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Abstract

Compact three dimensional spaces of constant curvature without border
can be considered as cavities for free electromagnetic fields. For space-

times of the form: ¢t ® static space, this note shows that the
electromagnetic field spectrum is the same as the Laplacian eigenvalue

spectrum of a scalar field in those spaces.

Introduction

An attempt to compute numerically the first Laplacian eigenvalues of
a scalar field in 3-dimensional constant curvature compact hyperbolic
manifolds without border, has been presented in [1]. These geometries
can be considered as cavities for free electromagnetic fields. The goal of
the present note is to extend the results obtained in the scalar field case

to the free electromagnetic field and to show that the eigenvalue spectra
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are the same.

The space manifolds considered here, which are called M, are
isometric to the quotient H"/I', where H" 1is the n-dimensional
constant curvature hyperbolic space (Appendix A), and I" is a group of

isometries of H" called the covering group in the following (in this note

n = 3). For a complete study of constant curvature spaces, see [2]. In this

note, the space-times in which the fields evolve are of the form: V =t ® H 3,

V =t ® M, where t is the time coordinate.

In the case of the scalar field there are, at least, two ways to compute

the first Laplacian eigenvalues.

— Find a set of common eigenvectors of the Laplacian A in H 3 and
one generator of the covering group I', which will be named YO, then

expand the eigenvectors of the Laplacian in M on this set, and then

impose the other periodicity constraints.

— Choose a I' periodic test function in H 3 and use the Rayleigh

theorem [3] to find bounds on the eigenvalues.
Another numerical method has been presented in [4].

The first method was chosen in [1]. It could be directly applied to the
case of vector fields but this becomes complicated. The main part of this
note shows that the Laplacian eigenvalue spectra of a scalar field and a
free electromagnetic field are the same without calculating these
eigenvalues. Once the eigenvalues are known it is easier to compute
numerically the eigenvectors. The necessary elements are provided in
appendices, but no attempt has been done to compute the eigenvectors
explicitly.

The identity of the spectra is shown in Sections 2, 3 and 4. The
technique used is to express scalar and vector fields as tensors built from
spinors. Appendix A shows that, using cylindrical coordinates, the YO

periodicity condition are the same for scalar, vector or spinor fields.
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The first section sets the notations and recalls very briefly some basic
geometrical equations. Some technical calculations have been gathered in
Appendix B. Appendix C, although a little bit long for our purpose,
discusses the advantages of considering the second order Dirac equation.

At last, Appendix D provides solutions to the free electromagnetic field
equations in V =t® H 3 which can be used to build eigenvectors in

M = H3 /T, and discussed the existence of “plane wave” solutions.
1. Notations

The space-time coordinates {x*} of a point x are labelled with Greek

letters: o, B, v..., 0 <, B, ¥, ... < n. The time coordinate is: x?. The

vectors of the local natural frame are written e, e_[;, .... When tensors

are expressed with respect to local orthonormal frames they are labelled

with Latin letters: a, b, c.... The orthonormal local frame basis vectors
are called h,, and we set , = h® e,. The metric tensor is gop, and

goCB is its inverse. The determinant of the metric tensor is called g. The
signature of the metric is: (+ — — —). In the case of local orthonormal
frames, the metric tensor is written: mn,, and its diagonal terms are:

Nee = (+1, =1, =1, —=1). Latin indices are lowered with 1, and raised

with the inverse tensor n.

In the neighbourhood of a given point, the local coordinates, with

respect to the local orthonormal frame attached to this point, are given by

the 1-forms: ©® = h$ dx®, which satisfy the structure equations:
a
do? + o, Ao? = Z , (1.1)

where: %, = (soabydxY are the connexion 1-forms and Za is the torsion
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2-form. We shall also write % =% o° < 0% =o0 hl. The

a
by
connexion 1-forms are related to the connexion coefficients by
T% h3hP + hga hd.
The connexion coefficients are the sum of two terms:
o _ o Qa
Ty = Tlpy + Sy

where the first term on the right is the Christoffel symbol and the second

is the contorsion tensor. The contorsion is anti symmetric with respect to

the two first indices: §0€BY + §B°¢Y = 0. The torsion tensor is:

1 1,5 =
S(.XBY = § (F(.IBY - F(.xyB) = § (Sfxﬁy - S(.lyﬁ),

and inversely: §TXBY = S(-XBY - S%~Y YB’ SY By = g“ssw.
The torsion 2-form is: za = Zc‘lbc_cob Ao = — th‘?‘BdeB Adx?.
We set: f‘_’b = MhahB + hgayhf.
The curvature 2-form is defined by
Q%) =do?, + 0’ N0, = RY of Aol
2. Outline

In this note, the electromagnetic field, which will be noted A%, i
studied in static four dimensional space-times of the form: V =t ® H 3,

V=t®M.In H 3, elementary rigid motions, which are not symmetries,

are either rotations around an axis or transvections (which generalize
translations) along a geodesic called base geodesic. Each element of the

covering group is the product of a rotation and a transvection having the
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same axis. Isotropic spaces are symmetric spaces and have no torsion.
This applies to the spatial part only, but in the following calculations, the

space-time torsion is set to S‘?‘BY = 0. However, in Appendices B and C
torsion has been re-introduced to get more general relations.

Cosmology studies the evolution of universes whose unperturbed
metric is spatially isotropic and of the form [5]: ds® = a®(m)[dn® +
yijdxidxj ], where m is called the conformal time and the indices i, j

correspond to spatial coordinates. For these cosmological metrics, the
equations of motion of scalar and vector fields show that the technique of
variable separation can be used (separation of the conformal time from
the spatial coordinates) if these fields are expanded on the eigenvectors of
the 3-dimensional spatial Laplacian operator 3A. This justifies the form

of the space-times V chosen above.

The most direct approach would be to proceed as in [1], that is to say:

find solutions of the electromagnetic field equationsin V =t ® H 3 which
are also eigenvectors of one generator of I, and then impose the

periodicity conditions corresponding to the other elements of the covering
group. As in [1], it is difficult to avoid using numerical method, which is
not satisfactory. Appendix A shows why cylindrical coordinates are well

suited to the search of solutions for vector and spinor fields.
Therefore we shall proceed as follows.

Given a set of tensor fields satisfying some relations between them, it

was shown in [6] that there exist a spinor field » such that they can be

written as #y" with: v® = y*1y*2 . y* where all the Y% (1 <i < h)
are different. In the following, we shall assume that scalar fields and

vector fields can be written respectively (up to a multiplicative constant)

as product of spinor fields of the form: $¢ and #7*¢. One can show that

interaction tensors of the form Eyh(p satisfy also the relations (1.3) and
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(1.2) of [6]. In [6], the construction does not require that the spinor

satisfies the Dirac equation. In Sections 3 and 4, it is assumed that » and
¢ satisfy the second order Dirac equation (Appendix C), and we shall

look at the constraints on the spinors resulting from the scalar and
electromagnetic field equations and show that such a construction is
possible by comparing the number of constraints and the number of

degrees of freedom.

If the scalar field S = p¢ is an eigenvector of the Laplacian in H 3

the spinors » and ¢ must satisfy some constraints. This is shown in
Section 3. The vector field a® = #y%*¢@ can not represent directly the

electromagnetic field A*. A gauge change must be applied in order to

satisfy the field equations and the Lorenz condition Dy,A%* = 0. In
Section 4, we show that if: A* = a® + g“Ban with f = ppe and if 9o is

an eigenfunction of the 3-dimensional space Laplacian, then the
electromagnetic field equations and the Lorenz condition can be satisfied
and that they represent 4 constraints. In Section 4, it is shown that the
total number of constraints is less than the number of degrees of freedom,

therefore it is possible to find » and ¢ such that the field equations are
satisfied.
If the scalar field S (eigenvector of the spatial Laplacian) satisfies the

periodicity conditions in H 3 for some frequencies (eigenvalues), then this

must also be true for the spinors » and ¢. Therefore, this will also be

true for the electromagnetic field A%, with the same frequencies, and

conversely, showing that the scalar and the electromagnetic fields have

the same spectra if M = H3/T.

3. The Scalar Field

We first consider a free scalar field S whose Lagrangian is
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L =03,58"g"9pS - m?S*S.

The Euler-Lagrange equations are: AS = L aa(\/gg“BSBS) = -m?8.

Je
We assume that S can be written as the product of two spinors
S =70, (3.1)
where p and ¢ satisfy the second order Dirac equation (C.16) with

masses my and mg, respectively.

Note that (3.1) is not the only scalar that one can build from two

spinor fields. For instance we could have considered S = a¥¢ + bDyv

gO‘BDB(p, where a, b are constant parameters, but this brings no

simplification and no cancellation in the calculations.

Equations (B.4) and (C.16) give
R —_
AS = Do(g®DyS) = [ 5 —mi* ~ my® o + 28 DowDye. (3.2)
If v, ¢ ~ eimt, S 1s independent of ¢. Then we chose p ~ eiimt(p ~ eii‘”t,
then

_ _ R, —
SA[Tg) = ~40%¢ + [my® + my” ~ - 199 — 28 DowDye, (3.3)

where 2A is the 3-dimensional Laplacian operator for M or H 3,
We are interested by scalar fields which are eigenfunctions of the
Laplacian on the manifold M : 3Af = —Af, then one has the condition

28" DowDgo ~ V9. (3.4)

Remark. In [1] and in many publications, the eigenvalue problem is
written as: SAf = — (1+ B2)f which is convenient if spherical coordinates

are used.
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If M is a manifold without border, then for any function A (sufficiently
well behaved):

j (Af) hAV = — wj frhdV = j 3o(Vzg®agf* hd?x
M M M

- '[Maa(\/ggaﬁaﬁf%)d?’x -| | &P aghgd’

The first integral is zero since M is assumed without border. If we set

h = Ct, then for A # 0, one has the constraint JMde = 0.

Is this condition compatible with the hypothesis (3.1)? Let us

consider: %Dz(p, where D = y*D,, is defined in Appendix C. Using (B.3):
7D = 5Y*DyDo = Dy(#y* Do) — Dgry® De.

The first term of the right member is a divergence, therefore, if oM = 0 :

JiDz(pdV = —JD_WD(pdV. If ¢ is a solution of the second order Dirac

equation j DyDodV = my> j vodV.

If p € D, (see Appendix C) and ¢ € Ds, then j 4 70dV =0 which is

consistent with the above constraint.

4. The Vector and Electromagnetic Fields

The equation of motion of a vector field a* with mass m can be
deduced from the Lagrangian Ly = g“ngDQa”DBaV - m2auall + Lg,
where Lg represents source terms. There are other possible Lagrangians.

The Euler-Lagrange equations are

g*P Dy Dygat - RHBaB = -m2a" + J¥, (4.1)
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where J" represents source terms. In the following we consider only free

fields, then J" = 0. The Lagrangian of the electromagnetic field A% is
1 (xB
LA =_ZFOCBF +Ls,

where Fyg = dqAp —dpAy = DyAp — DAy (the last equality is true

when there is no torsion). The corresponding equations of motion are

g*P Dy DgA* ~ R*}BAB - g™ D, DAY = J¥(= 0). (4.2)

The gauge freedom is used to impose the Lorenz condition DYAY = 0.
In the differential form formalism the Laplacian operator is defined
as A=~dd + dd, where: & is the adjoint of the differentiation operator d.

Applying this definition to the 1-form ® = a,dx®* gives
- Aa* = gYBDYDBaO‘ - R‘?‘Baﬁ,

where: EB and E(-XB are the covariant derivative and the Ricci tensor

computed with the Christoffel symbols only instead of the connexion
coefficients, as if there were no torsion, although this expression is valid
also with torsion. Note that: Ad = dA and A3 = 8A, two properties which

will be used later.

We assume that one can write a® = §7*¢ where, as for the scalar
field, » and ¢ satisfy the second order Dirac equation with masses m;

and mq, respectively. Then, using (B.4) and (C.16), one has:
w_ (B2 o-n pu v aBy M
Adt =[5 = mi —ma |0y - RY,0Y ¢ + 2™ Doy v Dgo. (4.3)

If one wants a® = ¥y%@ to represent the electromagnetic field, the

Lorenz condition must be satisfied. Using the same calculation as for
(B.7), we have:
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Dya® = Dy (#7*0) = Dy ¢ + 7D
If, as in the scalar case, y € Dy and ¢ € Dy, then
Dya® = Fi(my + my)po. (4.4)
It is now assumed that the electromagnetic field A% is equivalent to the
vector field a® up to a gauge change: A* = a® + gO‘BE)Bf whence
D A% = Dya® + Af = Fi(my + my)bo + Af.

If: f = upo where p is a constant coefficient, the Lorenz condition looks
like an eigenvalue condition. Let us assume that A(P¢) = A¥@, then the
Lorenz condition is satisfied if pA = +i(m; + my), and the electro-

magnetic field is
A% = 9y + g®Puds (o). (4.5)

The free electromagnetic field equation is then such that: Aa" + A(g*lB
dgf) = 0. As seen above the Laplacian of a gradient field is equal to the

gradient of the Laplacian, then using (4.3), the field equations are
R _ _
Adl =[5 - mf - m3loy'e - RLYo

+ 28" Do v Do + g"Puog (A[@e)) = J*. (4.6)

These equations represents 4 constraints. Are they independent and are

they compatible with the Lorenz condition? Since the divergence

operator commutes with the Laplacian (A8 = 8A), we expect D, J" =

DyAA" = AD A" = 0. This is now checked directly.

We first compute DyJ¥, where Jy* = g® Dy y*Dgg. Using (B.7)
and (B.9), one has
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D].LJUu = gOLB [DTDocwDB(P + DocwDTDB(P],

1 _ PR
DIy = 7 8% Reaya (WYY Dy + Dyoy'y*g)

+8 OcB[DochDB(p + DoyDg D).

cde ce,,d de,,c ecd

Y-+ and
using the Bianchi identities of the first kind in the first bracket, it

With ,ch,Ye — nde,yc _nce,yd +y and 'Ye'YCd =1

remains
1 _ — [ _
DyJyt = 3 RP (Y Dpo + Dry°e) + g**[ Dy DvDgo + DD Do.
Finally, with (B.3)

1 _ .
DJy* = 5 REDy(#v°9) + g**[Dy DvDyo + Do Dy Do,

where, according to our hypotheses R", ~ 8.

Replacing this term in the divergence of (4.6) and using (4.4) gives

Dul* =[5~ mf - m§ | @ilmy +my)o
+ 28°[ Do DvDgo + DywDy Dol + uD, (205 (AT g))).
With » € D, and ¢ € Dy and with
D,(g"P95(a9)) = AD,(g*P35(79)) = AA[@9),

we obtain

DeT* = @ilm + ms) (5 = m® = m3 1 + 2¢°° DywDyo - AF9)),
which, with condition (3.2) gives DyJ = 0.

Therefore, the four Equations (4.6) are compatible with the Lorenz
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condition and are in fact three independent equations only.

The constraints used are now recalled. The spinor fields » and ¢ are
such that S =7y¢, and are solutions of the Dirac equation. This is

1+ 4x2 constraints. Then the condition (3.4) is necessary if S is an
eigenfunction of the spatial Laplacian. The vector (4.5) must satisfy the
four Equations (4.6) or three of them plus the Lorenz condition, that is
four conditions. The total amounts to 14 conditions, the two spinors

representing 16 real functions.
5. Appendix A: Coordinates and Transport of Local Frames

5.1. Hyperbolic spaces
The hyperbolic n dimensional space H" is defined as the upper part
of the sphere of radius ,[K| in the Minkowski space M™"!. More
precisely, if {x®} are Cartesian coordinates in M™™ with origin Oy,
H" is the surface defined by:
n-1

E x%x® —x"x" = K,

a=0
where K < 0 and: x" > /|K|. We set R = |/|K].
The correspondance between the spherical coordinates (y, 6, @) of

H?, where (8, ¢) are the usual polar angles with respect to some local

orthonormal frame Oxyz and the coordinates of M 4 s

x? = Rshyc, ¢ =cos(0), s = sin(6),
x° = Rshyscy; co = cos(), s, = sin(0), (A.1)

Rshyssg, x3 = Rchy,

8
Il
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x>0, 0¢]0, 7], ¢ce]l0,2n].
Then the linear element of H® is
ds? = (dx°)? + (dx')? + (dx?)? - (dx®)?
= Rz[dxz + sh2x((d8)? + s%(de)? )]. (A.2)

The coordinates (), 6, @) are the Riemann normal (spherical) coordinates

with origin at 3 = 0, which corresponds to the point (0, 0, 0, R) in M*.

The curvature tensor is Rygys = —% (gow 85 — Sas8py)» the Ricci tensor
R

. 2 6 .
i1s Ry = _Fgaﬁ’ and the scalar curvature Ry = —F. R is a scale
factor, in the following it is set to 1.

H", which is a space of constant curvature, is a symmetric space. A
transvection in a symmetric space is an isometry which generalizes the
notion of translation in Euclidean space. It is defined as the product of
two successive symmetries with respect to two different points A and B.
The geodesic going through these two points is invariant and is called the
base geodesic. In H 3 one can perform a rotation around this base
geodesic, it commutes with the transvection and the base geodesic is
invariant. The base geodesic of a transvection 7y is given by the

intersection of the invariant plane, associated to the real eigenvalues of

the SO(3, 1) element representing y in M 4, with HS3.

The elements of the covering group I' are screw motions. A screw
motion is the product of a transvection by a rotation around the base

geodesic of the transvection.

Since H? is isotropic, it is always possible to chose a particular

generator of I' such that its base geodesic defines the Oz axis of the

spherical coordinates. This particular generator is named YO in the
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present note.

The Laplacian operator acting on a form @ is defined as A ~dd + 8d,
where & is the adjoint of the differentiation operator d.w of degree 0
corresponds to the case of a scalar field, and @ of degree 1 to the case of a
vector field. The Laplacian operator commutes with all the isometries. It
is then possible to find a common set of eigenvectors to A and one of the
generator of I' (only one, because the generators of I' do not, a priori,
commute between themselves). The action of rotations around the Oz and
Ox axis, and transvections along the Oz axis, on the vectors of local

frames, has been described in ([7], Appendix A).
If we call L the length of the transvection, which is twice the distance
between A and B, a point p whose spherical coordinates are (x, 0, @) is

transformed, by a transvection along Oz, into a point g of coordinates

(Xq> 84> 94) given by
ch(xq) = ch(x)ch(L) + sh(x)sh(L)c,
¢qg = (ch(x)sh(L) + csh(x)ch(L)) [ sh(xq ), (A.3)

Pg =0,
where ¢ = cos(8) (as in (A.1)) and ¢, = cos(8, ).

Depending on the problem it could be more convenient to use
cylindrical co-ordinates as described in [1]. The axis of these cylindrical
coordinates is chosen to be the same as the polar axis of the spherical
coordinates. These coordinates are named: z which is defined as the
distance between the origin of the coordinates and the orthogonal

projection of a point on the geodesic Oz, p the radius equal to the
distance between the point and its projection, @ the cylindrical angle, the

same angle as for spherical coordinates.

The correspondence between the cylindrical coordinates of H 3 and
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those of the Minkowski space M 4 s given by: x = (shpcq,, shpsg, chp

shz, chpchz), where: Co and S are defined above in (A.1).

The metric 1s:
ds? = dp? + sh2(p) (do)® + ch®(p) (dz)*.

A rotation by an angle o around the Oz axis changes only the azimuthal

angle: @ - @+ a. A transvection along the Oz axis of length L = 2AB
changes only the z coordinate: z — z + L. The action of a screw motion,

along the Oz axis, is given in M 4 coordinates by:

x’° Cor ~ 8o 0 0 1(x°
x| s Co, 0 0 ||t
x2| |0 0 chL shL || x2 |
x3 0 0 shL chL |\ x3

where ¢, = cos(a), s, = sin(a).
The vectors e, of the natural local frames are given in M 4 by
ey = (chpcg, chpsy, shpshz, shpchz),
eg = (- shpsg, shpcg, O, 0),
es = (0, 0, chpchz, chpshz).

It is now easy to find how such screw motions along the Oz axis act. Using
cylindrical coordinates, a screw motion along the Oz axis transforms the

local frame basis vectors as
0 _ 0
Y (hg (%)) = he (Y x). (A9

In the case of the spherical coordinates, the transported frame would

be equivalent to the local frame up to a rotation since rotations and

transvections are isometries of H". The advantage of using cylindrical
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coordinates is the following. A vector field can be written as V(x) = V¢

(x)hy(x). If this field is periodic under the action of Y, only the

components have to be periodic, there is no additional rotation to take

into account. These components can be expanded on fonctions of the form
Ve ~ oi9th) with the constraint va + kL = 2nm, where m is a relative

integer, as for the scalar case ([1]).

Likewise, spinors are defined with respect to (space-time) local

orthonormal frames, therefore, using cylindrical coordinates, YO

periodicity conditions apply only to the spinor components.

5.2. Spherical spaces

The spherical n-dimensional space S™ is defined as the sphere of

radius R in the Euclidean space E"™. For S3 in E* : 2% = Rsin Xc
x! = Rsin XSCo> x? = Rsin XSS x3 = Reosy, (A.5)
x, 0e[0, ], o¢el0,2n]
Then the linear element of S? is
ds® = (dx®)? + (dx)? + (dx®)? + (dx® )?
= R2|ax? + sin? x((d0)? + s2(do)?)]. (A.6)

As above R is set to 1. With the same notations as in the hyperbolic case,

a point of coordinates (X, 0, @) is transformed, by a transvection along Oz,

into a point whose coordinates are given by:

cos(x4) = cos(x) cos(L) — sin(x) sin(L)c,
¢q = (cos(x) sin(L) + ¢ sin(x) cos(L)) / sin(x, ), (A.7)

Pg = 0.
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The correspondence between the cylindrical coordinates of S3, which

are defined as in the hyperbolic case, and those of the Euclidean space
E* is given by x = (spc(p, SpSgs CpSzs cpcz), where ¢, and s, are defined
in (A.1),

¢y = cos(p), s, = sin(p), ¢, = cos(z), s, = sin(2).
The metric is:

ds® = dp? + sg(d(p)2 + cg(dz)z.

In E*, a screw motion whose base geodesic is Oz has the form:

0 [eq ~ Sa 0 0 («°
x! 8 Cal 0 0 || !
' i 0 0 cr s, | | x* ,
%) Lo 0 — S, e ) \a?

where: ¢;, = cos(L), s;, = sin(L).
The vectors of the natural local frames are given in E 4 by:
e = (cpc(p, CpSg> — 5pSz> = SpCz ),
eg = (- 8pSg> SpCg» 0, 0),
es = (0, 0, N cpsz),
which can be used to show that (A.4) is also true in the spherical case.

6. Appendix B: Tensors Built from Spinors,

Derivatives and Laplacian

The calculations of this appendix are performed in the more general
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case of spaces with torsion and with coupling to gauge fields W,

although this additional environment will not be used in the main section

of this note.

We consider tensors of the form: #y"7T,¢, where: y* =y*1y%2 ... y%

in which all the y* (1 <i < h) are different (appear only once), and
where T, belongs to a representation of the Lie algebra of the gauge
group.
We set:
Dy =0y +Ty + Wy =S, (B.1)

cnd
where: Ty = [.gq %, Sy = Sy and W, = WyT,. Wy is the gauge

field. It is chosen real, and for a unitary group with real parameters:
T,  =-T,

x:

The tensor derivative is:

DY Ty9) = 9 (37" Te0) + TP L (Y™ -y -y ),

b
9pP
_h T h P}
DB(WY T,9) = Dy v"Tyo + vy T Dgo
— 1 n
N rvg) N Y T0) + 5 Togp D [vy?, "] Teo
trp

+ 28 (FY"T,0) - Woy" (T, T, + T, T, )o. (B.2)

In the following discussion {h} means a fixed set of indices {a, ..., oy }

all different, as above.
If ¢, d e {h}, or if: ¢, d ¢ {h}, then: [ycyd, yh] =0. If ¢ = a; € {h},
d ¢ {h} — [Yv?, ¥ ] = -2ny% % tydy ™y If d = o) e {h),

ce {h) = [v7%, 7] = 2n%y® ..y 1yey®i L 4% Recalling  that



ELECTROMAGNETIC FIELD IN 3-DIMENSIONAL ... 19

spinors are defines with respect to orthonormal frames, and therefore

that T,z = Ty4eq these contributions cancel with the third term of the

right member of (B.2), and it remains
Dy(7Y'Ty0) + C2 Wi (57 Ti0)
= Dgo V' Ty + 57" T Do + 28" (57" T 0), (B.3)

where C?xy are the structure constant of the gauge group: [7), Ty] =

CZ

.xyTz .

The relation (B.3) is very general, in the rest of this note, we shall not
consider any more gauge fields, then (B.3) will be used with 7, = I.

The Laplacian of the tensor field ﬁyh(p involves the term Doc(éJOCB

DB(Eyh(p)) which can be written (if there is no gauge field):

Dy (g™ Ds(37v"9)) = B[D Dgy =T, D yw] Yo
+97"¢% [D,Dgo - Iy, Do) (B.4)
+2¢" Dy " Dgo + 2D, (S“0y"9), (W, = 0).
Let us consider the current:
J* = g%Puo v op, (B.5)

where vy = Do, g = Dg¢ and let us calculate its divergence: div(J)

= Jr e

Using the identity:

= [qu, Fp, ] - - 2SM’YH, (BG)

e o
Vg
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one obtains
div() = 9,8 v 0p + g% [Dvgop + voDep 1,
where
D =vy%(9y + Ty + Wy = Sy).
Finally, with

aug“B = T%.8 % _ F%pg o,
le(J) = guB[DTwa (pB + EDT([)B], B.7)

where we have set: Dpy, = Dy, — F?(auy“wy. Now, in (B.7), we would like

to replace Dpyp, by Dy Dy
Dryy, = YB([DB, Dy I + Do Dgp) — YBFYOCBDYW.
Using the relation (C.15) for the commutator and the identity
91" = [vP, Ty 1 - TP 0y, (B.9)
we obtain
DypDyw = DyDv + 7% i Reggo ™ + o + 4S5 — 93Sq

+2yP87;, Dyp. (B.9)

7. Appendix C: The Second Order Dirac Equation

Let » be a spinor. The second order Dirac equation is obtained by

applying to it twice the Dirac operator. This formulation has some
advantages and has been studied in [9]. This appendix summarizes some

of its properties without entering into details.

Consider the Lagrangian
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L = Y*DyuyP Dgp — m*py, (C.1)

where y* = A%, and the Dirac matrices y* are defined with respect to
an orthonormal frame (in 4-dimensional Minkowski space). In the

following we assume that the y® matrices are such that y°(y% )" y?=y?

and yo+ = yo. One can find a description of Clifford algebra and their
representations in [10]. The operator D, = d, + I, + Wy, — S, has been

introduced in (B.1). The sum D = y*D,, is the Dirac operator.
The Euler-Lagrange equations give:
D% = 3y Dy v Dy ) = - m?. C.2)
From the Lagrangian we deduces the energy-momentum tensor
TS = Dyy®Dyy + Dypy®Dy — LhS, (C.3)

the spin tensor

S = = [Dpy*y“y%y — py°y¥y“Dy], (C.4)

1
4
and the current associated to the gauge invariance of the electro-

magnetic field A*(W* = jeA%):

JO(

= i[Dyy* — 5y*Dy] = — [py%iDv + h.c.], (C.5)

where h.c. means Hermitic conjugate. Using (B.7), one checks directly the

conservation law

—— 3, (g %)
\/_
We define
v = vy, (C.6)

which satisfies
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2 +
=1 ) =-+ (1)
The sets of solutions of the type: iDy = tmyp are called respectively, D,.

If p € Dy, then: iy’y € Ds.

Now we consider the charge conjugation operation and proceed as in
the case of the linear Dirac equation by taking the complex conjugate of

Equation (C.2) in order to reverse the sign of the electromagnetic charge,
and set: ¥, = Cyp*, where C is a matrix operator. The charge conjugate
spinor ¥, is required to satisfy also the Dirac equation (C.2) with opposite

charge, which leads to the condition:
CYy¥* O™t = +y2, (C.8)

The sign ambiguity comes from the fact that the matrices y* are in even

number in Equation (C.2). Applying (C.8) to itself gives

cey ey’ e = (cetyr(eeT) T =,
therefore CC* = kI, where k is a complex number, since it commutes
with all the Dirac matrices. Then: C = k(C*)™! = C = k((}C* 1))t =
(k/k")C, therefore k is real. At last, imposing that (p, ). equals  up to

a phase implies ¥ = £1. One can add a last contraint which is that the

probability (see farther) is conserved, that is: w: Ve = vy whatever p is
@) = ()" = (0 v.)" = v v, = (Cp" ) Cy* = (»H(CTC)"p)",
and therefore C*C = I.

In the Dirac representation of the y* matrices C = y” is a solution of

Equation (C.8) with the minus sign. We name it C_.

C =iy’C_ (C.9)
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is a solution of (C.8), with plus sign. It is named C,. Both solution satisfy
the relation C*C = 1. If p € Dy, then v, = C_p* € Dy and .= C,p"
€ D;. The Dirac representation has been chosen to find an explicit
expression of C. For any other representation R equivalent to the Dirac

representation, the y® matrices satisfy an equivalence relation of the
type 7% = Xy$X 1. Then the condition (C.8) is still true if C above is
replaced by: XCX ",

Now we look at the charge conjugation effect on the Energy-

momentum tensor (C.3) and on the current (C.5). We have
Ci(y“(aﬁ + FB + zeAB - SB )ll?)* = i’Ya (BB + FB - zeAB - SB )ll)c,

where, in this relation v, = Ciw*. As a consequence Cy (Dw)* = *Dyp, and

J* = - [p.y%Dy, + h.c.] = - [Cop*y*iDy, + h.c.]

— YO (B)C (DY)t + ] = — () [PV (v Dy)" + hel

= () [(@Y%Dy)" + hc] = (F)J* (C.10)

With the solution (C.9) the electromagnetic current is inverted as it
should be.

Let us calculate the first term of the Energy-momentum tensor (C.3)

for the charge conjugate spinor
Dy Y Dope = (+C:Dp* )y (£)Cx (v Dyp)*
= (Dp)"" Cz'Y°C(v* Do)’
=+ (D)"Y (y*Dop)" = +(Dvy*Dep)* = +(Dvy*Dyv)",

the same treatment applies to L, and finally
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TE(v,) = £TE ). (©.11)

The solution C = C, keeps the energy positivity and reverse the

electromagnetic current as desired.
As seen above, if ¢ € D;, then p, = C,p" € Dy and J*(3.) = £2m¥

Y*» = —J*(»). The 4-vector py*p is usually used to define the probability

density current. Although it is invariant under charge conjugation, there-
fore keeping the positivity of the probability density, it is not a conserved

current within the second order equation formalism, because, applying

(B.7) gives: D, (5y*v) = Dyy + 5Dy (however, if p € D, Dy(5y%p) = 0).

The solution has been given in [9], for solutions of (C.2), by defining
the probability current:

Jp = %(W‘w + %D_wv“Dw), (C.12)
m

which satisfies the conservation law —— 9, (Vg %) = 0.

Vg

Applying the charge conjugation operation, we obtain
JB(w.) = JB®), (C.13)

and if » € D, the probability current is as usual: J3 = 5y%p.

The current (C.12) can be obtained by transforming the second degree

equation (C.2) into a first degree system. For that purpose we set

Y*Dyv = imo. Then Equation (C.2) can be put in the form

gt WA NN (W

The matrix in the right member is the Pauli matrix ¢*. This equation is

re-written
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(c* ®y* )Do{w] = im[w}
¢ ¢

Therefore Equation (C.2) is equivalent to the usual linear Dirac equation

in (n + 2)-dimensional Minkowski space with spinors not depending on
the co-ordinates x”, x"*!. For the extension to higher dimensions of the

standard 4-dimensional Yy matrices see for instance [8]. Then the

[

6-dimensional vector Wy%,,¥, where: ¥ = { } and: Y5, are the Dirac

¢
matrices in 6 dimensions, gives the current (C.12) for o < 4. Its
conservation law can be checked directly, and can be considered as a

consequence of the conservation law of the 6-dimensional current.

Remark. As seen above, in the second order formalism, the solution
v, = C,»" conserves the energy positivity, inverts the sign of the

electromagnetic current, and keeps the positivity of the probability
current. Applying the charge conjugation operation does not change the
coupling to the connection, then an antiparticle is coupled to the

gravitation field as a particle.
Equation (C.2) is now transformed in order to match Equation (B.4):
D% = h&y* Dy (Y Dgp)

= hgy hY" Do Dge + hy" Do hPv? ]DBw = - m*p.

The commutator reduces to
[Dq. hBy?] = (3g + Ty + Wy — So )y — BBY2 D,
1
= 'YbaochE + 4 Leda ['YC'Yd’ 'Yb]hl[;s

and finally

[Dow hE'Yb] == 'thgr[.%ya-
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Writing  v*P = REYRYY = hIRPY*Y” = hERP(M™ +4%0) = g + %P,

the second order equation becomes
1
gDy Dyy T Dyl 2 y8(Dy, Dyl +9%8S7 gDy = -m%, (C.19)
where the commutator is
1
[Dq. Dgl = Regap¥™® + Gap + (9584 — 3Sp), (C.15)

and
GO‘B = aaWB - BBW(X + [Wa, WB]

The second term of (C.14) implies a term: R, y*°y*?, where

'Ya'Yb'Yc'Yd — ,Yabcd + notb,ch _ naC'de + nOLd,ch + an'Yad _ nbd,Yotc

i T.Icol,Yab i T]abT]Cd _ T.Iacnbal " nadnbc'

abed

If the torsion is null, then R.g,5Y = 0 by the Bianchi identities of

the first kind. Using the fact that the Ricci tensor is symmetric if the

torsion is null, the second order Dirac equation is
(XB [D D Y ] 1 1 OCB _ 2
g - Bw—F.BaDyw ‘ZR”’JFEGOLBY v =—mp, (C.16)
where R is the scalar curvature.

8. Appendix D: Solutions to the Free Electromagnetic
Field Equations in ¢ ® H3

This appendix looks for solutions to the electromagnetic field

equations in V =¢{® H? which can be used as a basis to expand

eigenvectors . A subclass of them can be interpreted as the equivalent of
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the plane wave solutions in Minkowski space, in the neighbourhood of
one geodesic. For local plane wave solutions, see also [13]. We shall use
cylindrical coordinates (see Appendix A and [1]). The space-time metric

used is:
ds® = dp? + sh®(p)de? + ch?(p)dz? — dt>.

The symmetry axis of the cylindrical coordinates (Oz axis) is chosen to be

the base geodesic of one generator element of the covering group I' called

YO. In [1], the scalar functions which are eigenvectors of the Laplacian

and YO at the same time are of the form
O ~ Iy, o (p) exp(i(n,z + ve). (D.1)

These functions are invariant with respect to yo if u,L+vo = 2nm,

where m is a relative integer, L is the length of the transvection and o is

the rotation angle around the base geodesic.

The coordinates of a vector are written on the local natural base as

—_—

N BN .
U—U€p+U€(P+U€Z.

It will be convenient to use orthonormal local frames defined with respect
to the natural frames by h, = hge, and write v = v%h,, v* = hjv?
but in order to avoid any confusion between the component names and to

which local frame they correspond, we rename them v = u®hy,.

With the above metric we have u! =% =% 2 =272 =

shpv®=2, u? = 473 = chpv®3.

All the Christoffel symbols having an index equal to 0 are null and
the other are equal to those of the space metric alone. The non zero

Christoffel symbols are:

T3y = Tiy = — shpchp, T% = chp/shp, Ty =shp/chp.  (D.2)
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The non zero coefficients of the first structure equations are
o' = dp, o’ = shpde, o’ = chpdz, (D.3)
oo?l = chpdo, oo?fl = shpdz,
which satisfy (1.1).
The following equations will be used
D2 = Dy(gP'Dyp)* = gPp(Dp)" + 0%y D’ ~TPpDs),  (D.4)

a _ a a b
where (D,v)" = dp + o7,

L a1 o w?)+ Lo, (u? 0

D,v* = Shpchp d,(shpchpu™) + sho do(u™) + chp d,(u”)+9dg(v”). (D.5)
The electromagnetic field equations are (4.1)

AAP = Do (gD, AP) - REA® = JP, (D.6)

here JP =0 since we consider free fields, with the Lorenz condition

Dy A% = 0.

Using the cylindrical coordinates, (D.4) becomes

(D%0)*! = A1) -2 ch2p a(puz -2 sh2p 82u3 - (2 + %)ul,
shp ch”p sh®pch“p

(D.7a)

where A(vazl) means the Laplacian operator applied the component
u' = v®7! as if it were a scalar function

2
(D%0)*72 = A(v®2) + 2Ch—2p8(pu1 —Ch—zpu2, (D.7b)
sh”p shp
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2
(D2)=3 = A(™=3) + ZZ—ZP 9,u! - Sz—zp W3, (D.7¢)
ch®p ch%p
(A0)*=0 = 5A@W*0) - 9ge0”, (D.7d)

where 3A is the spatial Laplacian.

Now, by analogy with the plane wave solutions of the Euclidean
space, we consider waves propagating along the Oz axis, and try solutions
of the form

Al = A1 (p) cos(vg + 7)) A% = — A2(p)sin(vg + 7)e!(*7F2)

A® = A% (p) cos(ve + T)e! @ F2), (D.8)

where T is a phase and, a priori, k¥ = k(p). In this appendix ® has not
exactly the same meaning as in Section 3 (it is up to a factor 2). Since the

Lorenz condition does not fix completely the gauge, we chose: A =o0.

In the Euclidean case, the equivalent of Equation (D.7c) is
homogeneous and A3 =0 is a solution. Setting Al = A2 gives solutions
of the form: A% = J, ;(Vo? — k% p), where J,_; is the cylindrical Bessel

function of index v-1. When o=k and v =1, one obtains the

standard plane wave solution propagating along the Oz axis with electric
field aligned with the Ox axis if T = 0 and aligned with the Oy axis if
T=-1/2.

With the hypothesis (D.8), the Lorenz condition (D.5) is

0y (shpchpAl) — iA%d hz - —— A2 - 1K 78 _ ¢ D.9)

1
shpchp shp chp

and the z dependence implies dyk = 0.

For H3 : Rg = —28%c - Rg = —262 for the spatial components of the

Ricei tensor (R = 1). Using expressions (D.7) in (D.6) gives the following
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equations:
1 (shpehpa,Al) -1+ L 4V |m_ K
shpchp P P sh2pch®p  sh?p ch?p
+2ik8h—2pZ3+2u0h—2pZz = - (1+0?)A, (D.10a)
ch”p sh”p
_ L (shpehpa,A%)- [Vt 1|z - K g
shpchp P Penpap sh2p h2p
+ ZU—Cth Al = - (1+0?)AZ, (D.10b)
shp

1 —3 1 2 —3 k2 —3 ., shp —1
————d, |shpchpd A° |+ - A° — A° - 2ik—— A
shpchp p( P ) (cth sthJ cth cth

=-(1+ 2 )Z?’. (D.10c)

There are 3 unknown functions and 4 equations including the Lorenz
condition (D.9). First consider Equation (D.10b). If we had chpZ1 =A 2,

it would become homogeneous

(v -1) a2 k>

- . A% = - (1+w0?)A2,
sh”p ch”p

1 A2)-
oo 3, (shpchpd, A2)

which is the defining equation of the scalar field Laplacian eigenfunction
radial part (Equation (14) in [1] ), then A2 ~ Ij ,—1(p) would be a
solution.

We assume that

Al = f(p)/chp. (D.11)
The Lorenz condition (D.9) is then

chp 72 (D.12)

HA3 chp . _
A = of + o f — v
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which can be used in (D.10a). Combining with (D.10b) one obtains
A2t f ~ T 51 (D.13)
If v = 0, the only possibility is f ~ I} ;.

This solution satisfies Equations (D.10a), (D.10b) and the Lorenz

condition defines A°. It remains to check the compatibility with
Equation (D.10c). The Laplacian operator (see Appendix A and Section 4)

A = dd + dd commutes with 8, then if the Lorenz condition is satisfied
one has: dAw = Adw = 0 which shows that the Equations (D.10) are not
independent, and that (D.10c) is automatically satisfied. This can be
checked directly. After some algebra we obtain d, (D.10c) = 0, and since

(D.10c) ~ e™* this means that (D.10c) = 0.

The equations of the electromagnetic field with the Lorenz condition
are satisfied by the hypothesis (D.8) and the solution (D.11), (D.13). The

general solution for a field propagating along the Oz axis is:

A% =3 [Ty + VT (= sine + 7,))e @) (D.142)
v

Al = % Z [CUIk:,u—l - dUIk:,u+1 ] COS(U([) + Tu)ei(mt_kz), (D.14b)
v

-0,A% = E [c”TU?j - d”TU?il]cos(v(p + Tu)ei(mt_k’z), (D.14c¢)
v
. 3 chp
where, with € = £1; 7)), = 9,1}, 4 + Shp Ij e + V).

Each single v mode is an eigenvector common to the Laplacian and
YO if: kL + va = 2nm, where m is a relative integer, for a given value of
B = ®, and can be used to find solutions to the free electromagnetic field

equations in compact hyperbolic manifolds as expansion over these

modes.
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In Euclidean space, the case v =1 corresponds to plane waves

propagating in the Oz direction with linear polarization. With the gauge
A° = 0, the electric field is co-linear to A which 1s then contained in the
constant phase surfaces z = Ct, in other words: A% =0. In H? this is
impossible, because if A® = 0, then Equation (D.7c) implies azul =0,
and d,(D.7a) would give E)Zu2 = 0. This is not a propagating wave.

Therefore, the vector A can not be tangent to the constant phase surface

z = Ct everywhere.

Using the recurrence relations for the cylindrical function derivatives

[1], one getsif v =1:

2 2
3 (k" =1-B%)
T = TBRG Lij11 + K Im Tjpyq 4,
with: 4Im Iik+1,l = - ki;ll_glk’2,
2 2
3 sh Kk —-1-
and: Tl,l :4Relik+1,1 =4ﬁ Ik’o—%lk’z .
The choice k% —1-p? =0 and d' = 0 gives
A2 = - Cllk’o sin((p + Tl)ei(mt_kz),
1 Cl i(wt—kz)
A = o I, o cos(@ + 71 )e , (D.15)

kzshp

3 A3 _ a3 _ _ 1
0,A" =1ikA c 1chp

I} o cos(o + Tl)ei(mt_kz).

For p — 0, ikA® ~ O(sh®p) which means that in the vicinity of the Oz

axis the vector Z, and therefore the electric field, are tangent to constant

phase planes. It can be checked that near the Oz axis the magnetic field is

also tangent to these constant phase plane. In conclusion, the solution
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(D.14) looks like an Euclidean plane wave if v = 1 in the neighbourhood
of the geodesic Oz.

In order to get more insight, we can look at the behaviour of solution

(D.15) when p — . The cylindrical radial functions I;, — @, cos
(Bp + #,,) / Jshpchp, where @, and &k, are respectively an amplitude
and a phase. A" becomes negligible with respect to A? and A®. The

potential vector is perpendicular to the radial vector hT and the solution

looks like a elliptical polarisation in the radial direction.

This can be compared with the solution obtained in spherical
coordinates. The electromagnetic potential is expanded on the

orthonormal set of vector spherical harmonics [11]:
A = H0OV1(8, @) + f,(0)V2(8, 0) + f5(x)V3(8, ¢).

where 71(9, 0) =Y, (6, (p)a (here a is the radial vector attached to the

spherical coordinates), and @(9, ¢) and Vg(e, @) are the other vector
spherical harmonics. For each pair (I, m), the field equations are

satisfied by (up to a constant factor):

fi =0 /shx, fa = max(%zxﬁ), fs = 0p.

1

\shy

where ¢|l3(x) = Bl (x) and Bl'(x) are the Legendre functions with

parameters

x:-%+m w=-Lf_1

1
2
When ) — o the radial function behaves as ¢é ~ cos(By + ;) / shy,

then f; becomes negligible compared with fy, f3, and the

electromagnetic field is orthogonal to the radius direction, as in the
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cylindrical case. This 1is consistent since the plane 2z =Ct 1is

asymptotically tangent to the cone of summit O and angle cos(8) = thz.
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