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(mod 4). We show that K3 is not monogenous, that is to say that its ring
of integers; which, as we know, is a free Z-module of rank 8, does not
admit a power basis of the type {1, 6, ..., 67}, or in an equivalent way,
there exists no integer ® of K3 such that discr (8) = Dg, /g = (dmnl)*.

To do this, we solve the monogenicity equation of K3, obtained from its

transformed Chatelain basis, using only diophantine reasoning, applied in

particular to a system of three equations of Pell-Fermat, of the form:

X} -BY?=+#4, i=123.
1. Introduction

1.1. The problem of monogeneity

Let K3 =Q («/d_m, Ndn, Ndm'n'l ) be a triquadratic number field of odd
discriminant, i.e., such that (dm, dn, dm'n’l)=(1,1,1) (mod4). Then the
discriminant of K3 on Q is: Dg,/q = (dmnl)* cf. [1]. Using only Diophantine
methods, we want to solve the problem of non-existence of a power basis of the type
{1,0,..., o’ }, for the ring of integers ZK3 which as we know is a Z-module free

of rank 8.

The classical method consists in solving an equivalent problem by solving in

unknown 6€ Zg,, the classical monogeneity equation below, where o; €

Gal(K5Q) = (Z | 2Z)*:

A(8) = discr(1, 6, ..., 87 ) = H (6;(8) - 5(8))* = D, /g = (dmnl)*. (1)

0<i<j<7

The Galois group Gal(K;Q) on an o-basis of Chatelain {o; : 0 <i <7} of Kj

(cf. [1, 5]) obtained via the o.-matrix of Galois whose general term is:

and which is as follows:
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Gp O O O3 O4 Os Og Oy %
1 1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1 Jdm
1 1 -1 -1 1 1 -1 -1 Jan
My=11 -1 -1 1 1 -1 -1 1 Doy s(d Wmn |
1 1 1 1 -1 -1 -1 —1 Jamnl
1 -1 1 -1 -1 1 -1 U Agps(dm' W42 w'l
1 1 -1 -1 -1 -1 1 Ly, ,S(d'n')J% 'l

1 -1 -1 1 -1 ! 1 -1 xdm'n's(dm,n’)\/W
Let Bk, ={go, €, €2, ..., €7} be the Z-basis of Chatelain of Zg, (cf. [5]), then

. . 7
the unknown 6 € Zg, is written 6 = Zi—oxiai’ where x; € Z, and:

2 2
a0 = [ (e:i®-0;0) = 1(x. ... 37)* Dgy g @)
0<i<j<7
where I is a homogeneous form of Z[X Lroeen X 7] of degree 28, called index form

attached to the basis B K3 Then the resolution of the equation of monogeneity
A(G) = iDK:;/Q’

returns from a diophantine point of view to solve in unknowns (xl, s x7) S Z7,

the following equation of monogeneity:
I(Xl,...,)C7):i1. (3)

Remark 1.1. Z K3 admits always a basis such that, at a permutation close, its

7
first term is equal to 1 (since in ‘BK3 we have Zsi =1).
i=0

Thus the variable x, disappears itself by difference when we solve the equation

A(G) = iDK:;/Q
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It is a property which will be kept independently of the choice of the basis.

This is why we can put xy =0, without affecting the generality of our

resolution.

In the case where the problem is solvable, and we want to rewrite the general

solution taking into account x, it will suffice to introduce the coordinate x; nearby

€(. The remaining found coordinates x;, i # 0 associated to €;, i # 0.

This kind of problem has been solved for fields of small degrees, especially for

biquadratic fields, among others by [2, 6].

This work is about of the solution of the problem of monogeneity of the fields of
8 degree, with Galois group isomorphic to (Z / 2Z)3. We find results demonstrated
between 2002 and 2006 in [9, 7, 10, 8, 11] given in special cases and general.

However, in our methodology, unlike the previous authors, we use different

methods, namely purely diophantine to solve equation (3), using modular calculations
in Z | 4Z.

The principle of the demonstration is as follows.

In a first step, see Definition 1.1, after having agreed on a canonical writing for

K3, we generally construct an integer basis for any triquadratic field K3 = Q

(«/% s NI s Jadm'n'l ) using the works of D. Chatelain cf. [1] on n-quadratic fields,
which we apply to degree 8 cf. [5]. We transform this basis of Chatelain, in a basis
better adapted to the problem of the monogeneity, by scaling said basis. This will
allow us to write much more simply the equation of monogeneity (3), which finally
splits into a system of seven quadratic normative equations (S;) (note that for the
practical resolution we will only use the first three of these equations (10). In general,
this type of Pell-Fermat system either does not admit solutions, or when it admits, we

get a unique solution cf. [14, 3].

We establish, much as we did for the biquadratic case cf. [2], Lemmas 1.1 and

1.2 which contain linear constraints between the variables d, m, n, d’, m’, n” and [

of the field K;. These conditions will be quite strong to conclude that the system
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resulting from that of monogeneity (10) is not solvable.

In general, the problem of monogeneity can arise in any degree n and on all
kinds of algebraic extensions: Galoisian cyclic or non-cyclic, non-Galoisian, relative

etc.

Note that for the number fields, this property for a field to be monogenous or
not, has an arithmetical importance, because it facilitates among other things, the

factorization of the prime ideals pZ extended to Zg. So if 6 is found
monogenous and Feo(X ) the irreducible polynomial of the monogeneous element

-
0 supposed to exist, then pZyg = H(Fi(GO ) is the decomposition into prime
i=1

P
ideals of the ideal pZy, where Fy, (xX)= H(F,-(X)ei is the decomposition in
i=1

irreducible factors of Fg (X) considered in F, [x].

This result from a cryptographic point of view can be interesting since the
security of many cryptographic models, are based on decompositions of certain

quantities, which can only be done in exponential time.

1.2. Definitions - notations - conventions for Q (Vdm, Vdn, Vd'm'n’l)

Consider a triquadratic number field K3 = Q («/ dm, Ndn, Ndm'n'l ) with odd

discriminant, i.e., such that (dm, dn, d'm'n’l) = (1, 1, 1) (mod 4).

The case where the discriminant is even, corresponds to the other two remaining
cases, namely (dm, dn, dm'n’l)= (1,1, 2 or 3) and (1, 2, 3,) (mod4). This case

will be treated by the method described here but in another article. It should be

known that there is only one triquadratic field depending on this second case, which
is monogenous, it is the cyclotomic field Q(&,4) = Q(W=3,v2,V=1) cf. [12]

where a method similar to this one was applied afterwards.

Let us give some writing conventions and remarks.
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1.2.1. Writing conventions for the fields Kz = Q (Vdm, Ndn, Nd'm'n’l)

(1) Let Q(@), Q(\/E ), Q(Wdm'n'1) be three quadratic subfields of K3,

’r 7

two by two distinct such that: (m, n) =1, (dmn,l)=1,d" = (d, dm'n’'l), m" =

(m, dm'n’l) and n" = (n, dm'n’l).

Then, according to the definition of Chatelain cf. [1], the seven quadratic

subfields of K3 = Q (Ndm, Ndn, Ndm'n'l) are:
b= Q). o = Q). k= Q). ke = Q)

k5=@( %n'l} k6=Q( %m'lj and k7=Q( %d’l}

We deduce the seven biquadratic subfields of Kj.
(@)
K31 =Q (Vdm, @) =Q (de, an) =Q (Vnd, Vnm),

(b)

K3, = @( (d'M')%, \/(d’m’)n’lj

~af (e (G o)

= Q(J(n'l)d'm', (n'l)%}




and

DIOPHANTINE PROOF OF NON-MONOGENEITY ...

oG () ),

(d)

®

15
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= Q[«/(d'[)m'n', (d’l)%j.

(2) Each of these seven biquadratic subfields K3 ; = Q(m ) can be
written in its canonical form cf. [2], which means that d;m; = d;n; (mod 4), 0 < d;,
possibly even, n; <m; odd (and when d;m; =d;n; =1(mod4), we take
d; <inf (jmy|, |n;]).

Remark 1.2. In all the following we note (cf. [5] and [13]), and we have the

following formula, concerning in particular the function

Vi 2Z+1 > Z

a—X,

H
4 4

(1) s(a) the signofa, ae Z*.

(2) Let a =1 (mod 2), we write A, € {-1; 1}, such that a = A, (mod 4), then
a=hA, +4y,.

(3) Let us note that @ =1 (mod 2) = X, a =1 (mod 4).

(4) Ya, b e 2Z +1, then A, = A, A;. In particular Xaz =1let }Lazb =1y

(5) Va,be 2Z+1, Ay =1 Ay =\,

(6) In particular the following equalities hold:

Mam =Nan = Mpn = Mgmint = 7"%”'1 = ki,m’i,l mny
d'm d’n m
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and will allow useful factorizations via point (5).

(7) Let a and b be odd, then:
Yab = Ag¥p +ApY, (mod 4).
Moreover, V¢ € Z, we have:
2¢(M, £ Ap) =0 (mod 4).
All these formulas will be used extensively in the demonstrations.

1.2.2. Chatelain’s writing of K53 = Q (Vdm, ¥dn, Nd'm'n'l)

Definition 1.1. Let us take K5 = Q (Vdm, vdn, NVd'm'n'l) with (dm, dn, d’

m'n’l) = (1,1, 1) (mod 4), then we give a canonical writing of K5 as follows:

(i) We first choose K3, = Q («/ dm, N dn) written in biquadratic canonical form

such that 0 < d = inf(d;) and with maximal m among the eligible m; choices and

maximum »n < m among the remaining n;.

(ii) Then choose Q («/ dm'n’l ) among the four remaining quadratic fields such

as.:
Al = infddmnl, G o g
dm d n m n
and

s(d’) = s(m) = s(n').

This last important condition is always possible, leaving us to change the sign of .
This has no effect on the field Q (Vdm'n'l). Indeed for d’m'n’l chosen one can

write:
o dm'n’l =dm'(-n') (1) if s(d’) = s(m’) # s(n'),
o dm'n’l = (—=d")m'n’(-1) if s(d’) # s(m’) = s(n’) and

e dm'n'l =d (-m ' (<) if s(d’) = s(n) # s(m’).
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We will note again and for the rest, this pre-writing of Chatelain for K5 (leaving to

explain the integers d, m, n, d’, m’, n’ and I the moment came).

These constraints will have their importance in the following when it comes to

solving the system (S).
We recall that in the following cf. [5]:
51 =Ags(d), 5o = Agprs(dm’), s3 = Agyys(dn'), s4 = Ay s(dm'n’).
According to Definition 1.1(ii) we have:

Proposition 1.1. Ler K3 = Q (\/ dm, Ndn, Nd'm'n'l ) written in canonical form.
Then

s(d) =1and st =gy 52 = Kgrs 53 = Mgy S4 = M-
In the following, K is supposed to be written in canonical form.
Let us recall the following results cf. [5] too.

Theorem 1.1. Let K3 = Q (Vam, Ndn, Vdm'n'l) such that (dm, dn, d'm'n’l)
=(1,1,1) (mod 4). Then K5 = Q(«/dm, dn, «/d'm'n’l) is one of Chatelain’s

writing of K5, and:

(a) The Chatelain B-basis of K3 is given by:

B:{l, Ndm, Ndn, si;vNmn, Ndm'n'l, sz\/%%n'l, s3\/%%m'l, s4\/%%d'l},

with the s; defined in Proposition 1.1.

(b) The Z-basis of Chatelain, ‘B K; of Z Ky» CONSISIS of:

gy = %(1+ Jdm +dn + sivmn + Nd'm'n’l + sm/%%n'l

+ S3\/%% m'l+ s4\/%%d’lj
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and its seven other conjugates.

(©
D = (dmnl)* —dmxdnxmnxd'm'n’lxiﬂn'l
k3/Q = d m
n
X—
n m

1.3. Change of bases

We can (cf. [5]) make the Z-transformations of the matrix M of B Ky =
{e; 1 0 <i <7} relative to B into a triangular matrix lower M” of B, ={¢; : 0
< i £ 7} which is another basis of Z Ky We get %'KS from elementary operations

that respect Z. The goal is to minimize the number of square roots in the new matrix,

making the system (S;) be easier to handle. We obtain the following result:

Theorem 1.2. The following family B, ={e; :0<i <7} is a new basis of

integers of Kj.

€y = (1+vdm+~/d_n+7uds(d)~/ n+~Ndmn'l +\gy,s(dm’) ,m,nl
dn ’ ’ mn 7,
+ Agys(dn’ )W’Wml + AgA,s(d)s(m'n’) o dl],
81 =—€j t+g = ( 2vdm — 2siNmn 2s21/ - ,nl — 254 R j
8’2 = +83 = ( 2\/d_n+ 2S1V mn —2S31,d, ,ml +2S41 n%n/ j

3=_80+81+82—g3=—(—45‘1\1 —4S4 //dl)

€} = —€, +€¢ _—( 2d'm'n’ —2s2\/d, ,nl+2s3\/j,z,m'l+2s4 %d’l),
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g5 =€) —&; —€¢ + 87 =%(4s2\/jz,nl 4s4\/ . ,dlj

=—81+83+85—87=%( 4S31 ,,ml+4s41/ ,,dl)

;o 1 mn_ g
87——80+£1+£2—83+84—£5—£6+£7—g(—8S4 Wd )

We will use this staggered basis to solve the problem of monogeneity.
1.3.1. Monogeneity equations
On this new scaled basis %'KS of Z,, letustake 8 € Zg., then there exist
lo, I, 1, 13, 14, I5, I, I7 € Z such that:
0 =1[pen +... + 1;€5. “)
The equation of monogeneity (3) is written:
(0, ..., I;) = £1. 5)

For the actual calculation, we come back to the Chatelain B-basis of K3:
l i — o
0= é) + = (lo 2[1 + lO - 212) dn +— (lo - 2[1 + 212 - 4l3 )Sl

dm

+ %([0 - 214 )‘\l d'mn’l +%(10 - 211 - 2[4 + 4[5 )S2 W”l/l

—(lo —212 +2[4 _416)‘931 d, ,ml

+ %([0 - 211 + 212 - 4[3 + 214 - 4[5 + 416 - 817 )S4

mn

——d1.
mn
Let a; € Z,i =0, ..., 7, such that:

ag = lo, ap :lo —211; ay = lO —212; ag = lO —214;

az = lo —2[1 + 212 —413; as =lo —2[1 —214 +415; ag = lO —212 + 214 —4[6; (6)
ay = lo — 2y + 21y + 21, — 4l — 4ls + 4lg — 815
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Note that conversely for these same a; :

ao—al ao—az ao—a4
ly=ap; | = 3l = sy =—;
0 =4dos 4 ) 2 3 4 )
_Gta —a—-az , g —a —agtas . agtay—aq—de
Iy = . s = - g = - ()
/ _a0+a1+a2+a3—a4—a5—a6—a7
So that:
1 1 Jam 1 Jdn 1 Y — 1 T
9=§a0+§a1 dm+§a2 dn+§a3s1 mn+§a4 dmnl
+las d—mn’l+las ﬂm’l+las L]
8 NN am g 1653\ g7 8 T 4
As a result:
12(11,...,17)212(611,...,617).
So that, solve (5) is equivalent to solve:
I(Cll,...,Cl']):il. (8)

1.3.2. Calculation of A(B) = discr(0)
Remarks 1.1. (1) We calculate A(9) = discr(0) =[] (c;(6) - 5;(8))* in
0<i<j<7
terms of [ (al, s a7), the variable a disappearing, cf. Remark 1.1. So we can
take ay = [y =0, in (6), without affecting the generality of our resolution. So in the

following we will have:

0= %al dm +%a2 dn +%a3s1\/mn +%a4«/d'm'n'l

+las d—mn’l+las ﬂm'l+las UL
8 52N am 8 1"\ 8 TN\

with:
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a = —2[1; a, = —2l2; az = —211 + 2l2 - 413; a, = —214;
as = —211 - 214 + 415, ag = —212 + 214 - 416,
a7 = =21, + 2y + 21y — 413 — 4l5 + 4l — 8.

If later we want to give the general solution © including agy =1;, we will use

formulas (7), (6) and (4).

(2) For the calculations of A(B), let us make the following groupings and define

by the same the following pairs of 72 . (A, C)), (B, D)), (E, ),
(Gy, Hy), (I}, 1), (Ky, Ly), (M, Ny), as well as the numbers of K3 : 8, 6,,
03, 04, 05, B4 and 05 as follows:

* A; =(60(0) - 6,(8)) % (04(8) — 65(8)) x (5,(8) — 63(8)) X (55(6) — 57(8))

_(ny
_(7) XN/

2, ., 2 , 2d om
aydn +aymn —ag —ml—a7 —dl o o]
d m L L 64753548 [,
% 8 4
2

= (% )> X Ny (6));

A + CNdm
=(§)2><N,q/@(#]

* Ay =(60(8) — 64(8)) X (5,(8) — 64(8)) x (5,(8) — 57(8)) X (53(8) — 55(8))
= () x Ny /o

n n dm n
a3d 2+ aim= —aldwm'l - a2 551 ayazs)— — agass;l
n n dm n
+ dm
% 8 4
2

= (n')z X Nkl/@ (Mj = (n’)2 X Nkl/(@(ez);



DIOPHANTINE PROOF OF NON-MONOGENEITY ... 23
* Az =(0((8) — 64(8)) x (5,(8) — 54(8)) x (51(8) — 55(8)) X (55(8) — 57(8))
= (%% N/

azd'm'n’ +a? dm " —a? dn m—a? A agasson’ —agarsysa -
4 5 77 Tu6 7 Y 465921 — UUTI354 —F
dm < dn mn + . " Jam

= (1)* X Ny /g (w] = (1)* X Ny, g(83);

*Ay = (60(0) — 51(8)) x (64(8) — 55(8)) X (5,(8) — 65(8)) x (54(8) — 57(8))

_m
_(m') XNkz/@
a12dm'+a32m'n—a52%n'l—a72£,d'l d s — aedosasil
n + 143°1 547°2°4 /dn
« 8 4
2

= :11» )> X Niy /g (GI-F—I;D/E] = (% )> X Ny 1(84);

* As = (5((8) — 05(8)) X (51(8) — 54(8)) X (5,(8) — 57(6)) x (55(8) — 54(8))

= (m,)2 X Nkz/@

2 m 2 m 2 2dﬂ m
ajd— +a3 —n—azdnl —a; —1 ajazs; — — asaessl
1 m 3m 4 6dn 131m 44693

g + 1 dn

2

= (m")’ X Ny, /g (M] = (m')* X Ny, g (05):
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*Ag = (0((0) — 67(8)) X (51(8) — 54(8)) X (5,(8) — 55(6)) X (55(8) — 54(6))
= (d') x Nis/Q

2 d 2 d 2

mn
ai pm+ay n —aim'n’l — a3

7 Tl Cllclz 3, - a4a7s4l
mn_ 4 mn

8 4

*A7 = (0((8) — 63(8)) X (64(8) — 57(8)) X (05(8) — 66(8)) X (51(8) — 5,(8))
d
= (7 ) Niz/Q

’

, , m n .,
a2dm+a2dn—a2—,nl—a2—,ml
1 2 5m 6n

+ alazd - (l5a6S2S3l '\/%
8 4 .
2 9

d M1+N1«1mn

= ( 7 )? X Niy /0 [fj = (%)2 X Niy/0(07).

It is clear that:
discr (8) = (A; X Ay X Ay X Ay X As X Ag X Aqy)%.
And that we have:

(0;(8) - 5;(6))

0<i<j<7

2
= {(ni) X Nﬁ/@(%)} X [n'2 X N,q/@(ez)]x [12 X Ny, 10 (83)]
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m 2
X |:(W) X Nkz/Q(64)} X [Wl/2 X Nkz/(@(es)]

2
x[a? x Nk3/@(96)]x {(di) X Niy /(87 )}

= (dmnl)2 XNkl/Q(el)XNkl/Q(GZ)XNkl/Q(GS)XNkz/Q(94)
XNy @ (85)X Ny 1 (06 ) X Ny 10 (87)-

Thus:

Proposition 1.2. The powers of 0 € ZK3 form a basis of ZK3 if and only if
Niy o ®1) X Ny 1g(02) X Ny, 1(63)
XN, /0(04) X Ni,y j@(85) X Niy 19 (86) X Ny 1 (07) = £1. )
Equation equivalent to (8): I(ay, ..., a;) = 1.
And, we obtain the following system:

Noan)o®) = v
NoWam)o®2) = <2
NoWan)q () = <,
(81): 1 No(an)o(®4) = <4
Noanye(®s) =<
N0 %) = 6
N/ ®7) = €1,

where ¢, =*1,k=0,1,..., 7.

1.3.3. System of monogeneity equations
Let us show that in the product I(ay, ..., a;), each factor is in Z and

consequently is necessarily equal to £1. This will give us the system (S;).

e The detailed calculation hereafter show that the numbers A, Cy, ..., M|, Ny are

in Z.
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As an example we write A; et Cj:
Ay = Ay (hly —12) + 2(A gy (Lls — Lls + Lig — Lyly — Loly + Lyls + 1yls + 13 —12)

s U (7 + )4 Yy (=15 1) 4 Y gy (17 =13 = 1))+ 40
(= hily —blg + bly + lyly +Islg 1§ ) + Y%mrl(lzh) + Y%df,(lllz +hly —Dly)) +
(Y (hl3 = Ipl3) + Y%m'l( — blg +1ylg — 1§ ) + Vo gy (= hiz +bly + 1407 +Isl6))
F16(= Ll + by + 1yl +15lg) +32( = 12 — Isl; + gl )) and,

Cp = Agy (Ll — lZ )+ 20 g (= Lilg + D1y — Dhls + 1415 ) + 4(7»%6”(12[6 =Ll + 14l
= sl +16) 4 Mty = 13)+ g (=l + bl + 15 = 15)) 4 80 = Dol
+AgVylls + 7%,"%( —hls = hls +14l5)) + 16(7%,"%(1216 —hly + 141y = Islg

+18))- 327%”1,711617.

e Moreover, the components of the following couples: (A, Ci), (By, D),

(Ey, Fy), (G, Hy), (I}, J1), (K}, L;), (M, N;) have the same parity. Indeed:
A= Cy = hgy(hly =13) = Agy (hly —13) = 0 (mod 2);

_ 2 2 2 2\ = .
By = Dy =gy (—hily +15 —hily —13) = hgryi(hly =15 = lily = 15) = 0 (mod 2);
Ey = Fy = Mg (bl = 13) = Ay (= lily +15) = 0 (mod 2);
G — Hy = Mgy (=laly —13) = Mgy (ply +17) = 0 (mod 2);

I =Jy = My (=bly +1F +ly = 1F) =K (=hly +1f = Lly +13) =0 (mod 2);
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K —L = X%m(lllz + Ly — Ly —14%)—7%(1112 — Ly + loly +13) =0 (mod 2);

My = Ny = Agp( =Ll +Ioly —13) = Ay (Lly = Loly +13) = 0 (mod 2).

Note that for our demonstration, we will use only the reduced modulo 4

computation of the values of the first three couples, whose expressions are:

Proposition 1.3. We have the following relationships modulo 4:

Ay = Mgy (ly = 13) + 20 (s = ils + Ll = Loly = bly + bls + yls +15 —15)
+ W13 + W IF +13) + 2y (=15 +13) + 27, 4, (=IF =15 = 13) (mod 4),
d’ m

By =X, n(—hiy+ 15 - hly —13)+ 2h (b3 = ls = Lyls + 15 -15)+ 27011122
n n n

+27, 0 (7 +13)+ 2Yq0 (= 13) + 2Y am ,(— I —13) (mod 4),
n d'm’
Ey = Mgt (o = 13) + 20 gt (Bly + Ll + ols) + Y gl + Z'Yﬂn'(llz +13)
d'm’
+ W (=13 =13)+ 2 (=1 =15 —13) (mod4),

T 7
dn m'n

and

Cl = %dn'(lll4 - 142 ) + 27\‘dn'( - lll6 + 1213 - 1215 + 1415) (mod 4),
Dy = Ay (hly = 13) + 20 gy (Lol = Lyls ) (mod 4),
Fi = Mg (13 = lily)) + 20 g (= Ll — Dols ) (mod 4).

1.3.4. Resolution of the system (S;) - Modular Calculations - Lemmas

We are particularly interested in the system formed by the first three equations of
(1)
We get:
Alz - Clzdm = 4eq,
(S]): {B? = Dldm = 4c,, (10)

E12 - Flzdm = 4ey,

where for recall the numbers
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d m
asdn’ + aymn’ —aZ 5 m'l - a2 S dll
A = d m
1 8 ’
Co - arazsin’ — agars3541
1 1 )
2, n 2 n 2 s 2 dm
azd—,+a3m—,—a4dml—a5 Tl
B = n n d'm
8 b
n
anassy 7 - a4a5s21
D, = ,
! 4
20,5 2dm , o2dn , o2 mn
ajdmn + a5 ——n —ag —-m —a7 ——d
E = 4 S dm’ 6 dn’ T mn’
1 ] ’
’ n
dqdssph = ded75354 77
F —
1 4
and the ay, ..., ay are defined in Remarks 1.1.

In the next paragraph we give the following useful lemmas.
Let put:

dl = ng(Al, Cl) > 1,
dz = ng(Bl’ Dl) > 1, (11)
d3 = ng(El’ Fl) >1.

It is clear that (S7) is solvable = df, d3 and d3 divide 4 = dy, d,, d5 € {1, 2}.

We assume that (S7) is solvable, so we have the following results.

Lemmas 1.1. We have the following three lemmas:
(a)

n ’
(S) 7A1=nB1+lEl,
0/

i,Cl = I’L,Dl + lFl
n
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(b) The following system (S) is solvable (exactly (S}) < (S7)).

., [EB, - FD\d 2 ,
2,11{11#11’"}:(4) o = ey - s,
n

_ 2
(S7): 2§1X[Lflﬂd’"} - (i) e =2y + 1%,

n
% |:A1Bl - ClDldm}

4 n

2
n
(_/) € + 7’/252 - l2€3.

(©) (dy, dy, d3) = (2,1, 1). So that
A =C;=0(mod2), By =D =1(mod2)and E; = F; =1 (mod 2).
Firstly; we demonstrate points (a) and (b).

Proof 1.1. (a) Let us establish the system (S ):

Evident (by simple calculation).

(b) Let us show that (S]) and (S]) sont équivalents when (Sy) is checked.

Transforms (Sy) from the relations of (S).

We have:

2
A? = Cldm = 4¢; & (WB, +IE))? — (W'D, + IF,)*dm = (l) X de,
n

2
& (B} - DEdm) + 1>(E} - Fdm) + 2n'I[E\B, — F,D;dm] = (i) X de,
n

2
(= n'z X 451 + 12 X 453 + 2n'l[ElBl - FlDldm] = (i,) X 451.
n

Which gives us:

_ 2
MM LLELLE R
n

2
Note that; (i,) e — n'zez - l263 = +1 (mod 4).
n
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In the same way we have:

B12 - Dlzdm = 4e, equals:

n AIEI—ClFldm n 2 2 2
zylx{f = 7 € —n €2+l €3
n 2 ’”2 2
and (_,\J ¢ —nTey =17y = %1 (mod 4).
n

Similarly; E12 - Flzdm = 4e; equals:

_ 2
o[ ARG (8] 20,

2
and (1) ¢ —n'%ey —1%e; = *1 (mod 4).
n

The system (S]) gives rise to the system (S]) below:

, [EB, — F,D 2 ,
2nl>{—1 — ld’"}(l) ¢ —n'%ey — 1%,
n
_ 2
(S7): 2l,l><[—AlEl 4C1Fldm}=(l,) €1 —n'zez +l263,
n n
AB, — C;Dyd 2 ,
2nx[11+11m}=(§) o+, - 1P,

For (¢),

Let us first establish that: (d;, d,, d3) = (2,1, 1) or (1, 1, 2) or (1, 2, 1).
® Suppose d| = 2, then A; and C are even.

It is clear that the case d, = d3 = 2 is impossible because otherwise

ElBl - FlDldm
4
(mod 2), which is absurd.

B 2
€7 = 2ix [—ElBl FlDldm} _ ("

) 7) € — n'zez — l2e3 =0
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Similarly, if (dy, d3) = (1, 2) or (2, 1), then either B; and D; are even and

E; and F; odd, or we have the opposite, in all cases as E,Al =n'B) +lE; and
n

i, C, = n'Dy + IF; it comes that A; and C; would be odd, which is absurd.

n

So the only possibility is (d|, d,, d3) = (2, 1, 1).
e Now suppose that d; = 1. So A; and C; are odd.

If we had dy, =d3y =2 = By, Dy, E|, F; would be even = impossible, see
above.

If we have d, =d3 =1, then By, Dy, E|, F{ would be odd, but then
(%Al =n'B; + [E; and %Cl =n'D; +1F;) = A; and C; would be even. This is
absurd. So (dy, dy, d3) = (1,1, 2) or (1, 2, 1).

In summary we have: (d;, d, d3) = (2,1, 1) or (1, 1, 2) or (1, 2, 1).

e To show that (d|, d,, d3) = (2, 1,1), we use the computation of Cy, D;, F

cf. Proposition 1.2, from which we deduce the value of e | =n'Dy +IF; (mod 4).
n

We get — C; = n'Dy +IF; (mod 4) = L1, —17 = 0 (mod 4).
n

As a consequence C; =0 (mod2), so 4; =0 (mod 2), because they are of the
same parity.

So d; =2 and consequently (d;, d5, d3) =(2,1,1) as announced in Lemmas
1.1(c).

The system (S;) being always supposed to be solvable, we also have the

following Lemma:

Lemmas 1.2. (i) /; =1, =0 (mod 2); I3 =0 (mod4) and I, =I5 =1 (mod 2)
(ii) For the quantities A, By, Ey, Cy, Dy, F{, we have:
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Cl = _27\‘dn'l2l5 (mod 4),
Dy = Mgy (hlp —1) (mod 4);
F = A (hly = 1) = 2A g0l 15 (mod 4);

and
Al = —Z}Ldn’ + Z}Ldn’lzls (mod 4),
Bl =_7\'dn(1112 )+27\' (Yd +Ym)(m0d4)s
Ey = Mg (ily = 1)+ 27\'d'm'n'l215 = 2% (Yg + V) (mod 4).
Remark 1.3. Note that the point (i) of the lemma, is not sufficient to find a

contradiction in computing modulo 4, the quantities (4;, C;), (B, Dy), (E;, F),
(G19 H])y (I]y 11)9 (K19 L1)9 (M]’ Nl)

Proof 1.2. We had already calculated modulo 4, the quantities A;, B;, E| as

well as Cj, Dy, F| cf. Lemmas 1.2. Recall also that we have shown cf. proof of

Lemmas 1.1(c) that L, — 13 =0 (mod 4).

From which we deduce that Fj is odd that: /, =1 (mod?2) and /; = 0 (mod 2)

and that accordingly I, = 0 (mod 2).

Said congruences simplify a first time, considering among other things that

122 =1 (mod 4), we find:
Ay = gy (= Dly + bls +15 = 13) + 2(Yaw + Yy - Yt
By =M, n (=1l +1)+27‘d"(l3 12 )+2(yd,, +7,,n ) (mod 4),
) (mod 4)

Yy y) (mod ),

m'l

7\‘a’mn(lll2 _1)+27\'dmn(l215) Z(de +Ymnd

mn

and

Cy = 2hgy (lol3 = bls) (mod 4),
Dl = 7"d'm'l (l112 - 1) + 27"d'm'l (l213) (mod 4),
F = Mg (L= Lily) + 24 gy (= Dyl ) (mod 4).

e Now we consider: i, Ay = n'B; + IE; (mod 4), (see Lemmas 1.1(a)) considering
n
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that A, = Az, = 1, gives the reduction:

—hly = _27\'1(de' +VYmn' — ’Yim'l - ’Yﬂd’l )
g 7 o

n

+2(7\'n'(’yd1 + Ymi)_ 7\'l('Yﬂm' + ’Yﬂd’)) (mOd 4)
n n dn’ m'n’

But the two quantities:

2(Yaw + Y =V = VYmgy) and 200 (Y0 +Y, 0 ) =M (Yan o + Yo p))
d m n n dn’ m'n’

are = 0 (mod 4).

Indeed, let us use the form of Remark 1.1.

* 2Yaw + Yon' =Yy ~ Vg ) =200V + MtYa + MY + MY
- X%m»Yz - MY%m» - X%d% - MY%dr) (mod 4)

=20y (Mg + X)) + My (Vg + ¥ — w(k%m, thm )- kz(Y%m» F )) (mod 4)

=20y (Ya +Ym) - 7»;(1%,,, iy )) (mod 4)

= 2(7%(7%1’7% + K%Yd + A’m"Y% + 7b%Ym' ) - 7%(7%7”1' + %m'Y% + %%Yd'

+ AyY ) (mod 4)

= z(xd'n"Yi + 7"1"'761" + A'm'n'Yﬂ + A’ﬂn"Ym, - (xilYm' + A'm'lYi + A’ﬂYd'
7 7 g o 7 7 o

m

+ Aa1Y¥m ) (mod 4)

7

= 2(Yd (xd'n' - 7‘m'l ) + ’Yd'(xin' - xﬂl ) + Yﬂ(xm'n' - xd'l ) + ’Ym'(xﬂn' - 7\‘11 ))
d m m m d

(mod 4) = 0 (mod 4).

Similarly, we have:
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20V +Y,,0) =24, (Yg + 7)) (mod 4)

n

=24, (Ya + V) (mod 4)

n

= 2%1(%171 +7\.d"Yi +7\.ﬂ'ym' +7"m"Yﬂ) (mod4)
nd d’ m m

and

N + ¥ )= D (L + ¥ )) (m004)
dn’ m'n’ n o d m

= ZXL(XﬂYd' + )&m’yi + 7‘17111' + }\’d’Yﬂ) (mod 4)
Cooom d’ d’ m

n

So
2(7\.n’('ydn +Ymm )‘M(de m'+’Ymn d'))
g = g ==

7
m mn

= 2(7\%'7"&(761’ + ’Ym)_xl%i(’Yim' + Yﬂd'))
n d m

7

n

Ez(vd'(%in_% )+’Yi(7\‘d,n_%m'i[)-’-'ym'()\‘ﬂn_)\‘ill)
Vi 7 P g 75

m g
L
m n

+ Y Awn —Xa n,) =0 (mod4).
’ d/n/

m

This implies that — Iy/3 = 0 (mod 4) = I3 =0 (mod 4) :

But then /5 =1 (mod2) because otherwise we would have d =4, which

would be absurd.

The congruences are re-written in finality as follows, noting the fact that

2(Yﬂm’ + Yﬂd') = 27»,l'l(ydi + le) = 2X,; (Y4 + ¥,,) (mod 4) what makes it
Y i 8 £ -

mn

possible to make appear this quantity in the expression of E; at the level of the

Lemma.
And we have as well as announced:

Cl = _27\‘dn'l2l5 (mod 4),
Dy = gy (hily —1) (mod 4),
F = _%d’m’n’(lll2 -1)- 27\-d’m'n'l215 (mod 4)
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and

Al = —2}\,dn’ + Z}hdn'lzlj (mOd 4)’
By =k (hly = 1)+ 2 +Y,,) (mod 4),

Ep = Mg (il = 1)+ 2% gy lols = 2Ky (Yg + ¥, ) (mod 4).

2. Non-monogeneity of the Fields K5 = Q (vVdm, Ndn, Nd'm'n'l)

with odd Discriminant

We now state the main theorem of this article.

Theorem 2.1. Let be a triquadratic field K5 = Q(«/ dm, Ndn, Vd'm'n'l) with
odd discriminant, i.e., such that (dm, dn, dm'n’l) = (1,1, 1) (mod 4). Then K; is
not monogenous, i.e., the system (S;) associated with the equation of monogeneity

(8) of K3 is not solvable.

Proof 2.1. To demonstrate this theorem, it suffices to show that the system (S;)

admits no solution. Indeed the conditions of Lemmas 1.1 are strong enough to show

that the system (S;) is not solvable because (S)) (i.e., (7)) is not. We will show

that in the first equation of (S7), cf. Lemmas 1.1(b), we have:

2
E\B, — F;Dydm = 0 (mod 4) = (l) ¢ —n'%ey —1%e; = 0 (mod 2),
n

which is absurd since all summed numbers are odd.

To show this, let us calculate (E;B; — F{D;dm) (mod 4).

Using the last Lemmas 1.2(ii), we have:

E\B) — F;Dydm = E\B) — FiD; = (A gy (lily = 1) + 2A gy ol
_27‘%1 (Yd + Ym)) X( - kdl/(llh - 1) + 2(Yd + Ym))

~( = Agmw (hly = 1) = 2R girlals ) X (A gy (L1 = 1)) (mod 4).

So that
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ElBl - FlDldm = (7\4"’1 - kim,n ) + 2(11]2 - 1) ('Yd + Ym)(kd'm'n' + xdn'l )
7
2y o bls(hly =) (A = kg ) =0 (mod4).
d’ d

Conclusion 2.1. If K3 = Q(Vdm, vdn, Vdm'n'l) with (dm, dn, dm'n’l) =
(1, 1, 1) (mod 4), then the monogeneity equation does not admit solutions in Z Ky It

means that:
“Any triquadratic number field with odd discriminant is monogenous.”

We find the result of Y. Motoda and T. Nakahara [7], they used the ramification
of 2. G. Nyul [9] also got this result by using the index form and the indices of sub-

groups.

This method of demonstration should be able to apply a priori when the
discriminant is even; that is to say the two remaining cases: (dm, dn, d'm'n’l) =
(1,1, 2 or 3) and = (1, 2, 3) (mod 4). Indeed in each of these cases, similar lemmas

to those used here have been established (cf. [4]).
References

[1] D. Chatelain, Basiss des entiers des corps composés par des extensions quadratiques
de @, Ann. Sci. Univ. Besancon Math. Fasc. 6 (1973), 38.

[2] M.-N. Gras and F. E. Tanoé, Corps biquadratiques monogenes, Manuscripta
Mathematica 86 (1995), 63-75.

[3] B. He and A. Togbé, Simultaneous Pellian equation with a single or no solution, Acta
Arithmetica 134 (2008), 369-380.

[4] K. V. Kouakou, Monogénéité des corps triquadratiques, Thése unique, Université
Félix Houphouét BOIGNY, UFRMI, LMF, 160 pp., N° d.ordre 2044, janvier 2017.

[5] V. K. Kouakou and F. E. Tanoe, Chatelain’s integral bases for triquadratic number
fields, Afr. Mat. 28 (2017), 119-149.

[6] Y. Motoda, Note on quartic fields, Rep. Fac. Sci. Engrg. Saga Uni. Math. 32(1)
(2003), 19.

[7] Y. Motoda and T. Nakahara, Power integral bases in algebraic number fields whose
Galois groups are 2-elementary Abelian, Arch. Math. 83 (2004), 309-316.



(8]

(9]

(10]

(11]

(12]

(13]

[14]

DIOPHANTINE PROOF OF NON-MONOGENEITY ... 37

Y. Motoda, T. Nakahara and K. H. Park, On power integral bases of the 2-elemenatry
Abelian extension fields, Trends in Mathematics, Information Center for Mathematical
Sciences 9(1) (2006), 55-63.

G. Nyul, Non-monogenity of multiquadratic number fields, Acta Mathematica et

Informatica Universitatis Ostraviensis 10(1) (2002), 85-93.

K. H. Park, Y. Motoda and T. Nakahara, On integral bases of certain real octic Abelian
fields, Rep. Fac. Sci. Engrg. Saga Uni. Math. 34(1) (2005), 15.

K. H. Park, T. Nakahara and Y. Motoda, On integral bases of real octic 2-elementary
Abelian extensions, Kyoto University Research Information Repository Departement
Bulletin Paper 1521 (2006), 174-184.

F. E. Tanoe and V. K. Kouakou, Generators of power integral bases of

QL) = Q(V-3, V2, ¥=1), Annales Mathématiques Africaine 5 (2015) 117-131.

F. E. Tanoé, Chatelain’s integer basis for biquadratic fields, Afr. Mat. 28 (2017), 727-
744.

F. E. Tanoé, Proof of a monogenesis conjecture involving one unit in biquadratic
number fields, Proc. Fifth Int. Workshop on Contempory Problems in Mathematical
Physics, Cotonou, Bénin, Oct.-Nov. 2007, pp. 292-298, J. Govaerts, M. N.
Hounkonnou, eds., International Chair in Mathematical Physics and Applications,
University of Abomey-Calavi, Republic of BENIN, December 2008.



