Fundamental Journal of Mathematics and Mathematical Sciences p-ISSN: 2395-7573; e-ISSN: 2395-7581 Volume 16, Issue 1, 2022, Pages 1-10 This paper is available online at http://www.frdint.com/ Published online September 18, 2022

EXTENSIONS OF FUZZY IDEALS IN COUPLED Γ -SEMIRINGS

CLEMENT BOATENG AMPADU

31 Carrolton Road Boston, MA 02132-6303 USA e-mail: drampadu@hotmail.com

Abstract

Let M be a Γ -semiring. In this paper, we introduce the notion of extensions of fuzzy ideals, fuzzy weakly completely prime ideals and fuzzy 3-weakly completely prime ideals of $M \times M$. In particular, we study some of the relationships between fuzzy weakly completely prime ideals, fuzzy 3-weakly prime ideals in terms of the extension of fuzzy ideals of $M \times M$. Our work is inspired by [1].

1. Some New Notions and Notations

Remark 1.1. We assume M is a Γ -semiring as defined in [1].

Definition 1.2. Let *M* be a Γ -semiring. A fuzzy subset μ of $M \times M$ will be

Keywords and phrases: Γ - semiring, fuzzy 3-weakly, completely prime ideal, fuzzy weakly, fuzzy ideal, extension.

2020 Mathematics Subject Classification: 06D99, 16Y60, 08A7.

Received November 16, 2021; Accepted March 16, 2022

© 2022 Fundamental Research and Development International

called a fuzzy ideal if for all $(x, m), (y, v) \in M \times M, \alpha \in \Gamma$, it holds

(a) $\mu(x + y, m + v) \ge \min\{\mu(x, m), \mu(y, v)\},\$

(b) $\mu(x\alpha y, m\alpha v) \ge \max\{\mu(x, m), \mu(y, v)\}.$

Definition 1.3. Let M be a Γ -semiring. A fuzzy ideal f of $M \times M$ will be called a fuzzy k-ideal of $M \times M$ if $f(x, m) \ge \min\{f(x + y, m + v), f(y, v)\}$ for all $(x, m), (y, v) \in M \times M$.

Definition 1.4. Let M be a Γ -semiring, μ be a fuzzy subset of $M \times M$, and $s \in M$. The fuzzy subset $\langle s, \mu \rangle : M \times M \mapsto [0, 1]$, defined by $\langle s, \mu \rangle(x, m) = \mu(s\alpha x, s\alpha m)$ for all $(x, m) \in M \times M$, $\alpha \in \Gamma$, will be called an extension of μ by s.

Definition 1.5. Let *M* be a Γ -semiring. If μ is a fuzzy subset of $M \times M$, we define supp $\mu = \{(s, s) \in M \times M \mid \mu(s, s) > 0\}$.

Definition 1.6. Let M be a Γ -semiring, A be a subset of $M \times M$, and $(x, m) \in M \times M$. We define $\langle x, A \rangle = \{(s, s) \in M \times M \mid (x \alpha s, m \alpha s) \in A\}$ for all $\alpha \in \Gamma$.

Definition 1.7. Let M be a Γ -semiring. We say μ is a fuzzy weakly completely prime ideal if $\mu(x_1 \alpha x_2, x'_1 \alpha x'_2) = \max\{\mu(x_1, x'_1), \mu(x_2, x'_2)\}$ for all $(x_1, x'_1), (x_2, x'_2) \in M$, and $\alpha \in \Gamma$.

Definition 1.8. Let M be a Γ -semiring. A fuzzy ideal μ of $M \times M$ will be called 3-weakly completely prime ideal if for all $(x_1, x'_1), (x_2, x'_2), (x_3, x'_3) \in M \times M$, $\alpha \in \Gamma$, we have

 $\mu(x_1 \alpha x_2 \alpha x_3, x_1' \alpha x_2' \alpha x_3') = \max\{\mu(x_1 \alpha x_2, x_1' \alpha x_2'), \mu(x_1 \alpha x_3, x_1' \alpha x_3')\}$ $= \max\{\mu(x_2 \alpha x_3, x_2' \alpha x_3'), \mu(x_2 \alpha x_1, x_2' \alpha x_1')\}$ $= \max\{\mu(x_3 \alpha x_1, x_3' \alpha x_1'), \mu(x_3 \alpha x_2, x_3' \alpha x_2')\}.$

2. Some Properties

Proposition 2.1. Let M be a commutative Γ -semiring. If μ is a fuzzy ideal of $M \times M$, and $s \in M$, then the extension of μ by s is a fuzzy ideal of $M \times M$.

Proof. Obviously, $\langle s, \mu \rangle$ is a fuzzy subset of $M \times M$. Let (x, m), $(y, v) \in M \times M$, and $\alpha, \beta \in \Gamma$. Observe we have the following

$$\langle s, \mu \rangle (x + y, m + v) = \mu (s\alpha(x + y), s\alpha(m + v))$$

= $\mu (s\alpha x + s\alpha y, s\alpha m + s\alpha v)$
 $\geq \min \{\mu (s\alpha x, s\alpha m), \mu (s\alpha y, s\alpha v)\}$
= $\min \{\langle s, \mu \rangle (x, m), \langle s, \mu \rangle (y, v)\}$

which implies

$$\langle s, \mu \rangle (x + y, m + v) \ge \min\{\langle s, \mu \rangle (x, m), \langle s, \mu \rangle (y, v)\}.$$

Also

$$\langle s, \mu \rangle (x\beta y, m\beta v) = \mu(s\alpha x\beta y, s\alpha m\beta v)$$

 $\geq \mu(s\alpha x, s\alpha m)$
 $= \langle s, \mu \rangle (x, m).$

Hence

$$\langle s, \mu \rangle (x\beta y, m\beta v) \ge \langle s, \mu \rangle (y, v)$$

which implies $\langle s, \mu \rangle$ is a fuzzy ideal of $M \times M$.

Proposition 2.2. Let M be a Γ -semiring. If μ is a fuzzy k-ideal of $M \times M$, and $s \in M$, then the extension of μ by s is a fuzzy k-ideal of $M \times M$.

Proof. By the previous Proposition, $\langle s, \mu \rangle$ is a fuzzy ideal of $M \times M$. Since μ

is a fuzzy k - ideal of $M \times M$, then

 $\mu(s\alpha x, s\alpha m) \ge \min\{\mu(s\alpha x + s\alpha y, s\alpha m + s\alpha v), \mu(s\alpha y, s\alpha v)\}$

for all $(x, m), (y, v) \in M \times M, \alpha \in \Gamma$. Thus,

 $\langle s, \mu \rangle (x, m) \ge \min\{\langle s, \mu \rangle (x + y, m + v), \langle s, \mu \rangle (y, v)\}$

for all $(x, m)(y, v) \in M \times M$, $\alpha \in \Gamma$. So $\langle s, \mu \rangle$ is a fuzzy k-ideal of $M \times M$.

Proposition 2.3. Let M be a Γ -semiring, $s \in M$, and μ be a fuzzy ideal of $M \times M$. Then

(a) μ ⊆ ⟨s, μ⟩,
(b) ⟨(sα)ⁿ⁻¹s, μ⟩ ⊆ ⟨(sα)ⁿs, μ⟩ for every natural number n, α ∈ Γ,
(c) If μ(s, s) > 0, then supp⟨s, μ⟩ = M × M.

Proof. Let *M* be a Γ -semiring, $s \in M$, μ be a fuzzy ideal of $M \times M$, and $\alpha \in \Gamma$.

For (a) Since μ is a fuzzy ideal of $M \times M$, by Proposition 2.1, $\langle s, \mu \rangle$ is an ideal of $M \times M$. Now

 $\langle s, \mu \rangle (x, m) = \mu(s \alpha x, s \alpha m) \ge \mu(x, m)$

for all $(x, m) \in M \times M$ and α in Γ , which implies $\mu \subseteq \langle s, \mu \rangle$.

For (b) For all natural numbers *n* and for all $(x, m) \in M \times M$, $\alpha, \beta \in \Gamma$, we have

$$\langle (s\alpha)^n s, \mu \rangle (x, m) = \mu((s\alpha)^n s\beta x, (s\alpha)^n s\beta m))$$
$$= \mu(s\alpha(s\alpha)^{n-1} s\beta x, s\alpha(s\alpha)^{n-1} s\beta m)$$
$$\ge \mu((s\alpha)^{n-1} s\beta x, (s\alpha)^{n-1} s\beta m)$$

$$=\langle (s\alpha)^{n-1}s, \mu \rangle (x, m)$$

which implies $\langle (s\alpha)^n s, \mu \rangle \subseteq \langle (s\alpha)^{n-1} s, \mu \rangle$.

For (c) Let $\mu(s, s) > 0$, $(x, m) \in M \times M$. Now

$$\langle s, \mu \rangle (x, m) = \mu(s \alpha x, s \alpha m) \ge \mu(s, s) > 0$$

which implies

$$\langle s, \mu \rangle (x, m) \ge 0$$

which implies

$$x \in \operatorname{supp}\langle s, \mu \rangle$$

for all $(x, m) \in M \times M$. Thus

 $M \subseteq \operatorname{supp}\langle s, \mu \rangle.$

By Definition 1.5,

$$\operatorname{supp}(s, \mu) \subseteq M$$

which implies

 $M = \operatorname{supp}\langle s, \mu \rangle.$

Proposition 2.4. Let M be a Γ -semiring, A be a subset of $M \times M$, and $(x, m) \in M \times M$. Then

$$\langle s, \lambda_A \rangle = \lambda_{\langle s, A \rangle}$$

for all $(s, s) \in M \times M$, where λ_A denotes the characteristic function of $A \subseteq M \times M$.

Proof. Let $(x, m) \in M \times M$, $\alpha \in \Gamma$. Observe

$$\langle s, \lambda_A \rangle (x, m) = \lambda_A (s \alpha x, s \alpha m) = 1 \text{ or } 0.$$

(a) If
$$\langle s \alpha_A \rangle \langle x, m \rangle = 1$$
, then $\alpha_A(s \alpha x, s \alpha m) = 1$ for all $(s, s)(x, m) \in M \times M$.

 $\alpha \in \Gamma$, which implies

 $(s\alpha x, s\alpha m) \in A$

for all $(s, s)(x, m) \in M \times M$, $\alpha \in \Gamma$, which implies

$$(x, m) \in \langle s, A \rangle$$

which implies

$$\alpha_{\langle s,A\rangle}(x,m)=1.$$

(**b**) If $\langle s, \lambda_A \rangle (x, m) = 0$, then $\lambda_A(s\alpha x, s\alpha m) = 0$ for all $(s, s) \in M \times M$, and $\alpha \in \Gamma$, which implies

$$(s\alpha x, s\alpha m) \notin A$$

which implies

$$(x, m) \notin \langle s, A \rangle$$

which implies

$$\lambda_{\langle s,A\rangle}(x,m)=0$$

which implies

$$\langle s, \lambda_A \rangle = \lambda_{\langle s, A \rangle}.$$

Theorem 2.5. Let M be a Γ -semiring, and μ be a fuzzy weakly completely prime ideal of $M \times M$. If $(x, m) \in M \times M$ is such that $\mu(x, m) = inf_{(y, v) \in M \times M} \mu(y, v)$, then $\langle (x, m), \mu \rangle = \mu$.

Proof. Let $(y, v) \in M \times M$. Clearly, $\inf_{(y,v) \in M \times M} \mu(y, v)$ is in [0, 1]. Thus

 $\langle (x, m), \mu \rangle \langle y, v \rangle = \mu(x \alpha y, m \alpha v)$. Since μ is a fuzzy weakly completely prime ideal of $M \times M$, then

$$\mu(x\alpha y, m\alpha v) = \max\{\mu(x, m), \mu(y, v)\}.$$

Thus either

 $\mu(x\alpha y, m\alpha v) = \mu(x, m)$

or

$$\mu(x\alpha y, m\alpha v) = \mu(y, v).$$

Suppose $\mu(x\alpha y, m\alpha v) \neq \mu(y, v)$. Then $\mu(x\alpha y, m\alpha v) = \mu(x, m)$. Since μ is a fuzzy ideal of $M \times M$, by Proposition 2.3, $\mu \subseteq \langle (x, m), \mu \rangle$ which implies

 $\mu(y, v) \leq \langle (x, m), \mu \rangle (y, v)$

which implies

 $\mu(y, v) \leq \mu(x\alpha y, m\alpha v)$

which implies

 $\mu(y, v) \leq \mu(x, m).$

Also since $\mu(x, m) = \inf_{(y,v) \in M \times M} \mu(y, v)$, this implies

$$\mu(x, m) \leq \mu(y, v).$$

From $\mu(x, m) = \mu(y, v)$ and $\mu(x\alpha y, m\alpha v) = \mu(y, v)$, we get a contradiction. It follows that $\mu(x\alpha y, m\alpha v) = \mu(y, v)$ which implies

$$\langle x, \mu \rangle (y, v) = \mu(y, v)$$

for all $(y, v) \in M \times M$. Hence $\langle (x, m), \mu \rangle = \mu$.

Theorem 2.6. Let M be a commutative Γ -semiring, μ be a fuzzy subset of

 $M \times M$ such that $\langle (s, s'), \mu \rangle = \mu$ for every $(s, s') \in M \times M$, then μ is constant.

Proof. Let M be a commutative Γ -semiring, μ be a fuzzy subset of $M \times M$ such that $\langle (s, s'), \mu \rangle = \mu$ for every $(s, s') \in M \times M$ and $(x, m)(y, v) \in M \times M$. Then $\langle (x, m), \mu \rangle = \mu$ and $\langle (y, v), \mu \rangle = \mu$. Thus

$$\mu(y, v) = \langle (x, m), \mu \rangle (y, v)$$
$$= \mu(x \alpha y, m \alpha v)$$
$$= \mu(y \alpha x, v \alpha m)$$
$$= \langle (y, v), \mu \rangle (x, m)$$
$$= \mu(x, m)$$

which implies μ is constant.

Theorem 2.7. Let M be a Γ -semiring, μ be a fuzzy ideal of $M \times M$, $Im\mu = \{1, \alpha\}$. Suppose $\langle (y, v), \mu \rangle = \mu$, for all those $(y, v) \in M \times M$, for which $\mu(y, v) = \alpha$. Then μ is a fuzzy weakly completely prime ideal of $M \times M$.

Proof. Let $(x_1, x'_1), (x_2, x'_2) \in M \times M$. Since μ is a fuzzy ideal of $M \times M$, $\mu(x_1\beta x_2, x'_1\beta x'_2) \ge \mu(x_1, x'_1)$ and $\mu(x_1\beta x_2, x'_1\beta x'_2) \ge \mu(x_2, x'_2)$.

Case 1. $\mu(x_1\beta x_2, x'_1\beta x'_2) = \mu(x_1, x'_1)$

Then $\mu(x_1, x'_1) \ge \mu(x_2, x'_2)$ which implies

 $\max \mu(x_1, x_1'), \, \mu(x_2, x_2') = \mu(x_1, x_1') = \mu(x_1\beta x_2, x_1'\beta x_2').$

Case 2. $\mu(x_1\beta x_2, x_1'\beta x_2') \neq \mu(x_2, x_2')$

Then $\mu(x_1, x'_1)$ is not maximal of $\mu(M \times M)$, otherwise $\mu(x_1, x'_1) = 1 = \mu(x_1\beta x_2, x'_1\beta x'_2)$ which is a contradiction. Thus, $\mu(x_1, x'_1) = \alpha$, and by hypothesis $\langle \mu(x_1, x'_1), \mu \rangle = \mu$ which implies

$$\langle \mu(x_1, x'_1), \mu \rangle \mu(x_2, x'_2) = \mu(x_2, x'_2)$$

which implies

$$\mu(x_1\beta x_2, x_1'\beta x_2') = \mu(x_2, x_2')$$

which implies

$$\mu(x_2, x'_2) = \mu(x_1 \beta x_2, x'_1 \beta x'_2) \ge \mu(x_1, x'_1)$$

which implies

$$\mu(x_1\beta x_2, x_1'\beta x_2') = \max \mu(x_1, x_1'), \, \mu(x_2, x_2').$$

It follows that μ is a fuzzy weakly completely prime ideal of $M \times M$.

Theorem 2.8. Let M be a commutative Γ -semiring and μ be a fuzzy ideal of $M \times M$. Then μ is a fuzzy 3-weakly prime ideal of $M \times M$ iff any extension of μ by (x, m), where $(x, m) \in M \times M$, is a fuzzy weakly completely prime ideal of $M \times M$.

Proof. Suppose μ is a fuzzy 3-weakly completely prime ideal of Γ -semiring M and $(x, m) \in M$, $\alpha \in \Gamma$. Observe

$$\langle (x, m), \mu \rangle = \mu(x \alpha x_1 \alpha x_2, m \alpha x'_1 \alpha x'_2)$$
$$= \max\{\mu(x \alpha x_1, m \alpha x'_1), \mu(x \alpha x_2, m \alpha x'_2)\}$$
$$= \max\{\langle (x, m), \mu \rangle (x_1, x'_1), \langle (x, m), \mu \rangle (x_2, x'_2)\}$$

for all $(x_1, x'_1), (x_2, x'_2) \in M \times M$, $\alpha \in \Gamma$. Thus $\langle (x, m), \mu \rangle$ is a fuzzy weakly completely prime fuzzy ideal of $M \times M$, for every $(x, m) \in M \times M$. Conversely, suppose $\langle (x, m), \mu \rangle$ is a fuzzy weakly completely prime ideal of $M \times M$, for every $(x, m) \in M \times M$. Observe we have the following

 $\mu(x_1\alpha x_2\alpha x_3, x_1'\alpha x_2'\alpha x_3') = \langle (x, m), \mu \rangle (x_2\alpha x_3, x_2'\alpha x_3')$

$$= \max\{\langle (x_1, x_1'), \mu \rangle (x_2, x_2'), \langle (x_1, x_1'), \mu \rangle (x_3, x_3')\} \\ = \max\{\mu(x_1 \alpha x_2, x_1' \alpha x_2'), \mu(x_1 \alpha x_3, x_1' \alpha x_3')\}$$

and since μ is commutative, then by Definiton 1.8, μ is a fuzzy 3-weakly completely prime ideal of $M \times M$.

3. Open Problem

To our knowledge the following is unsolved:

Conjecture 3.1. Let *M* be a commutative Γ -semiring, and μ be a fuzzy ideal of $M \times M$. If μ is a weakly completely prime ideal of $M \times M$, then μ is a fuzzy 3-weakly completely prime ideal of $M \times M$.

References

[1] B. Venkateswarlu, M. Murali Krishna Rao and Y. Adi Narayana, Extensions of fuzzy ideals of Γ - semirings, Journal of Universal Mathematics 1(3) (2018), 269-282.