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Abstract 

Compact three dimensional spaces of constant curvature without border 

can be considered as cavities for free electromagnetic fields. For space-

times of the form: ⊗t  static space, this note shows that the 

electromagnetic field spectrum is the same as the Laplacian eigenvalue 

spectrum of a scalar field in those spaces. 

Introduction 

An attempt to compute numerically the first Laplacian eigenvalues of 

a scalar field in 3-dimensional constant curvature compact hyperbolic 

manifolds without border, has been presented in [1]. These geometries 

can be considered as cavities for free electromagnetic fields. The goal of 

the present note is to extend the results obtained in the scalar field case 

to the free electromagnetic field and to show that the eigenvalue spectra 
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are the same. 

The space manifolds considered here, which are called M, are 

isometric to the quotient ,ΓnH  where nH  is the n-dimensional 

constant curvature hyperbolic space (Appendix A), and Γ  is a group of 

isometries of nH  called the covering group in the following (in this note 

3=n ). For a complete study of constant curvature spaces, see [2]. In this 

note, the space-times in which the fields evolve are of the form: ,3HtV ⊗=  

,MtV ⊗=  where t is the time coordinate. 

In the case of the scalar field there are, at least, two ways to compute 

the first Laplacian eigenvalues. 

– Find a set of common eigenvectors of the Laplacian ∆  in 3H  and 

one generator of the covering group ,Γ  which will be named ,0γ  then 

expand the eigenvectors of the Laplacian in M on this set, and then 

impose the other periodicity constraints. 

– Choose a Γ  periodic test function in 3H  and use the Rayleigh 

theorem [3] to find bounds on the eigenvalues. 

Another numerical method has been presented in [4]. 

The first method was chosen in [1]. It could be directly applied to the 

case of vector fields but this becomes complicated. The main part of this 

note shows that the Laplacian eigenvalue spectra of a scalar field and a 

free electromagnetic field are the same without calculating these 

eigenvalues. Once the eigenvalues are known it is easier to compute 

numerically the eigenvectors. The necessary elements are provided in 

appendices, but no attempt has been done to compute the eigenvectors 

explicitly. 

The identity of the spectra is shown in Sections 2, 3 and 4. The 

technique used is to express scalar and vector fields as tensors built from 

spinors. Appendix A shows that, using cylindrical coordinates, the 0γ  

periodicity condition are the same for scalar, vector or spinor fields. 
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The first section sets the notations and recalls very briefly some basic 

geometrical equations. Some technical calculations have been gathered in 

Appendix B. Appendix C, although a little bit long for our purpose, 

discusses the advantages of considering the second order Dirac equation. 

At last, Appendix D provides solutions to the free electromagnetic field 

equations in 3HtV ⊗=  which can be used to build eigenvectors in 

,3 Γ= HM  and discussed the existence of “plane wave” solutions. 

1. Notations 

The space-time coordinates { }αx  of a point x are labelled with Greek 

letters: .,,,0,,, n<γβα≤γβα KK  The time coordinate is: .0x  The 

vectors of the local natural frame are written .,, Kβα ee  When tensors 

are expressed with respect to local orthonormal frames they are labelled 

with Latin letters: .,, Kcba  The orthonormal local frame basis vectors 

are called ,ah  and we set .α
α= ehh aa  The metric tensor is ,αβg  and 

αβg  is its inverse. The determinant of the metric tensor is called g. The 

signature of the metric is: ( ).−−−+  In the case of local orthonormal 

frames, the metric tensor is written: abη  and its diagonal terms are: 

( ).1,1,1,1 −−−+=ηaa  Latin indices are lowered with abη  and raised 

with the inverse tensor .abη  

In the neighbourhood of a given point, the local coordinates, with 

respect to the local orthonormal frame attached to this point, are given by 

the 1-forms: ,α
α=ω dxhaa  which satisfy the structure equations: 

,
.

aba
b

ad ∑=ωω+ω �  (1.1) 

where: γ
γ

ω=ω dxa
b

a
b ..

 are the connexion 1-forms and 
a

∑ is the torsion 
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2-form. We shall also write .
....

γ
γ

ω=ω↔ωω=ω c
a

b
a

bc
ca

bc
a

b
h  The 

connexion 1-forms are related to the connexion coefficients by 

...
δ

γδ
β

α
α
βγγ

∂+Γ=ω
b

a
b

aa
b

hhhh  

The connexion coefficients are the sum of two terms: 

,
~

...
α
βγ

α
βγ

α
βγ +Γ=Γ S  

where the first term on the right is the Christoffel symbol and the second 

is the contorsion tensor. The contorsion is anti symmetric with respect to 

the two first indices: .0=+ βαγαβγ SS  The torsion tensor is: 

( ) ( ),
2

1

2

1
.....
α

γβ
α
βγ

α
γβ

α
βγ

α
βγ −=Γ−Γ= SSS  

and inversely: .;.... βδγ
αδα

γ⋅β
α

βγ
α

γβ
α

βγ
α
βγ =−−= SgSSSSS  

The torsion 2-form is: ...

γβα
βγα⋅

−=ωω= ∑∑ dxdxShacba

bc

a
��  

We set: .
~~

..
δ

γδ
β

α
α
βγγ

∂+Γ=Γ
b

a
b

aa
b

hhhh  

The curvature 2-form is defined by 

.
.....

dca
bcd

c
b

a
c

a
b

a
b

Rd ωω=ωω+ω=Ω ��  

2. Outline 

In this note, the electromagnetic field, which will be noted ,αA  is 

studied in static four dimensional space-times of the form: ,3HtV ⊗=  

.MtV ⊗=  In ,3H  elementary rigid motions, which are not symmetries, 

are either rotations around an axis or transvections (which generalize 

translations) along a geodesic called base geodesic. Each element of the 

covering group is the product of a rotation and a transvection having the 
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same axis. Isotropic spaces are symmetric spaces and have no torsion. 

This applies to the spatial part only, but in the following calculations, the 

space-time torsion is set to .0. =α
βγS  However, in Appendices B and C 

torsion has been re-introduced to get more general relations. 

Cosmology studies the evolution of universes whose unperturbed 

metric is spatially isotropic and of the form [5]: ( ) [ +ηη= 222 dads  

],ji
ij dxdxγ  where η  is called the conformal time and the indices ji,  

correspond to spatial coordinates. For these cosmological metrics, the 

equations of motion of scalar and vector fields show that the technique of 

variable separation can be used (separation of the conformal time from 

the spatial coordinates) if these fields are expanded on the eigenvectors of 

the 3-dimensional spatial Laplacian operator .3 ∆  This justifies the form 

of the space-times V chosen above. 

The most direct approach would be to proceed as in [1], that is to say: 

find solutions of the electromagnetic field equations in 3HtV ⊗=  which 

are also eigenvectors of one generator of ,Γ  and then impose the 

periodicity conditions corresponding to the other elements of the covering 

group. As in [1], it is difficult to avoid using numerical method, which is 

not satisfactory. Appendix A shows why cylindrical coordinates are well 

suited to the search of solutions for vector and spinor fields. 

Therefore we shall proceed as follows. 

Given a set of tensor fields satisfying some relations between them, it 

was shown in [6] that there exist a spinor field v/  such that they can be 

written as vv h
/γ/  with: ,21 hh ααα γγγ=γ K  where all the ( )hii ≤≤γα

1  

are different. In the following, we shall assume that scalar fields and 

vector fields can be written respectively (up to a multiplicative constant) 

as product of spinor fields of the form: ϕ/v  and .ϕγ/
αv  One can show that 

interaction tensors of the form  ϕγ/
hv  satisfy also the relations (1.3) and 



J. P. PANSART 

 

6 

(1.2) of [6]. In [6], the construction does not require that the spinor   

satisfies the Dirac equation. In Sections 3 and 4, it is assumed that v/  and 

ϕ  satisfy the second order Dirac equation (Appendix C), and we shall 

look at the constraints on the spinors resulting from the scalar and 

electromagnetic field equations and show that such a construction is 

possible by comparing the number of constraints and the number of 

degrees of freedom. 

If the scalar field ϕ/= vS  is an eigenvector of the Laplacian in 3H  

the spinors v/  and ϕ  must satisfy some constraints. This is shown in 

Section 3. The vector field ϕγ/= αα va  can not represent directly the 

electromagnetic field .αA  A gauge change must be applied in order to 

satisfy the field equations and the Lorenz condition .0=α
α AD  In 

Section 4, we show that if: fgaA β
αβαα ∂+=  with ϕ/µ= vf  and if ϕ/v  is 

an eigenfunction of the 3-dimensional space Laplacian, then the 

electromagnetic field equations and the Lorenz condition can be satisfied 

and that they represent 4 constraints. In Section 4, it is shown that the 

total number of constraints is less than the number of degrees of freedom, 

therefore it is possible to find v/  and ϕ  such that the field equations are 

satisfied. 

If the scalar field S (eigenvector of the spatial Laplacian) satisfies the 

periodicity conditions in 3H  for some frequencies (eigenvalues), then this 

must also be true for the spinors v/  and .ϕ  Therefore, this will also be 

true for the electromagnetic field ,αA  with the same frequencies, and 

conversely, showing that the scalar and the electromagnetic fields have 

the same spectra if .3 Γ= HM  

3. The Scalar Field 

We first consider a free scalar field S whose Lagrangian is 
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.2 SSmSgSL +
β

αβ+
α −∂∂=  

The Euler-Lagrange equations are: ( ) .
1 2SmSgg
g

S −=∂∂=∆ β
αβ

α  

We assume that S can be written as the product of two spinors 

,ϕ/= vS   (3.1) 

where v/  and ϕ  satisfy the second order Dirac equation (C.16) with 

masses 1m  and ,2m  respectively. 

Note that (3.1) is not the only scalar that one can build from two 

spinor fields. For instance we could have considered vbDvaS /+ϕ/= α  

,ϕβ
αβDg  where ba,  are constant parameters, but this brings no 

simplification and no cancellation in the calculations. 

Equations (B.4) and (C.16) give 

( ) [ ] .2
2

2
2

2
1 ϕ/+ϕ/−−==∆ βα

αβ
β

αβ
α DvDgvmm

R
SDgDS  (3.2) 

If Sev ti ,~, ωϕ/  is independent of t. Then we chose ,~~ titi eev ωω± ϕ/
m  

then 

( ) [ ] ,2
2

4
2

2
2

1
23 ϕ/−ϕ/−++ϕ/ω−=ϕ/∆ βα

αβ DvDgv
R

mmvv  (3.3) 

where ∆3  is the 3-dimensional Laplacian operator for M or .3H  

We are interested by scalar fields which are eigenfunctions of the 

Laplacian on the manifold ,: 3 ffM λ−=∆  then one has the condition 

.~2 ϕ/ϕ/ βα
αβ vDvDg   (3.4) 

Remark. In [1] and in many publications, the eigenvalue problem is 

written as: ( )ff 23 1 β+−=∆  which is convenient if spherical coordinates 

are used. 
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If M is a manifold without border, then for any function h (sufficiently 

well behaved): 

 

( ) ( ) xhdfgghdVfhdVf
MMM

33 +
β

αβ
α

+++ ∂∂=λ−=∆ ∫∫∫  

  ( ) .33 xdghfgxdhfgg
MM

α
+

β
αβ+

β
αβ

α ∂∂−∂∂= ∫∫  

The first integral is zero since M is assumed without border. If we set 

,Cth =  then for ,0≠λ  one has the constraint .0=∫ fdV
M

 

Is this condition compatible with the hypothesis (3.1)? Let us 

consider: ,2ϕ/ Dv  where α
αγ= DD  is defined in Appendix C. Using (B.3): 

( ) .2 ϕγ/−ϕγ/=ϕγ/=ϕ/
β

β
β

ββ
β DvDDvDDDvDv  

The first term of the right member is a divergence, therefore, if :0=∂M  

.2 dVDvDdVDv ϕ/−=ϕ/ ∫∫  If ϕ  is a solution of the second order Dirac 

equation .
2

2 dVvmdVDvD ϕ/=ϕ/ ∫∫  

If ±∈/ Dv  (see Appendix C) and ,mD∈ϕ  then 0=ϕ/∫ dVv
M

 which is 

consistent with the above constraint. 

4. The Vector and Electromagnetic Fields 

The equation of motion of a vector field αa  with mass m can be 

deduced from the Lagrangian ,2
SV LaamaDaDggL +−= µ

µβ
µ

αµ
αβ ν

ν  

where SL  represents source terms. There are other possible Lagrangians. 

The Euler-Lagrange equations are 

,2
.

µµβµ
β

µ
βα

αβ +−=− JamaRaDDg   (4.1) 
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where µJ  represents source terms. In the following we consider only free 

fields, then .0=µJ  The Lagrangian of the electromagnetic field αA  is 

,
4

1
SA LFFL +−= αβ

αβ  

where αββααββααβ −=∂−∂= ADADAAF  (the last equality is true 

when there is no torsion). The corresponding equations of motion are 

( ).0. ==−− µγ
γα

αµβµ
β

µ
βα

αβ JADDgARADDg   (4.2) 

The gauge freedom is used to impose the Lorenz condition .0=γ
γ AD  

In the differential form formalism the Laplacian operator is defined 

as ,dd δ+δ∆ �  where: δ  is the adjoint of the differentiation operator d. 

Applying this definition to the 1-form α
α=ω dxa  gives 

,
~~~

.
βα

β
α

βγ
γβα −=∆− aRaDDga  

where: βD
~

 and α
β.

~
R  are the covariant derivative and the Ricci tensor 

computed with the Christoffel symbols only instead of the connexion 

coefficients, as if there were no torsion, although this expression is valid 

also with torsion. Note that: ∆=∆ dd  and ,∆δ=δ∆  two properties which 

will be used later. 

We assume that one can write ϕγ/= αα va  where, as for the scalar 

field, v/  and ϕ  satisfy the second order Dirac equation with masses 1m  

and ,2m  respectively. Then, using (B.4) and (C.16), one has: 

[ ] .2
2 .

2
2

2
1 ϕγ/+ϕγ/−ϕγ/−−=∆ β

µ
α

αβµµµ DvDgvRvmm
R

a ν

ν  (4.3) 

If one wants ϕγ/= αα va  to represent the electromagnetic field, the 

Lorenz condition must be satisfied. Using the same calculation as for 

(B.7), we have: 
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( ) .ϕ/+ϕ/=ϕγ/= α
α

α
α DvvDvDaD  

If, as in the scalar case, ±∈/ Dv  and ,mD∈ϕ  then 

( ) .21 ϕ/+=α
α vmmiaD m   (4.4) 

It is now assumed that the electromagnetic field αA  is equivalent to the 

vector field αa  up to a gauge change: fgaA β
αβαα ∂+=  whence 

( ) .21 fvmmifaDAD ∆+ϕ/+=∆+= α
α

α
α m  

If: ϕ/µ= vf  where µ  is a constant coefficient, the Lorenz condition looks 

like an eigenvalue condition. Let us assume that ( ) ,ϕ/λ=ϕ/∆ vv  then the 

Lorenz condition is satisfied if ( ),21 mmi +±=µλ  and the electro-

magnetic field is 

( ).ϕ/∂µ+ϕγ/= β
αβαα vgvA   (4.5) 

The free electromagnetic field equation is then such that: ( µβµ ∆+∆ ga  

) .0=∂β f  As seen above the Laplacian of a gradient field is equal to the 

gradient of the Laplacian, then using (4.3), the field equations are 

[ ] ϕγ/−ϕγ/−−=∆ µµµ ν

νvRvmm
R

A .
2
2

2
12

 

( )( ) .2 µ
β

µβ
β

µ
α

αβ =ϕ/∆∂µ+ϕγ/+ JvgDvDg  (4.6) 

These equations represents 4 constraints. Are they independent and are 

they compatible with the Lorenz condition? Since the divergence   

operator commutes with the Laplacian ( ),∆δ=δ∆  we expect =µ
µJD  

.0=∆=∆ µ
µ

µ
µ ADAD  This is now checked directly. 

We first compute ,
µ

µ UJD  where .ϕγ/= β
µ

α
αβµ

DvDgJU  Using (B.7) 

and (B.9), one has 
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[ ],ϕ/+ϕ/= βαβα
αβµ

µ DDvDDvDDgJD TTU  

( )ϕγγ/+ϕγγ/= γ
ββ

γ
γα

αβµ
µ

cddc
cdU vDDvRgJD

4

1
 

[ ].ϕ/+ϕ/+ βαβα
αβ DDvDDvDDg  

With cdedcecdeecd γ+γη−γη=γγ  and ecdcdedcecde γ+γη−γη=γγ  and 

using the Bianchi identities of the first kind in the first bracket, it 

remains  

( ) [ ].
2

1
ϕ/+ϕ/+ϕγ/+ϕγ/= βαβα

αβ
ββ

βµ
µ DDvDDvDDgvDDvRJD cc

cU  

Finally, with (B.3)  

( ) [ ],
2

1
ϕ/+ϕ/+ϕγ/= βαβα

αβ
β

βµ
µ DDvDDvDDgvDRJD c

cU  

where, according to our hypotheses .~.
µµ δννR  

Replacing this term in the divergence of (4.6) and using (4.4) gives 

[ ] ( ) ( ) ϕ/+−−=µ
µ vmmimm

R
JD 21

2
2

2
12

m  

[ ] ( ( )( )).2 ϕ/∆∂µ+ϕ/+ϕ/+ β
µβ

µβαβα
αβ vgDDDvDDvDDg  

With ±∈/ Dv  and mD∈ϕ  and with 

( ( )( )) ( ( )) ( ),ϕ/∆λ=ϕ/∂λ=ϕ/∆∂ β
µβ

µβ
µβ

µ vvgDvgD  

we obtain 

( ) ( ) ([ ] ( )),2
2

2
2

2
121 ϕ/∆−ϕ/+ϕ/−−+= βα

αβµ
µ vDvDgvmm

R
mmiJD m  

which, with condition (3.2) gives .0=µ
µJD  

Therefore, the four Equations (4.6) are compatible with the Lorenz 
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condition and are in fact three independent equations only. 

The constraints used are now recalled. The spinor fields v/  and ϕ  are 

such that ,ϕ/= vS  and are solutions of the Dirac equation. This is 

241 ×+  constraints. Then the condition (3.4) is necessary if S is an 

eigenfunction of the spatial Laplacian. The vector (4.5) must satisfy the 

four Equations (4.6) or three of them plus the Lorenz condition, that is 

four conditions. The total amounts to 14 conditions, the two spinors 

representing 16 real functions. 

5. Appendix A: Coordinates and Transport of Local Frames 

5.1. Hyperbolic spaces 

The hyperbolic n dimensional space nH  is defined as the upper part 

of the sphere of radius K  in the Minkowski space .1+nM  More 

precisely, if { }αx  are Cartesian coordinates in 1+nM  with origin ,MO  

nH  is the surface defined by: 

,

1

0

Kxxxx nn
n

=−αα
−

=α
∑  

where 0<K  and: .Kxn ≥  We set .KR =  

The correspondance between the spherical coordinates ( )ϕθχ ,,  of 

,3H  where ( )ϕθ,  are the usual polar angles with respect to some local 

orthonormal frame Oxyz and the coordinates of 4M  is 

( ) ( ),sin,cos,0 θ=θ=χ= sccRshx  

( ) ( ),sin,cos;1 ϕ=ϕ=χ= ϕϕϕ scscRshx  (A.1) 

,, 32 χ=χ= ϕ RchxssRshx  
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[ ] [ ].2,0,,0,0 π∈ϕπ∈θ≥χ  

Then the linear element of 3H  is 

( ) ( ) ( ) ( )232221202 dxdxdxdxds −++=  

 (( ) ( ) )[ ].222222 ϕ+θχ+χ= dsdshdR  (A.2) 

The coordinates ( )ϕθχ ,,  are the Riemann normal (spherical) coordinates 

with origin at ,0=χ  which corresponds to the point ( )R,0,0,0  in .4M  

The curvature tensor is ( ),
1

2 βγαδβδαγαβγδ −−= gggg
R

R  the Ricci tensor 

is ,
2
2 αβαβ −= g

R
R  and the scalar curvature .

6
2R

RH −=  R is a scale 

factor, in the following it is set to 1. 

,nH  which is a space of constant curvature, is a symmetric space. A 

transvection in a symmetric space is an isometry which generalizes the 

notion of translation in Euclidean space. It is defined as the product of 

two successive symmetries with respect to two different points A and B. 

The geodesic going through these two points is invariant and is called the 

base geodesic. In 3H  one can perform a rotation around this base 

geodesic, it commutes with the transvection and the base geodesic is 

invariant. The base geodesic of a transvection γ  is given by the 

intersection of the invariant plane, associated to the real eigenvalues of 

the SO(3, 1) element representing γ  in ,4M  with .3H  

The elements of the covering group Γ  are screw motions. A screw 

motion is the product of a transvection by a rotation around the base 

geodesic of the transvection. 

Since 3H  is isotropic, it is always possible to chose a particular 

generator of Γ  such that its base geodesic defines the Oz axis of the 

spherical coordinates. This particular generator is named 0γ  in the 
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present note. 

The Laplacian operator acting on a form ω  is defined as ,dd δ+δ∆ �  

where δ  is the adjoint of the differentiation operator ω.d  of degree 0 

corresponds to the case of a scalar field, and ω  of degree 1 to the case of a 

vector field. The Laplacian operator commutes with all the isometries. It 

is then possible to find a common set of eigenvectors to ∆  and one of the 

generator of Γ  (only one, because the generators of Γ  do not, a priori, 

commute between themselves). The action of rotations around the Oz and 

Ox axis, and transvections along the Oz axis, on the vectors of local 

frames, has been described in ([7], Appendix A). 

If we call L the length of the transvection, which is twice the distance 

between A and B, a point p whose spherical coordinates are ( )ϕθχ ,,  is 

transformed, by a transvection along Oz, into a point q of coordinates 

( )qqq ϕθχ ,,  given by 

( ) ( ) ( ) ( ) ( ) ,cLshshLchchch q χ+χ=χ  

( ) ( ) ( ) ( )( ) ( ),qq shLchshcLshchc χχ+χ=   (A.3) 

,ϕ=ϕq  

where ( )θ= cosc  (as in (A.1)) and ( ).cos qqc θ=  

Depending on the problem it could be more convenient to use 

cylindrical co-ordinates as described in [1]. The axis of these cylindrical 

coordinates is chosen to be the same as the polar axis of the spherical 

coordinates. These coordinates are named: z which is defined as the 

distance between the origin of the coordinates and the orthogonal 

projection of a point on the geodesic ρ,Oz  the radius equal to the 

distance between the point and its projection, ϕ  the cylindrical angle, the 

same angle as for spherical coordinates. 

The correspondence between the cylindrical coordinates of 3H  and 
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those of the Minkowski space 4M  is given by: ( ρρρ= ϕϕ chsshcshx ,,  

),, chzchshz ρ  where: ϕc  and ϕs  are defined above in (A.1). 

The metric is: 

( ) ( ) ( ) ( ) .
222222 dzchdshdds ρ+ϕρ+ρ=  

A rotation by an angle α  around the Oz axis changes only the azimuthal 

angle: .α+ϕ→ϕ  A transvection along the Oz axis of length L = 2AB 

changes only the z coordinate: .Lzz +→  The action of a screw motion, 

along the Oz axis, is given in 4M  coordinates by: 

,

00

00

00

00

3

2

1

0

3

2

1

0





































 −

=





















′

′

′

′

αα

αα

x

x

x

x

chLshL

shLchL

cs

sc

x

x

x

x

 

where ( ) ( ).sin,cos α=α= αα sc  

The vectors αe  of the natural local frames are given in 4M  by 

( ),,,,1 chzshshzshschcche ρρρρ= ϕϕ  

( ),0,0,,2 ϕϕ ρρ−= cshsshe  

( ).,,0,03 shzchchzche ρρ=  

It is now easy to find how such screw motions along the Oz axis act. Using 

cylindrical coordinates, a screw motion along the Oz axis transforms the 

local frame basis vectors as 

( ( )) ( ).00 xhxh a γ=γ α   (A.4) 

In the case of the spherical coordinates, the transported frame would 

be equivalent to the local frame up to a rotation since rotations and 

transvections are isometries of .nH  The advantage of using cylindrical 
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coordinates is the following. A vector field can be written as ( ) aVxV =  

( ) ( ).xhx α  If this field is periodic under the action of ,0γ  only the 

components have to be periodic, there is no additional rotation to take 

into account. These components can be expanded on fonctions of the form 

( )zia eV k+ϕν~  with the constraint ,2 mL π=+α kν  where m is a relative 

integer, as for the scalar case ([1]). 

Likewise, spinors are defined with respect to (space-time) local 

orthonormal frames, therefore, using cylindrical coordinates, 0γ  

periodicity conditions apply only to the spinor components. 

5.2. Spherical spaces 

The spherical n-dimensional space nS  is defined as the sphere of 

radius R in the Euclidean space .1+nE  For 3S  in cRxE χ= sin: 04  

,cos,sin,sin 321 χ=χ=χ= ϕϕ RxssRxscRx   (A.5) 

[ ] [ ].2,0,,0, π∈ϕπ∈θχ  

Then the linear element of 3S  is 

( ) ( ) ( ) ( )232221202 dxdxdxdxds +++=  

 (( ) ( ) )[ ].sin
222222 ϕ+θχ+χ= dsddR  (A.6) 

As above R is set to 1. With the same notations as in the hyperbolic case, 

a point of coordinates ( )ϕθχ ,,  is transformed, by a transvection along Oz, 

into a point whose coordinates are given by: 

( ) ( ) ( ) ( ) ( ) ,sinsincoscoscos cLLq χ−χ=χ  

( ) ( ) ( ) ( )( ) ( ),sincossinsincos qq LcLc χχ+χ=   (A.7) 

.ϕ=ϕq  
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The correspondence between the cylindrical coordinates of ,3S which 

are defined as in the hyperbolic case, and those of the Euclidean space 

4E  is given by ( ),,,, zz ccscsscsx ρρϕρϕρ=  where ϕc  and ϕs  are defined 

in (A.1), 

( ) ( ) ( ) ( ).sin,cos,sin,cos zszcsc zz ==ρ=ρ= ρρ  

The metric is:  

( ) ( ) .
222222 dzcdsdds ρρ +ϕ+ρ=  

In ,4E  a screw motion whose base geodesic is Oz has the form: 

,

00

00

00

00

3

2

1

0

3

2

1

0



















































−

−

=



























′

′

′

′

αα

αα

x

x

x

x

cs

sc

cs

sc

x

x

x

x

LL

LL

 

where: ( ) ( ).sin,cos LsLc LL ==  

The vectors of the natural local frames are given in 4E  by: 

( ),,,,1 zz cssssccce ρρϕρϕρ −−=  

( ),0,0,,2 ϕρϕρ−= cssse  

( ),,,0,03 zz sccce ρρ −=  

which can be used to show that (A.4) is also true in the spherical case. 

6. Appendix B: Tensors Built from Spinors, 

Derivatives and Laplacian 

The calculations of this appendix are performed in the more general 
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case of spaces with torsion and with coupling to gauge fields ,αW  

although this additional environment will not be used in the main section 

of this note. 

We consider tensors of the form: ,ϕγ/ x
hTv  where: ,21 hh ααα γγγ=γ L  

in which all the ( )hii ≤≤γα
1  are different (appear only once), and 

where xT  belongs to a representation of the Lie algebra of the gauge 

group. 

We set: 

,ααααα −+Γ+∂= SWD   (B.1) 

where: γ
αγααα =

γγ
Γ=Γ .,

4
SS

dc

cd  and x
x

x WTWW ααα = .  is the gauge 

field. It is chosen real, and for a unitary group with real parameters: 

.xx TT −=+
 

The tensor derivative is: 

( ) ( ) ( ),1
.

ϕγγγ/Γ+ϕγ/∂=ϕγ/
γϕγγ

βϕββ xx
h

x
h TvTvTvD hpp

p
LL  

( ) ϕγ/+ϕγ/=ϕγ/ βββ DTvTvDTvD x
h

x
h

x
h  

( ) [ ] ϕγγγ/Γ+ϕγγγ/Γ+ β
γϕγγ

βϕ x
hdc

cdx TvTv hpp

p
,

4

11
.

LL  

( ) ( ) .2 ϕ+γ/−ϕγ/+ +
ββ yxxy

hy
x

h TTTTvWTvS  (B.2) 

In the following discussion { }h  means a fixed set of indices { }hαα ,,1 K  

all different, as above. 

If { },, hdc ∈  or if: { },, hdc ∈/  then: [ ] .0, =γγγ hdc  If { },hc j ∈α=  

{ } [ ] .2, 111 hjj dcchdchd
αααα γγγγγη−=γγγ→∈/

+−
LL  If { },hd j ∈α=  

{ } [ ] .2, 111 hjj cddhdchc
αααα γγγγγη=γγγ→∈/

+−
LL  Recalling that 
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spinors are defines with respect to orthonormal frames, and therefore 

that αα Γ−=Γ dccd  these contributions cancel with the third term of the 

right member of (B.2), and it remains 

( ) ( )ϕγ/+ϕγ/ ββ z
hyz

xyx
h TvWCTvD .  

( ),2 . ϕγ/+ϕγ/+ϕγ/= γ
βγββ x

h
x

h
x

h TvSDTvTvD  (B.3) 

where z
xyC .  are the structure constant of the gauge group: [ ] =yx TT ,  

.. z
z

xyTC  

The relation (B.3) is very general, in the rest of this note, we shall not 

consider any more gauge fields, then (B.3) will be used with .ITx =  

The Laplacian of the tensor field ϕγ/
hv  involves the term ( αβ

α gD  

( ))ϕγ/β
hvD  which can be written (if there is no gauge field): 

( ( )) [ ] ϕγ/Γ−/=ϕγ/ γ
γ
βαβα

αβ
β

αβ
α

hh vDvDDgvDgD .  

[ ]ϕΓ−ϕγ/+ γ
γ
βαβα

αβ DDDgv h
.  (B.4) 

( ) ( ).0,22 =ϕγ/+ϕγ/+ α
α

αβα
αβ WvSDDvDg hh  

Let us consider the current: 

,β
µ

α
αβµ ϕγ/= vgJ   (B.5) 

where ϕ=ϕ/=/ ββαα DvDv ,  and let us calculate its divergence: ( )Jdiv  

( ).
1 µ

µ∂= Jg
g

 

Using the identity: 

[ ] ,2, µ
µ

µµ
µ

µµ
µ γ−γ

∂
−Γγ=γ∂ S

g

g
  (B.6) 
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one obtains 

( ) [ ],div βαβα
αβ

β
µ

α
αβ

µ ϕ/+ϕ/+ϕγ/∂= DvvDgvgJ  

where 

( ).αααα
α −+Γ+∂γ= SWD  

Finally, with 

,..
δαβ

δµ
δβα

δµ
αβ

µ Γ−Γ−=∂ ggg  

( ) [ ],div βαβα
αβ ϕ/+ϕ/= TT DvvDgJ  (B.7) 

where we have set: .. γ
µγ

αµαα /γΓ−/=/ vvDvDT  Now, in (B.7), we would like 

to replace α/vDT  by vDD /α  

([ ] ) ., . vDvDDvDDvDT /Γγ−/+/γ=/ γ
γ
αβ

β
βααβ

β
α  

Using the relation (C.15) for the commutator and the identity 

[ ] ,, .
γβ

γαα
ββ

α γΓ−Γγ=γ∂  (B.8) 

we obtain 

( )vSSGRvDDvDD cd
cdT /∂−∂++γγ+/=/ αββαβαβα

β
αα 4

1
 

.2 . vDS /γ+ γ
γ

βα
β   (B.9) 

7. Appendix C: The Second Order Dirac Equation 

Let v/  be a spinor. The second order Dirac equation is obtained by 

applying to it twice the Dirac operator. This formulation has some 

advantages and has been studied in [9]. This appendix summarizes some 

of its properties without entering into details. 

Consider the Lagrangian 
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,2 vvmvDvDL //−/γ/γ= β
β

α
α   (C.1) 

where ,a
ah γ=γ αα  and the Dirac matrices aγ  are defined with respect to 

an orthonormal frame (in 4-dimensional Minkowski space). In the 

following we assume that the aγ  matrices are such that ( ) aa γ=γγγ + 00  

and .00 γ=γ +  One can find a description of Clifford algebra and their 

representations in [10]. The operator ααααα −+Γ+∂= SWD  has been 

introduced in (B.1). The sum α
αγ= DD  is the Dirac operator. 

The Euler-Lagrange equations give: 

( ) .22 vmDhDhvD b
b

aa
a /−=γγ=/ β

β
α  (C.2) 

From the Lagrangian we deduces the energy-momentum tensor 

,aaaa LhvDvDvDvDT αααα −/γ/+/γ/=  (C.3) 

the spin tensor 

[ ],
4

1
vDvvvDS dcdccd
/γγγ/−/γγγ/= ααα  (C.4) 

and the current associated to the gauge invariance of the electro-

magnetic field ( ) :ααα = ieAWA  

[ ] [ ],..chviDvvDvvvDiJ +/γ/−=/γ/−/γ/= αααα  (C.5) 

where h.c. means Hermitic conjugate. Using (B.7), one checks directly the 

conservation law 

( ) .0
1

=∂ α
α Jg

g
 

We define 

,32105 γγγγ=γ   (C.6) 

which satisfies 
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( ) ( ) .,1 5525 γ−=γ−=γ
+

 (C.7) 

The sets of solutions of the type: vmviD /±=/   are called respectively, .±D  

If ,±∈/ Dv  then: .5
mDvi ∈/γ  

Now we consider the charge conjugation operation and proceed as in 

the case of the linear Dirac equation by taking the complex conjugate of 

Equation (C.2) in order to reverse the sign of the electromagnetic charge, 

and set: ,∗
/=/ vCvc  where C is a matrix operator. The charge conjugate 

spinor cv/  is required to satisfy also the Dirac equation (C.2) with opposite 

charge, which leads to the condition: 

.1 aa CC γ±=γ −∗   (C.8) 

The sign ambiguity comes from the fact that the matrices aγ  are in even 

number in Equation (C.2). Applying (C.8) to itself gives 

( ) ( ) ( ) ,
111 aaa CCCCCCCC γ=γ=γ −∗∗−∗−∗  

therefore ,ICC k=∗  where k  is a complex number, since it commutes 

with all the Dirac matrices. Then: ( ) (( ) ) ==⇒= −∗−∗−∗ 111
CCCC kkk  

( ) ,C∗
kk  therefore k  is real. At last, imposing that ( )ccv/  equals v/  up to 

a phase implies .1±=k  One can add a last contraint which is that the 

probability (see farther) is conserved, that is: vvvv cc //=//
++   whatever v/  is 

( ) ( ) ( ) ( ) ( ( ) ) ,
∗∗++∗+∗+++∗+∗+

//=//=//=//=//=// vCCvvCvCvvvvvvvv cccccc  

and therefore .ICC =+  

In the Dirac representation of the aγ  matrices yC γ=  is a solution of 

Equation (C.8) with the minus sign. We name it .−C   

−γ= CiC 5   (C.9) 
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is a solution of (C.8), with plus sign. It is named .+C  Both solution satisfy 

the relation .ICC =+  If ,±∈/ Dv  then ±
∗

− ∈/=/ DvCvc  and ∗
+ /=/ vCvc  

.mD∈  The Dirac representation has been chosen to find an explicit 

expression of C. For any other representation R equivalent to the Dirac 

representation, the aγ  matrices satisfy an equivalence relation of the 

type .1−γ=γ XX a
D

a
R  Then the condition (C.8) is still true if C above is 

replaced by: .1∗−XCX  

Now we look at the charge conjugation effect on the Energy-

momentum tensor (C.3) and on the current (C.5). We have 

( ( ) ) ( ) ,c
aa vSieAvSieAC /−−Γ+∂γ±=/−+Γ+∂γ ββββ

∗
ββββ±  

where, in this relation .∗
± /=/ vCvc  As a consequence ( ) cvDvDC /±=/

∗
±  and  

[ ] [ ].... chviDvCchviDvJ cccc +/γ/−=+/γ/−= α∗
±

αα  

[ ( ) ( ) ] ( ) [ ( ) ].... 00 chvDivchvDCiCv +/γγ/±−=+/±γγ/−= ∗α∗+∗∗
±

α+
±

+∗  

( ) [( ) ] ( ) ... α∗α =+/γ/±= JchviDv m  (C.10) 

With the solution (C.9) the electromagnetic current is inverted as it 

should be. 

Let us calculate the first term of the Energy-momentum tensor (C.3) 

for the charge conjugate spinor 

( ) ( ) ( )∗α±
+∗

±α /γ±γ/±=/γ/ vDCvDCvDvD a
c

a
c

0  

( ) ( )∗α±
−
±

∗+
/γγ/= vDCCvD a01  

( ) ( ) ( ) ( ) ,0 +
α

∗
α

∗
α

∗∗+
/γ/±=/γ/±=/γγ/±= vDvDvDvDvDvD aaa  

the same treatment applies to L, and finally 
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( ) ( ).vTvT a
c

a
/±=/ αα  (C.11) 

The solution += CC  keeps the energy positivity and reverse the 

electromagnetic current as desired. 

As seen above, if ,±∈/ Dv  then mDvCvc ∈/=/
∗

+  and ( ) vmvJ c /±=/
α 2  

( ).vJv /−=/γ αα  The 4-vector vv /γ/
α  is usually used to define the probability 

density current. Although it is invariant under charge conjugation, there-

fore keeping the positivity of the probability density, it is not a conserved 

current within the second order equation formalism, because, applying 

(B.7) gives: ( ) vDvvvDvvD //+//=/γ/
α

α  (however, if ∈/v  ( ) ).0, =/γ/
α

α± vvDD  

The solution has been given in [9], for solutions of (C.2), by defining 

the probability current: 

( ),
1

2

1
2

vDvD
m

vvJP /γ/+/γ/= ααα  (C.12) 

which satisfies the conservation law ( ) .0
1

=∂ α
α PJg

g
 

Applying the charge conjugation operation, we obtain 

( ) ( ),vJvJ PcP /=/
αα  (C.13) 

and if ±∈/ Dv  the probability current is as usual: .vvJP /γ/= αα  

The current (C.12) can be obtained by transforming the second degree 

equation (C.2) into a first degree system. For that purpose we set 

.ϕ=/γ α
α imvD  Then Equation (C.2) can be put in the form 

.
01

10















ϕ

/












=















ϕ

/
γ α

α
v

im
v

D  

The matrix in the right member is the Pauli matrix .xσ  This equation is 

re-written 
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( ) .














ϕ

/
=















ϕ

/
γ⊗σ α

α
v

im
v

Dx  

Therefore Equation (C.2) is equivalent to the usual linear Dirac equation 

in ( )2+n -dimensional Minkowski space with spinors not depending on 

the co-ordinates ., 1+nn xx  For the extension to higher dimensions of the 

standard 4-dimensional aγ  matrices see for instance [8]. Then the           

6-dimensional vector ,2ΨγΨ α
+n  where: 














ϕ

/
=Ψ

v

 and: α
+γ 2n  are the Dirac 

matrices in 6 dimensions, gives the current (C.12) for .4<α  Its 

conservation law can be checked directly, and can be considered as a 

consequence of the conservation law of the 6-dimensional current. 

Remark. As seen above, in the second order formalism, the solution 

∗
+ /=/ vCvc  conserves the energy positivity, inverts the sign of the 

electromagnetic current, and keeps the positivity of the probability 

current. Applying the charge conjugation operation does not change the 

coupling to the connection, then an antiparticle is coupled to the 

gravitation field as a particle. 

Equation (C.2) is now transformed in order to match Equation (B.4): 

( )vDhDhvD b
b

a
a /γγ=/ β

β
α

α2  

[ ] ., 2vmvDhDhvDDhh b
b

a
a

b
b

a
a /−=/γγ+/γγ= β

β
α

α
βα

βα  

The commutator reduces to 

[ ] ( ) α
ββ

αααα
β

α γ−γ−+Γ+∂=γ DhhSWhD b
b

b
b

b
b

,  

   [ ] β
α

β
α γγγΓ+∂γ=

b
bdc

cdb
b hh ,

4

1
 

and finally 

[ ] ., .
β

γα
γβ

α Γγ−=γ
b

bb
b

hhD  
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Writing ( ) ,αβαββαβαβαβα γ+=γ+η=γγ=γγ=γγ ghhhhhh abab
ba

ba
ba

b
b

a
a  

the second order equation becomes 

[ ] [ ]vDDvDvDDg /γ+/Γ−/ βα
αβ

γ
γ
βαβα

αβ ,
2

1
. ,2

. vmvDS /−=/γ+ γ
γ
αβ

αβ  (C.14) 

where the commutator is 

[ ] ( ),
4

1
, βααβαβαββα ∂−∂++γ= SSGRDD cd

cd   (C.15) 

and 

[ ]., βααββααβ +∂−∂= WWWWG  

The second term of (C.14) implies a term: ,cdab
cdabR γγ  where 

acbdadbcbcadbdaccdababcddcba γη−γη+γη+γη−γη+γ=γγγγ  

.bcadbdaccdababcd ηη+ηη−ηη+γη+  

If the torsion is null, then 0=γabcd
cdabR  by the Bianchi identities of 

the first kind. Using the fact that the Ricci tensor is symmetric if the 

torsion is null, the second order Dirac equation is 

[ ] ,
2

1

4

1 2
. vmvGvRvDvDDg /−=/γ+/−/Γ−/

αβ
αβγ

γ
βαβα

αβ  (C.16) 

( ),0. =α
βγS  

where R is the scalar curvature. 

8. Appendix D: Solutions to the Free Electromagnetic  

Field Equations in 3
Ht ⊗⊗⊗⊗  

This appendix looks for solutions to the electromagnetic field 

equations in 3HtV ⊗=  which can be used as a basis to expand 

eigenvectors . A subclass of them can be interpreted as the equivalent of 
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the plane wave solutions in Minkowski space, in the neighbourhood of 

one geodesic. For local plane wave solutions, see also [13]. We shall use 

cylindrical coordinates (see Appendix A and [1]). The space-time metric 

used is: 

( ) ( ) .2222222 dtdzchdshdds −ρ+ϕρ+ρ=  

The symmetry axis of the cylindrical coordinates (Oz axis) is chosen to be 

the base geodesic of one generator element of the covering group Γ  called 

.0γ  In [1], the scalar functions which are eigenvectors of the Laplacian 

and 0γ  at the same time are of the form 

( ) ( ( ).exp~ , ϕ+µρϕ µµ ννν ziI z   (D.1) 

These functions are invariant with respect to 0γ  if ,2 mLz π=α+µ ν  

where m is a relative integer, L is the length of the transvection and α  is 

the rotation angle around the base geodesic. 

The coordinates of a vector are written on the local natural base as 

.z
z evevevv ++= ϕ

ϕ
ρ

ρ  

It will be convenient to use orthonormal local frames defined with respect 

to the natural frames by α
α
α= ehha  and write α= vhvv a

a ,  a
a vhα=  

but in order to avoid any confusion between the component names and to 

which local frame they correspond, we rename them =v  .a
a hu  

With the above metric we have ==== ==α= 22111 , aa vuvvu  

., 3332 =α==α ρ==ρ vchvuvsh a  

All the Christoffel symbols having an index equal to 0 are null and 

the other are equal to those of the space metric alone. The non zero 

Christoffel symbols are: 

.,, 3
13

2
12

1
33

1
22 ρρ=Γρρ=Γρρ−=Γ=Γ chshshchchsh  (D.2) 
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The non zero coefficients of the first structure equations are 

,,, 321 dzchdshd ρ=ωϕρ=ωρ=ω   (D.3) 

,, 3
1.

2
1. dzshdch ρ=ωϕρ=ω  

which satisfy (1.1). 

The following equations will be used 

( ) ( )( ),..
2 aba

b
aaa vDvDvDgvDgDvD δ

δ
γβγβγβ

βγ
γ

βγ
β Γ−ω+∂==  (D.4) 

where ( ) ,
.

ba
b

aa
vvvD

γγγ ω+∂=  

( ) ( ) ( ) ( ).
111 0

0
321 vu

ch
u

sh
uchsh

chsh
vD z ∂+∂

ρ
+∂

ρ
+ρρ∂

ρρ
= ϕρ

α
α  (D.5) 

The electromagnetic field equations are (4.1) 

( ) ,βαβ
α

β
γ

αγ
α

β =−≡∆ JARADgDA  (D.6) 

here 0=βJ  since we consider free fields, with the Lorenz condition 

.0=α
α AD  

Using the cylindrical coordinates, (D.4) becomes 

( ) ( ) ,
1

222 1

22

3

2

2

2

112 u
chsh

u
ch

sh
u

sh

ch
vvD z

aa












ρρ
+−∂

ρ

ρ
−∂

ρ

ρ
−∆= ϕ

==
 

(D.7a) 

where ( )1=∆ av  means the Laplacian operator applied the component 

11 == avu  as if it were a scalar function 

( ) ( ) ,2 2

2

2
1

2

222 u
sh

ch
u

sh

ch
vvD aa

ρ

ρ
−∂

ρ

ρ
+∆= ϕ

==
  (D.7b) 
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( ) ( ) ,
2 3

2

2
1

2

332 u
ch

sh
u

ch

sh
vvD z

aa

ρ

ρ
−∂

ρ

ρ
+∆= ==

  (D.7c) 

( ) ( ) ,0
00

0
3

0
vvv ∂−∆=∆ =α=α

  (D.7d) 

where ∆3  is the spatial Laplacian. 

Now, by analogy with the plane wave solutions of the Euclidean 

space, we consider waves propagating along the Oz axis, and try solutions 

of the form  

( ) ( ) ( ) ( ) ( ) ( )ztizti eAAeAA kk −ω−ω +ϕρ−=+ϕρ= τντν sin,cos 2211  

( ) ( ) ( ),cos33 ztieAA k−ω+ϕρ= τν  (D.8) 

where τ  is a phase and, a priori, ( ).ρ= kk  In this appendix ω  has not 

exactly the same meaning as in Section 3 (it is up to a factor 2). Since the 

Lorenz condition does not fix completely the gauge, we chose: .00 =A  

In the Euclidean case, the equivalent of Equation (D.7c) is 

homogeneous and 03 =A  is a solution. Setting 21 AA =  gives solutions 

of the form: ( ),22
1

2 ρ−ω= − kνJA  where 1−νJ  is the cylindrical Bessel 

function of index .1−ν  When k=ω  and ,1=ν  one obtains the 

standard plane wave solution propagating along the Oz axis with electric 

field aligned with the Ox axis if 0=τ  and aligned with the Oy axis if 

.2π−=τ  

With the hypothesis (D.8), the Lorenz condition (D.5) is 

( ) ,0
1 3211 =

ρ
−

ρ
−∂−ρρ∂

ρρ ρρ A
ch

i
A

sh
zAiAchsh

chsh

k
k

ν
 (D.9) 

and the z dependence implies .0=∂ρk  

For b
a

b
aRRH δ−=→δ−= β

α
β
α 22:3  for the spatial components of the 

Ricci tensor (R = 1). Using expressions (D.7) in (D.6) gives the following 
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equations: 

( ) 1

2

2
1

2

2

22

1 1
1

1
A

ch
A

shchsh
Achsh

chsh ρ
−











ρ
+

ρρ
+−∂ρρ∂

ρρ ρρ
kν

  

( ) ,122 122

2

3

2
AA

sh

ch
A

ch

sh
i ω+−=

ρ

ρ
+

ρ

ρ
+ νk   (D.10a) 

( ) 2

2

2
2

2

2
2 11

A
ch

A
sh

Achsh
chsh ρ

−










ρ

+
−∂ρρ∂

ρρ ρρ
kν

 

( ) ,12 221

2
AA

sh

ch
ω+−=

ρ

ρ
+ ν  (D.10b) 

( ) 1

2

3

2

2
3

2

2

2

3 2
11

A
ch

sh
iA

ch
A

shch
Achsh

chsh ρ

ρ
−

ρ
−











ρ
−

ρ
+∂ρρ∂

ρρ ρρ k
kν

 

( ) .1 32 Aω+−=  (D.10c) 

There are 3 unknown functions and 4 equations including the Lorenz 

condition (D.9). First consider Equation (D.10b). If we had ,21 AAch =ρ  

it would become homogeneous 

( ) ( )
( ) ,1

11 222

2

2
2

2

2
2 AA

ch
A

sh
Achsh

chsh
ω+−=

ρ
−

ρ

−
−∂ρρ∂

ρρ ρρ
kν

 

which is the defining equation of the scalar field Laplacian eigenfunction 

radial part (Equation (14) in [1] ), then ( )ρ−1,
2 ~ νkIA  would be a 

solution. 

We assume that 

( ) .1 ρρ= chfA   (D.11) 

The Lorenz condition (D.9) is then 

,23 A
sh

ch
f

sh

ch
fAi

ρ

ρ
−

ρ

ρ
+∂= ρ νk   (D.12) 
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which can be used in (D.10a). Combining with (D.10b) one obtains 

.~ 1,
2

mνkIfA ±   (D.13) 

If ,0=ν  the only possibility is .~ 1,kIf  

This solution satisfies Equations (D.10a), (D.10b) and the Lorenz 

condition defines .3A  It remains to check the compatibility with 

Equation (D.10c). The Laplacian operator (see Appendix A and Section 4) 

dd δ+δ=∆  commutes with ,δ  then if the Lorenz condition is satisfied 

one has: 0=δω∆=ω∆δ  which shows that the Equations (D.10) are not 

independent, and that (D.10c) is automatically satisfied. This can be 

checked directly. After some algebra we obtain ( ) ,0D.10c =∂z  and since 

( ) zie k−~D.10c  this means that (D.10c) = 0. 

The equations of the electromagnetic field with the Lorenz condition 

are satisfied by the hypothesis (D.8) and the solution (D.11), (D.13). The 

general solution for a field propagating along the Oz axis is: 

[ ] ( ( )) ( ),sin1,1,
2 ztieIdIcA k

kk
−ω

+− +ϕ−+= ∑ νν

ν

ν

ν

ν
τν   (D.14a) 

[ ] ( ) ( ),cos
1

1,1,
1 ztieIdIc

ch
A k

kk
−ω

+− +ϕ−
ρ

= ∑ νν

ν

ν

ν

ν
τν   (D.14b) 

[ ] ( ) ( ),cos3
1,

3
1,

3 zti
z eTdTcA k−ω

− +ϕ−=∂− ∑ νν

ν

ν

ν

ν
τν   (D.14c) 

where, with ( ).1;1 ,,
3
, νννν ε+

ρ

ρ
+∂=±=ε ε+ε+ρε kk I

sh

ch
IT  

Each single ν  mode is an eigenvector common to the Laplacian and 

0γ  if: ,2 mL π=α+ νk  where m is a relative integer, for a given value of 

,ω=β  and can be used to find solutions to the free electromagnetic field 

equations in compact hyperbolic manifolds as expansion over these 

modes. 
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In Euclidean space, the case 1=ν  corresponds to plane waves 

propagating in the Oz direction with linear polarization. With the gauge 

,00 =A  the electric field is co-linear to A  which is then contained in the 

constant phase surfaces ,Ctz =  in other words: .03 =A  In 3H  this is 

impossible, because if ,03 =A  then Equation (D.7c) implies ,01 =∂ uz  

and ( )az 7.D∂  would give .02 =∂ uz  This is not a propagating wave. 

Therefore, the vector A  can not be tangent to the constant phase surface 

Ctz =  everywhere. 

Using the recurrence relations for the cylindrical function derivatives 

[1], one gets if :1=ν  

( )
,ImRe

2

1
1,11,1

22
3

1,1 ++− +
β−−

= kk k
k

ii IIT  

with:                      ,Im4 2,1,1 kk k I
ch

sh
Ii ρ

ρ
−=+  

and:                 
( )

.
8

1
4Re4 2,

22

0,1,1
3
1,1 







 β−−
−

ρ

ρ
== + kkk

k
II

ch

sh
IT i  

The choice  01 22 =β−−k  and 01 =d  gives 

( ) ( ) ,sin 10,
12 ztieIcA k
k

−ω+ϕ−= τ  

( ) ( ),cos 10,

1
1 ztieI

ch

c
A k

k
−ω+ϕ

ρ
= τ   (D.15) 

( ) ( ).cos
4 12,

2
133 zti

z eI
ch

sh
cAiA k

k

k
k

−ω+ϕ
ρ

ρ
−==∂− τ  

For ( )ρ→ρ 33 ~,0 shOAik  which means that in the vicinity of the Oz 

axis the vector ,A  and therefore the electric field, are tangent to constant 

phase planes. It can be checked that near the Oz axis the magnetic field is 

also tangent to these constant phase plane. In conclusion, the solution 
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(D.14) looks like an Euclidean plane wave if 1=ν  in the neighbourhood 

of the geodesic Oz. 

In order to get more insight, we can look at the behaviour of solution 

(D.15) when .∞→ρ  The cylindrical radial functions cos, νν QI →k  

( ) ,ρρ+βρ chshνκ  where νQ  and νκ  are respectively an amplitude 

and a phase. 1A  becomes negligible with respect to 2A  and .3A  The 

potential vector is perpendicular to the radial vector 1h  and the solution 

looks like a elliptical polarisation in the radial direction. 

This can be compared with the solution obtained in spherical 

coordinates. The electromagnetic potential is expanded on the 

orthonormal set of vector spherical harmonics [11]: 

( ) ( ) ( ) ( ) ( ) ( ).,,, 332211 ϕθχ+ϕθχ+ϕθχ= VfVfVfA  

where ( ) ( ) 11 ,, hYV m
l

ϕθ=ϕθ  (here 1h  is the radial vector attached to the 

spherical coordinates), and ( )ϕθ,2V  and ( )ϕθ,3V  are the other vector 

spherical harmonics. For each pair ( ),, ml  the field equations are 

satisfied by (up to a constant factor): 

( )
( ) ,,

1

1
, 31

2
21

ll ffsh
shll

fshf βχβ φ=χ∂
χ+

=χφ=  

where ( ) ( )χ
χ

=χφ µ
λβ B

sh

l 1
 and ( )χµ

λB  are the Legendre functions with 

parameters 

.
2

1

2

1
li −−=µβ+−=λ  

When ∞→χ  the radial function behaves as ( ) ,cos~ χ+βχφβ shl
l

κ  

then 1f  becomes negligible compared with ,, 32 ff  and the 

electromagnetic field is orthogonal to the radius direction, as in the 
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cylindrical case. This is consistent since the plane Ctz =  is 

asymptotically tangent to the cone of summit O and angle ( ) .cos thz=θ  
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