} >$ $\alpha_2 := \frac{1-b-1}{f+c+e}$ $\frac{b-c}{1} > 0$. For the sequence ${gx_n}$, we consider $d(gx_n, gx_{n+p})$ in two cases, *p* is even and *p* is odd. When *p* is even, let $p = 2 + 2m$, where $m \ge 2$, and when *p* is odd let $p = 5 + 2m$, where $m \ge 1$. In the case $p = 5 + 2m$, we have

$$
d(gx_n, gx_{n+5m+2})
$$

\n
$$
\leq 2d(gx_n, gx_{n+1}) + 2d(gx_n, gx_{n+3})
$$

\n
$$
+d(gx_n, gx_{n+5}) + \dots + d(gx_{n+5m+1}, gx_{n+5m+2})
$$

\n
$$
\leq 2d(gx_n, gx_{n+1}) + 2\alpha_1 d(gx_n, gx_{n-1}) + 2\alpha_2 d(gx_{n+3}, gx_{n+2})
$$

$$
+\alpha_1 d(gx_n, gx_{n-1}) + \alpha_2 d(gx_{n+5}, gx_{n+4}) + \dots + d(gx_{n+5m+1}, gx_{n+5m+2})
$$

\n
$$
\leq 2\gamma^n d(gx_0, gx_1) + 2\alpha_1 \gamma^{n-1} d(gx_0, gx_1) + 2\alpha_2 \gamma^{n+2} d(gx_0, gx_1)
$$

\n
$$
+\alpha_1 \gamma^{n-1} d(gx_0, gx_1) + \alpha_2 \gamma^{n+4} d(gx_0, gx_1) + \dots + \gamma^{n+5m+1} d(gx_0, gx_1)
$$

\n
$$
\leq 3\alpha_1 \gamma^{n-1} d(gx_0, gx_1) + 2\alpha_2 \gamma^{n+2} d(gx_0, gx_1) + \alpha_2 \gamma^{n+4} d(gx_0, gx_1)
$$

\n
$$
+\frac{2\gamma^n}{1-\gamma} d(gx_0, gx_1).
$$

In the case $p = 2 + 2m$, we have,

$$
d(g_{x_n}, g_{x_{n+2m+2}})
$$

\n
$$
\leq 2d(g_{x_n}, g_{x_{n+2}}) + d(g_{x_n}, g_{x_{n+4}}) + \cdots
$$

\n
$$
+d(g_{x_{n+2m}}, g_{x_{n+2m+1}}) + d(g_{x_{n+2m+1}}, g_{x_{n+2m+2}})
$$

\n
$$
\leq 2\alpha_1 d(g_{x_n}, g_{x_{n-1}}) + 2\alpha_2 d(g_{x_{n+1}}, g_{x_{n+2}}) + \alpha_1 d(g_{x_n}, g_{x_{n-1}})
$$

\n
$$
+ \alpha_2 d(g_{x_{n+3}}, g_{x_{n+4}}) + \cdots + d(g_{x_{n+2m}}, g_{x_{n+2m+1}})
$$

\n
$$
+ d(g_{x_{n+2m+1}}, g_{x_{n+2m+2}})
$$

\n
$$
\leq 2\alpha_1 \gamma^{n-1} d(g_{x_0}, g_{x_1}) + 2\alpha_2 \gamma^{n+1} d(g_{x_0}, g_{x_1}) + \alpha_1 \gamma^{n-1} d(g_{x_0}, g_{x_1})
$$

\n
$$
+ \alpha_2 \gamma^{n+3} d(g_{x_0}, g_{x_1}) + \cdots + \gamma^{n+2m} d(g_{x_0}, g_{x_1}) + \gamma^{n+2m+1} d(g_{x_0}, g_{x_1})
$$

\n
$$
\leq 2\alpha_1 \gamma^{n-1} d(g_{x_0}, g_{x_1}) + 2\alpha_2 \gamma^{n+1} d(g_{x_0}, g_{x_1}) + \alpha_1 \gamma^{n-1} d(g_{x_0}, g_{x_1})
$$

\n
$$
+ \alpha_2 \gamma^{n+3} d(g_{x_0}, g_{x_1}) + \cdots + \frac{\gamma^n}{1-\gamma} d(g_{x_0}, g_{x_1}).
$$

Since $\alpha_1, \alpha_2 > 0$ and $\gamma \in (0, 1)$, if we take limits as $n \to \infty$ in the even and odd cases above, we deduce from Remark 2.18, that for every $c \in E$ with $0 \ll c$, there exists a natural number n_0 such that $d(gx_n, gx_{n+p}) \ll c$ for all $n > n_0$. Hence ${gx_n}$ is a Cauchy sequence. Suppose $g(X)$ is a complete subspace of *X*, then there exists $y \in g(X) \subseteq T(X)$ such that $\lim_{n \to \infty} gx_n = y$ and $\lim_{n \to \infty} Tx_n = y$ and if

T(*X*) is complete, this holds also with $y \in T(X)$. Let $u \in X$ be such that $Tu = y$. Now observe that,

$$
d(gx_{n-1}, Tu) = d(Tx_n, Tu)
$$

\n
$$
\geq ad(gx_n, Tx_n) + bd(gu_n, Tu) + cd(gx_n, Tu) + ed(gu, Tx_n) + fd(gx_n, gu)
$$

\n
$$
\geq fd(gx_n, gu).
$$

Thus, $d(gx_n, gu) \leq \frac{1}{f} d(gx_{n-1}, Tu)$. Now observe that,

$$
d(y, gu) \le d(y, gx_{n-4}) + d(gx_{n-4}, gx_{n-3}) + d(gx_{n-3}, gx_{n-2})
$$

+
$$
d(gx_{n-2}, gx_{n-1}) + d(gx_{n-1}, gx_n) + d(gx_n, gu)
$$

$$
\le d(y, gx_{n-4}) + d(gx_{n-4}, gx_{n-3}) + d(gx_{n-3}, gx_{n-2})
$$

+
$$
(gx_{n-2}, gx_{n-1}) + d(gx_{n-1}, gx_n) + \frac{1}{f}d(gx_{n-1}, Tu).
$$

Now for $0 \ll c$, we can choose a natural number n_0 such that

$$
d(y, gx_{n-4}) \ll \frac{c}{6}, \ d(gx_{n-4}, gx_{n-3}) \ll \frac{c}{6}, \ d(gx_{n-3}, gx_{n-2}) \ll \frac{c}{6},
$$

$$
d(gx_{n-2}, gx_{n-1}) \ll \frac{c}{6}, \ d(gx_{n-1}, gx_n) \ll \frac{c}{6}, \text{ and, } d(gx_{n-1}, Tu) \ll \frac{cf}{6}.
$$

Thus,

$$
d(y, gu) \ll 6 \cdot \frac{c}{6} = c
$$

for all $n > n_0$ and $gu = y$, hence $Tu = gu = y$, which means *y* is a coincidence point of *T* and *g*. If there exists y^* such that $gu^* = Tu^* = y^*$ for some $u^* \in X$, then by the expanding condition of the theorem, we deduce that,

$$
d(y, y^*) \le \frac{1}{f} d(y, y^*).
$$

Since $f > 1$, then by Remark 2.18, $d(y, y^*) = 0$, that is, $y = y^*$. Therefore *g* and *T* have a unique point of coincidence in *X*. If *g* and *T* are weakly compatible, then by Proposition 2.17, they have a unique common fixed point in *X*

If *g* is the identity in the previous theorem, then we obtain the following.

Corollary 3.2. *Let* (*X* , *d*) *be a complete cone heptagonal metric space and let* $T: X \mapsto X$ *be an onto mapping satisfying*

 $d(Tx, Ty) \ge ad(x, Tx) + bd(y, Ty) + cd(x, Ty) + ed(y, Tx) + fd(x, y)$

for all $x, y \in X$, *where* $a, b, c, e, f \ge 0$ *and satisfy* $a + b + 2e + f > 1$, $f + c + e > 1$, $f > 1$, $b + c < 1$, and $a + e < 1$. Then T has a unique fixed point in *X*.

Example 3.3. Let *X*, *E*, *P*, and $d: X \times X \mapsto E$ be defined as in Example 2.8, Ampadu [1]. As that example shows, (X, d) is a cone heptagonal metric space but not a cone hexagonal metric space. Now define mappings $T, g: X \mapsto X$ as follows: $Tx = x$ for all $x \in X$, and $g := f$, where $f : X \mapsto X$ is the mapping in Example 3.2, Ampadu [1]. It follows that all the conditions of Theorem 3.1 hold for $f \in (1, 2], a = b = c = e = 0.$ Moreover, $6 = w \in X$ is the unique common fixed point of *T* and *g*.

References

- [1] Clement Ampadu, Chatterjea contraction mapping theorem in cone heptagonal metric space, Fundamental J. Math. Math. Sci. 7(1) (2017), 15-23.
- [2] G. E. Hardy and T. D. Rogers, A generalization of a fixed point theorem of Reich, Canadian Math. Bull. 16(2) (1973), 201-206.
- [3] A. Auwalu and E. Hincal, The Kannan's fixed point theorem in a cone hexagonal metric spaces, Adv. Res. 7(1) (2016), 1-9.
- [4] M. Abbas and G. Jungck, Common fixed point results for non-commuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008), 416-420.
- [5] S. K. Malhotra, S. Shukla and R. Sen, Some fixed point theorems for ordered Reich type contractions in cone rectangular metric spaces, Acta Math. Universitatis Comenianae LXXXII(2) (2013), 165-175.