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Abstract 

We consider a unitary model of a massive tensor and vector field 
interacting with scalars and spinors. It is shown that the scattering matrix - 
not each Feynman diagram apart - can be made finite by appropriate 
relations of the coupling constants, order by order in perturbation. 

1. Introduction 

In a recently published paper [1], we considered a model of a massive vector 

field µW  interacting with a spinor field ψ  and a self interacting scalar field ϕ  

according to the Lagrangian 

 ,43
free ϕλ+ϕλ′+ϕλ+ψγψλ+= µ

µ
µ

µ SSVSFV WWWLL  (1.1) 

where the unitary propagator of a vector field with mass ,Vm  
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was used. The summation in the left hand side (l.h.s.) is over transversal eigenvectors 
µ
λe  only, while longitudinal eigenvectors µk  are absent, so that their negative metric 
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need not be compensated by ghost particles. In this way, unitarity is built in from the 
very beginning. 

The vertices of Figure 1 are represented in the Feynman diagrams of this model. 

 

Figure 1. Vertices of Lagrangian (1.1). 

Because of the momenta in the numerator of the vector propagator, the 
divergences of Feynman diagrams are stronger than in the corresponding scalar case. 
Compensation by counter terms would lead to new and stronger divergences, i.e., the 
theory seems to be non-renormalizable. For this reason, spontaneously broken gauge 
theories have been introduced [2-5] to describe massive vector bosons. 

 
Figure 2. Vector-vector and vector-scalar vertices, excluded from (1.1). 

A second formalism to describe massive vector bosons has been presented in 
[1], where all masses are introduced directly into the Lagrangian so that there is 
global, but no local gauge symmetry. Instead, interactions between two vectors and 
two scalars, as well as three-vector and four-vector interactions, are excluded. These 
have to be described indirectly, by means of an intermediate scalar field or via a 
spinor loop. 

Due to momentum conservation at each vertex, many momenta in the numerator 
are transformed into harmless mass dependent factors. This entails a cancellation of 
divergences, which has been transparently shown, to all orders of perturbation, by 
using configuration space parameters. Thus, the degree of divergence of many 
diagrams of spinning fields is smaller than expected by simple counting of powers in 
momentum space. 

It also has been shown that the divergences of Feynman diagrams with two and 
three external lines and of those with four external scalars become finite by the 
introduction of counter terms. Diagrams with four external vectors and those with 
two external vectors and scalars cannot be renormalized by counter terms. 
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However, it has been shown that the degree of divergence of the latter diagrams 
is logarithmic in lowest order and, due to the restriction of the possible interactions, it 
does not increase in higher orders. In consequence, the divergence of diagrams with 
four external lines is at most logarithmic to all orders of perturbation and, therefore, 
it is possible to construct a finite scattering matrix by imposing appropriate relations 
on the coupling constants. In this sense, the formalism is renormalizable. 

Thus, a narrow escape from non-renormalizibility is obtained in four steps: (a) 
restriction of the possible interactions, (b) a less severe divergence criterion in the 
case of spinning fields, (c) relations of coupling constants and (d) extension of the 
concept “renormalizibility”, it is the scattering matrix that has to become finite, not 
necessarily, by counter terms renormalized, the Feynman diagrams. 

In this paper, the formalism is extended by adding a massive tensor field µνW  to 

(1.1) and we consider the Lagrangian 

µν
νµ

µ
µ ψγγψλ+ψγψλ+= WWLL FTFVfree  

43 ϕλ+ϕλ′+ϕλ+ϕλ+ µν
µν

µ
µ SSTSVS WWWW  (1.3) 

with 

νµ
νµ

µν
µν

µνρ
µνρ ∂∂−−∂∂= WWWWmWWL T 2

12
2
1

2
1

free  

.)( 22
2
1

2
12

2
1 ϕ−ϕ∂ϕ∂+ψ−∂γψ++ µ

µµ
µµ

µ SFV mmiWWm  (1.4) 

It differs from (1.1) by a tensor-spinor and a tensor-scalar interaction and it 
leads to the vertices of Figure 1 and, in addition, to those of Figure 3.  It is invariant 
under global Lorentz transformations, but not under local ones. 

 
Figure 3. Additional tensor vertices of Lagrangian (1.3). 

The propagator of the mass Tm  tensor field is represented by a double wave 

line corresponding to the expression 
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The summation in the left hand side is over double transversal tensors ee ′  only. 
These satisfy the relations 

 ,0::: =′=′′′=′′′ kkeeekeekeee  (1.6) 

with notation 

 ,).)(.(: dbcacdab ≡  (1.7) 

so that longitudinal ( )kk  and half longitudinal (ke  or )ek  eigentensors of the 

propagator have eigenvalue 0 and no ghost fields have to be introduced to 
compensate for their negative metric. Thus, unitarity is guaranteed as long as only 
double transversal ( )ee ′  external tensors come in and go out. 

To make this paper self-supporting, the method of [1] is summarized in Section 
2 and the degree of divergence of the Feynman diagrams resulting from (1.1) is 
discussed in Section 3. In Section 4, we show that the Lagrangian (1.3), unlike 
Lagrangian (1.1), does not lead to a finite scattering matrix, though the formalism of 
[1] is applied to obtain a reduced degree of divergence. 

In Section 5, we show that the Lagrangian 

{ }µν
νµ

µ
µ

=

ψγγψλ+ψγψλ+= ∑ WWLL ffFTfffFVf

g

f 1
free  

,43 ϕλ+ϕλ′+ϕλ+ µ
µ SSVS WW  (1.8) 

in which tensor interactions with several spinor fields, according to Figure 4, are 
allowed, whereas tensor-scalar interactions are excluded, does lead to a finite 
scattering matrix, provided that the number of participating spinor fields is at least 
two ( ).2≥g  
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Figure 4. Tensor-spinor and vector-spinor vertices of Lagangian (1.8). 

 
Figure 5. Tensor-tensor and tensor-scalar vertices, excluded from Lagrangian (1.8). 

2. Massive Vector, Scalar and Spinor Fields 

Configuration space parameters are used to show transparently the cancellation 
of part of the divergences. The formalism may be found in [1] and a summary is 
given in this section. We illustrate the method by means of the most simple scalar 
two-vertex diagram of Figure 6. 

 
Figure 6. Two-vertex scalar diagram. 

Its expression in n  dimensions is 
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 (2.1) 

The l.h.s. is the momentum space expression, the right hand side (r.h.s.) is the 
configuration space expression. The functions )(mxkb  of order 

 12
1 −= nb  (2.2) 

are the Fourier transforms of the propagators. They differ by a factor bmx −)( 2
1  from 
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Hankel functions [6] with a purely imaginary argument, 

 ,)()()( 2
1 mxKmxmxk b

b
b

−≡  (2.3) 

and satisfy the Euclidean Klein Gordon equation 

 .)()( 2 mxkmmxk bb =∂∂ µ
µ  (2.4) 

Properties like series expansion, asymptotic behaviour, recursion relations, 
differential equations and splitting formulas, are found in the appendices of [1]. 
From the r.h.s. of (2.1), the near threshold expansion is obtained by doing angular 

integrations ∫ xd n ˆ  and radial integrations .1−∫ nxdx  Dimensional regularization is 

introduced according to 

 ,ˆ12

0
∫∫∫ −ε+

Λ

= xdxdxxd nn
T

n  (2.5) 

where 

 pmmT −+= 21  (2.6) 

is the threshold. Term by term performance of the integrations yields a sum of 16 
near threshold expansions, 
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The r.h.s. of (2.7) has to be considered in the limit for ∞→Λ  and details about the 

angular expansion coefficient )(0
0 qA  and the radial expansion coefficients ,)(00 kRb  

)(01 kRb  and )(11 kRb  are given in [1]. 

Possible infinities are found as a denominator factor, caused by the close to zero 
x  integration, and it is seen that if 

 ,022
1 >− bn  (2.8) 

all terms in the summations of (2.7) are finite. In four dimensional space ( ),4=n  

the last term gives an infinity for .0212
1 === kkq  Due to the exponentially 

decreasing character of the integrand of the r.h.s. of (2.1), the sum of the remaining 
summations converges in the limit ,∞→Λ  

  terms.finite(2.7)
2
+

ε
π=  (2.9) 

Compared with the Feynman parameter method, this way of computing Feynman 
diagrams is circumstantial in the case of Figure 6, but the method has advantages 
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when applied on diagrams with overlapping divergences. The latter are mixed 
together by the Feynman parameters, but well separated in configuration space. 

In [1], the formalism has been extended to a general scalar Feynman diagram 
with I  internal lines with masses ,0im ijm  ( ),11 −≤<≤ Vji  V  vertices and L  

loops. By counting the orders of the functions )(mxkb  in the integrand, it is found 

that infinities, caused by near zero x -integrations, occur if 

 .0)1(2
1 ≤−− IbVn  (2.10a) 

Counting of loops and internal lines in momentum space yields 

 InL 2−  (2.10b) 

as degree of divergence. (2.10b) is in agreement with (2.10a) because of the equality 
,1+=+ IVL  and the degree of divergence of a scalar Feynman diagram is 

.(2.10a)l.h.s.2 ×−  

Introduction of spin leads to momenta in the numerator. The expressions of the 
two-vertex vector diagrams of Figure 7 are 

 
Figure 7. Two-vertex diagrams with vector lines. 
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.)}()(Tr{ 2211d mkemkeT +γγ+γγ= ....  (2.12d) 

Momenta in the numerator correspond to derivatives of the -bk functions and each 

derivative x∂   lowers the denominator factor of the corresponding expansion by .2
1  

Hence, infinities are found if 

 ,0][)1( 2
1

2
1 ≤−−−− FBbIVn  (2.13) 

in which B  is the number of internal boson lines, F  is the number of internal 

fermion lines and ][ 2
1 F  is the integer of F2

1  and the degree of divergence is at 

most .(2.13)l.h.s.2 ×−  Thus, the diagrams of Figure 7 seem to be quartic, cubic, 

quadratic and quadratic, respectively and they seemingly result into a non-
renormalizable theory. 

However, momentum conservation, which means substitution of 
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into (2.12a) and substitution of 

 µµµ −= 21 kpk  (2.14b) 

into (2.12b) and into (2.12d), reduces the number of derivatives, since 2
21 )( kk −  is 

the square of an external mass and also the internal momentum squares 2
1k  and 
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2k  though off the mass shell, become squares of masses when using the 

differential equation (2.4). Nor the r.h.s. of (2.14b) causes a raise in the number of 
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and, considering the sum of the orders of the bk -functions minus the power of 2x  

in the integrand, the reduced degrees of divergence are found to be logarithmic, 
logarithmic, quadratic and quadratic, respectively, which is less strong than indicated 
by (2.13). 

Relations of momenta correspond to relations of derivatives in configuration 
space. Therefore, the relations (2.14), above demonstrated in the case of diagrams 
with two external lines, remain valid if all three lines of a vertex are internal, i.e., off 
the mass shell. Thus, reduction of the degree of divergence happens in any diagram 
of spinning fields and the divergence criterion (2.13) may be replaced by the less 
severe criterion 

 ,0][)1( 2
1

2
1

2
1 ≤−+−−− FVBbInV FVnn  (2.16) 
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in which nnB  is the number of non-neighbouring internal vector lines, FVV  is the 

number of vertices of an internal vector and two spinors. The degree of divergence 
becomes at most .(2.16)l.h.s.2 ×−  

3. Possible Diagrams and their Divergences 

Because of our restriction of the possible vertices according to the Figures 1 and 
2, the structure of a general Feynman diagram, resulting from the Lagrangian (1.1), 
is restricted. It consists of a number of loops of spinors and vectors. A spinor or 
vector loop may be open, i.e., starting and ending as external lines, or closed. 
Moreover, an open vector loop may start or end at a spinor. Furthermore, spinor 
lines may be interconnected by a number of vectors and vector lines may be 
interconnected by a number of scalars. Scalar lines may be interconnected by scalars 

through 4ϕ  or 3ϕ  vertices. Examples of possible two-, three- and four-vertex 

diagrams are drawn in the Figures 8-10. 

Higher order diagrams may be considered as obtained from lower order by 
insertion of internal lines or closed loops. In this way, diagrams of Figure 8 are 
obtained from those of Figure 7. 

 

Figure 8A. Two external scalars. 
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Figure 8B. Two external spinors. 

 

Figure 8C. Two external vectors. 

In all these cases, the increase of ,V  ,I  nnB  and ,][ 2
1 F  caused by the insertion 

of an internal line, may be considered and it is seen that the l.h.s. of (2.16) either 
remains unchanged or decreases. An exception is diagram 7a, which is logarithmic 
divergent whereas insertion of lines leads to the quadratically divergent diagrams 
8Ab, 8Ac, 8Ae and 8Af. Another exception is the diagram 10Ca. Insertion of a 
scalar lowers the degree of divergence by two, but it is raised by two after insertion 
of a second internal scalar. The general behaviour, also in cases of exception, is that 
insertion of lines or loops does not lead to a higher degree of divergence. 

Since the degree of divergence does not increase in higher orders, it may be 
concluded that: 

(a) divergences of diagrams with two external lines (Figure 8) are at most 
quadratic and, therefore, their infinity  may be removed by counter terms of the kind  

,ϕ∂ϕ∂ µ
µ  ,νµ

νµ ∂∂ WW  ,ψ∂ψ µi  ,2ϕ  ,µµWW  ;ψψ  

(b) divergences of diagrams with three external lines (Figure 9) are at most 
logarithmic and, therefore, their infinity  may be removed by counter terms of the 

kind  ,3ϕ  ,ϕµµWW  and ;µ
µψγψ W  

(c) divergences of diagrams with four external scalars (Figure 10A) are at most 

logarithmic and a divergence may be removed by a counter term of the kind ;4ϕ  

(d) diagrams with four external spinors, diagrams with two external spinors and 
vectors and diagrams with two external spinors and scalars (Figure 10B) are finite; 
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(e) diagrams with more than four external lines are finite. 

 
Figure 9. Three external lines. 

 
Figure 10A. Four external scalars. 

 
Figure 10B. Four-vertex diagrams with external spinors. 

 

Figure 10C. Four-vertex diagrams with external vectors. 

Diagrams with four external vectors and diagrams with two external vectors and 
scalars (Figure 10C) are logarithmically divergent. The removal of these infinities by 
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counter terms, which would be of the kind 2)( µ
µWW  and ,2ϕµµWW  causes new 

and stronger divergences and the situation would transit from bad to worse. This 
way has not been chosen in [1] and will not be chosen in this paper. Instead, 
relations are imposed on the coupling constants in such a way that their divergences 
disappear. This is possible because of the fact that the divergence of all diagrams 
with four external lines is at most logarithmic. 

4. Non-renormalizibility of Tensor-scalar Interactions 

In this section, the method of the preceding section is applied on the Lagrangian 

(1.3), where a tensor field µνW  has been added to the model. Using the propagator 
(1.5), it is seen that the expressions for the two-vertex diagrams of Figure 11 are 
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Figure 11. Two-vertex diagrams with tensor lines. 
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.)}.().(Tr{ 2211d mkmkeeeeT +γγγ+γγγ′′= σρνµ
σρνµ  (4.2d) 

Since more momenta are present in the numerator of the tensor propagator (1.5), 
diagrams with internal tensor lines are stronger divergent than the corresponding 
vector diagrams but, as in the vector case, many of these momenta may be 
transformed into mass dependent factors by the relations (2.14) and (2.4). Using the 
relations of Appendix E of [1], the configuration space expressions of the diagrams 
of Figure 11 become 
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From the close to zero behaviour of the integrand of these expressions, it may 
be seen that the degrees of divergence of the expressions (4.3) are logarithmic, 
logarithmic, quartic and quadratic, respectively. 

 

Figure 12. Four-vertex tensor-scalar diagrams. 

In the same way, the tensor-scalar diagrams of Figure 12, are seen to be 
quadratic or quartic divergent. 

The divergence of some of the diagrams of Figures 11 and 12 still are too strong 
to be renormalizable, despite the reduction by means of the relations (2.14) and 
(2.4). 

5. Cancellation of Divergences 

Because of the latter conclusion, tensor-scalar vertices are excluded and 
interactions of the tensor field with only spinor fields are allowed, so that diagrams 
like 11a, 11c and those of Figure 12 do not occur. Therefore, we consider the 
Lagrangian (1.8), describing g  fermion fields, interacting with a tensor and a vector 

field. The vector field is interacting with a self interacting scalar field, a tensor-scalar 
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interaction term is omitted. Under these conditions, internal tensor lines only occur 
between two spinors and the momenta in the numerator are transformed by (2.14b) 
into momenta in traces of spinors or between the external w  and .w  Using the 
formalism of Section 2, they become squares of masses. In this way, the momenta in 
the numerator of the tensor propagator do not raise the degree of divergence, the 
venom-teethes of internal tensor lines are extracted and the divergence criterion 
(2.16) remains valid. 

In the way of Section 2: 

• the divergences of a diagram with two external tensors are quadratic or 

logarithmic and may be compensated by counter terms of the kind µνρ
µνρ ∂∂ WW  

and ;µν
µνWW  

• the divergence of diagrams with two external spinors and one external tensor is 

logarithmic and may be compensated by counter terms of the kind .µν
νµ ψγγψ Wff  

Moreover, counting the number of e.γ ’s and k.γ ’s of the fermion loop, it may 

be seen that: 

 

Figure 13. One-loop diagrams with three internal spinors and an odd number of 
external vectors. 

• the two diagrams 13a and 13b with three external vectors and one (anti-)loop 
of three fermions are cancelling each other, which is Furry’s theorem [7] in lowest 
order; the cancellation is also found if two external vectors are replaced by tensors, 
like in the diagrams 13c and 13d; 
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• in Figure 14, where one or three vectors of Figure 13 are replaced by tensors, 
the contributions of loop and anti-loop are equal, so they do not cancel, but the 
diagrams are finite since the number F  of internal fermions is odd. 

 
Figure 14. One-loop diagrams with three internal spinors and an odd number of 
external tensors. 

In the case of diagrams with one (anti-)loop of four spinors, it is the other way 
around: 

• the divergence of all diagrams of Figures 15 and 16 is logarithmic, as argued 
in the beginning of this section. 

• the diagrams of Figure 15 with an odd number of external tensors and vectors 
are cancelling; 

• the diagrams of Figure 16 with an even number of external tensors and vectors 
are equal, so they are not mutually cancelling; 

 
Figure 15. One-loop diagrams with an even number of internal spinors and an odd 
number of external tensors. 



TAMING OF DIVERGENCES IN A UNITARY MODEL … 

 

19 

 
Figure 16. One-loop diagrams with an even number of internal spinors and an even 
number of external tensors. 

The above points are clear in the cases of the demonstrated lower order 
diagrams and are proven in higher order by induction, in the way of Section 3. 

 
+ similar and higher order diagrams + internal wave lines replaced by double wave 
lines + arrow lines replaced by double arrow lines. 

Figure 17A. Four external vectors. 

 
+ similar and higher order diagrams + internal wave lines replaced by double wave 
lines + arrow lines replaced by double arrow lines. 

Figure 17B. Two external tensors, two external vectors. 
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+ similar and higher order diagrams + internal wave lines replaced by double wave 
lines + arrow lines replaced by double arrow lines. 

Figure 17C. Four external tensors. 

The removal of the divergence from all these diagrams by counter terms, which 

would be of the kind 2)( µ
µWW  and ,)( 2µν

µνWW  causes new and stronger 

divergences. 

However, we choose the way out that also has been followed in the vector case. 
Due to the fact that the divergence of the diagrams of Figure 17 is not stronger than 
logarithmic, to all orders of perturbation, the scattering matrix, which is the sum of 
these diagrams multiplied by a pre-factor, becomes finite (not each diagram apart) if 
the coupling constants satisfy the equations 

0

)2(

17Jq) (diagram)(
lim

)1(42
3

q
0 =

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

π

×−λλλλ
ε

−+
→ε ∑

LE

LV
S

V
VS

V
FV

V
FT FSVSFVFT

 (5.1) 

with C.,B,AJ =  

If there is only one fermion field and no vector-scalar interaction ( ,1=g  

)0=λVS  there are three equations for two coupling constants, which is too much. 

The most simple Lagrangian allowing a solution of the latter equations is that of two 
fermion fields, without tensor-scalar and vector-scalar interaction ( ,2=g  

) ,0=λ=λ VSTS  i.e., with only spinor-tensor and spinor-vector vertices, as drawn 

in Figure 4. In this way, the four coupling constants belonging to the vertices of 
Figure 4 are restricted by the three relations (5.1) and it is possible to construct a 
finite scattering matrix, order by order in a perturbation approach. 

Secondly, the case 2=g  and one scalar field interacting with the vector field, 

is considered. The vertices are those of Figures 1 and 4. They lead to the diagrams of 
Figure 17, complemented by diagrams with vector-scalar interactions, and to those 

of Figure 18. In this way, there are six coupling constants (presence of 3ϕ  vertices 
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leads to finite diagrams), restricted by the three relations (5.1) and by the two 
relations 

0
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with BA,J =  

 
+ similar and higher order diagrams + internal wave lines replaced by double wave 
lines + arrow loops replaced by double arrow loops. 

Figure 18A. Two external vectors and scalars. 

 
+ similar and higher order diagrams + internal wave lines replaced by double wave 
lines + arrow loops replaced by double arrow loops. 

Figure 18B. Two external tensors and scalars. 

and in this case too, it is possible to construct a finite scattering matrix, order by 
order in a perturbation approach. 

6. Conclusion 

A unitary model of massive tensors and vectors in interaction with spinors and 
scalars, leading to a finite scattering matrix, is possible in the case of two spinor 
fields with direct spinor-tensor and spinor-vector interactions. Vector-scalar 
interaction is possible, but not necessary. Tensor-scalar interaction is excluded. 

Divergences of diagrams with two and three external lines may be removed by 
counter terms in the Lagrangian. Diagrams with four external lines have a 



E. MENDELS 

 

22 

divergence, which is at most logarithmic, and can only be removed by a counter term 
in the case of four external scalars. In all other cases of four external lines, a finite 
scattering matrix may be constructed, order by order in perturbation, by relations 
between coupling constants. 

The formalism is massive, and massless fields may be described in our model by 
considering the limit of a small tensor mass. Self-interactions of the tensor field are 
excluded. The latter may be approached by considering the diagrams of Figures 13-
18 in the limit of large masses of the intermediate spinor loops. 

The formalism is covariant under global, but not under local Lorentz 
transformations. In this way, non-renormalizable divergences, as found in the locally 
gauge invariant formalism [8-10], are avoided. 
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