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Abstract 

Let ( )lnmddndmK ′′′= ,,3 Q  be a triquadratic number field, whose 

discriminant is odd, that is to say, such that ( ) ( )1,1,1,, ≡′′′ lnmddndm  
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( ).4mod  We show that 3K  is not monogenous, that is to say that its ring 

of integers; which, as we know, is a free module-Z  of rank 8, does not 

admit a power basis of the type { },,,,1 7θθ K  or in an equivalent way, 

there exists no integer θ  of 3K  such that discr ( ) ( ) .4
3

dmnlDK ==θ Q  

To do this, we solve the monogenicity equation of ,3K  obtained from its 

transformed Chatelain basis, using only diophantine reasoning, applied in 

particular to a system of three equations of Pell-Fermat, of the form: 

,422 ±=− ii BYX  .3,2,1=i  

1. Introduction 

1.1. The problem of monogeneity 

Let ( )lnmddndmK ′′′= ,,3 Q  be a triquadratic number field of odd 

discriminant, i.e., such that ( ) ( ) ( ).4mod1,1,1,, ≡′′′ lnmddndm  Then the 

discriminant of 3K  on Q  is: ( )4
3

dmnlDK =Q  cf. [1]. Using only Diophantine 

methods, we want to solve the problem of non-existence of a power basis of the type 

{ },,,,1 7θθ K  for the ring of integers 
3KZ  which as we know is a module-Z  free 

of rank 8. 

The classical method consists in solving an equivalent problem by solving in 

unknown ,
3KZ∈θ  the classical monogeneity equation below, where ∈σi  

( ) ( ) :2 3
3 ZZQ ≅KGal  

( ) ( ) ( ( ) ( )) ( ) .,,,1 42

70

7
3

dmnlDdiscr Kji

ji

==θσ−θσ=θθ=θ∆ ∏
≤<≤

QK  (1) 

The Galois group ( )Q3KGal  on an basis-α  of Chatelain { }70: ≤≤α ii  of 3K  

(cf. [1, 5]) obtained via the matrix-α  of Galois whose general term is: 

( )
7,0,1 ≤≤±=

α

ασ
= jia

j

ji
ji  

and which is as follows: 
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Let { }7210 ,,,,
3

εεεε= KKB  be the basis-Z  of Chatelain of 
3KZ  (cf. [5]), then 

the unknown 
3KZ∈θ  is written ,

7

0 iii
x ε=θ ∑ =

 where ,Z∈ix  and: 

( ) ( ( ) ( )) ( ) ,,,
3

2
71

2

70

QKji

ji

DxxI K=θσ−θσ=θ∆ ∏
≤<≤

 (2) 

where I  is a homogeneous form of [ ]71 ,, XX KZ  of degree 28, called index form 

attached to the basis .
3KB  Then the resolution of the equation of monogeneity 

( ) ,
3 QKD±=θ∆  

returns from a diophantine point of view to solve in unknowns ( ) ,,, 7
71 Z∈xx K  

the following equation of monogeneity: 

( ) .1,, 71 ±=xxI K  (3) 

Remark 1.1. 
3KZ  admits always a basis such that, at a permutation close, its 

first term is equal to 1 (since in 
3KB  we have 1

7

0

=ε∑
=

i

i

). 

Thus the variable 0x  disappears itself by difference when we solve the equation 

( ) .
3 QKD±=θ∆  
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It is a property which will be kept independently of the choice of the basis. 

This is why we can put ,00 =x  without affecting the generality of our 

resolution. 

In the case where the problem is solvable, and we want to rewrite the general 

solution taking into account ,0x  it will suffice to introduce the coordinate 0x  nearby 

.0ε  The remaining found coordinates 0, ≠ixi  associated to .0, ≠ε ii  

This kind of problem has been solved for fields of small degrees, especially for 

biquadratic fields, among others by [2, 6]. 

This work is about of the solution of the problem of monogeneity of the fields of 

8 degree, with Galois group isomorphic to ( ) .2 3
ZZ  We find results demonstrated 

between 2002 and 2006 in [9, 7, 10, 8, 11] given in special cases and general. 

However, in our methodology, unlike the previous authors, we use different 

methods, namely purely diophantine to solve equation (3), using modular calculations 

in .4ZZ  

The principle of the demonstration is as follows. 

In a first step, see Definition 1.1, after having agreed on a canonical writing for 

,3K  we generally construct an integer basis for any triquadratic field Q=3K  

( )lnmddndm ′′′,,  using the works of D. Chatelain cf. [1] on n-quadratic fields, 

which we apply to degree 8 cf. [5]. We transform this basis of Chatelain, in a basis 

better adapted to the problem of the monogeneity, by scaling said basis. This will 

allow us to write much more simply the equation of monogeneity (3), which finally 

splits into a system of seven quadratic normative equations ( )1S  (note that for the 

practical resolution we will only use the first three of these equations (10). In general, 

this type of Pell-Fermat system either does not admit solutions, or when it admits, we 

get a unique solution cf. [14, 3]. 

We establish, much as we did for the biquadratic case cf. [2], Lemmas 1.1 and 

1.2 which contain linear constraints between the variables nmdnmd ′′′ ,,,,,  and l  

of the field .3K  These conditions will be quite strong to conclude that the system 
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resulting from that of monogeneity (10) is not solvable. 

In general, the problem of monogeneity can arise in any degree n and on all 

kinds of algebraic extensions: Galoisian cyclic or non-cyclic, non-Galoisian, relative 

etc. 

Note that for the number fields, this property for a field to be monogenous or 

not, has an arithmetical importance, because it facilitates among other things, the 

factorization of the prime ideals Zp  extended to .KZ  So if 0θ  is found 

monogenous and ( )XF
0θ  the irreducible polynomial of the monogeneous element 

0θ  supposed to exist, then ( ( ) ie
i

r

i

K Fp 0
1

θ= ∏
=

Z  is the decomposition into prime 

ideals of the ideal ,KpZ  where ( ) ( ( ) ie
i

r

i

XFXF ∏
=

θ =

1
0

 is the decomposition in 

irreducible factors of ( )XF
0θ  considered in [ ].XpF  

This result from a cryptographic point of view can be interesting since the 

security of many cryptographic models, are based on decompositions of certain 

quantities, which can only be done in exponential time. 

1.2. Definitions - notations - conventions for ( )lnmddndm ′′′,,Q  

Consider a triquadratic number field ( )lnmddndmK ′′′= ,,3 Q  with odd 

discriminant, i.e., such that ( ) ( ) ( ).4mod1,1,1,, ≡′′′ lnmddndm  

The case where the discriminant is even, corresponds to the other two remaining 

cases, namely ( ) ( )3or2,1,1,, ≡′′′ lnmddndm  and ( ) ( ).4mod,3,2,1  This case 

will be treated by the method described here but in another article. It should be 

known that there is only one triquadratic field depending on this second case, which 

is monogenous, it is the cyclotomic field ( ) ( )1,2,324 −−=ζ QQ  cf. [12] 

where a method similar to this one was applied afterwards. 

Let us give some writing conventions and remarks. 
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1.2.1. Writing conventions for the fields ( )lnmddndmK ′′′= ,,3 Q  

(1) Let ( ) ( ) ( )lnmddndm ′′′QQQ ,,  be three quadratic subfields of ,3K  

two by two distinct such that: ( ) ( ) ( ) =′′′′=′== mlnmdddldmnnm ,,,1,,1,  

( )lnmdm ′′′,  and ( )., lnmdnn ′′′=′  

Then, according to the definition of Chatelain cf. [1], the seven quadratic 

subfields of ( )lnmddndmK ′′′= ,,3 Q  are: 

( ) ( ) ( ) ( ),,,, 4321 lnmdmndndm ′′′==== QQQQ kkkk  

.and, 765 
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We deduce the seven biquadratic subfields of .3K  

(a)  

( ) ( ) ( ),,,,1,3 nmndmnmddndmK QQQ ===  

(b) 

( ) ( ) 
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(g) 
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(2) Each of these seven biquadratic subfields ( )iiiii ndmdK ,,3 Q=  can be 

written in its canonical form cf. [2], which means that ( ) ,0,4mod iiiii dndmd <≡  

possibly even, ii mn <  odd (and when ( ) ,4mod1≡≡ iiii ndmd  we take 

inf<id ( )., ii nm  

Remark 1.2. In all the following we note (cf. [5] and [13]), and we have the 

following formula, concerning in particular the function 

ZZ →+γ 12:a  

.
4

aa
a

λ−
a  

(1) ( )as  the sign of a, .�Z∈a  

(2) Let ( ),2mod1≡a  we write { },1;1−∈λa  such that ( ) ,4modaa λ≡  then 

.4 aaa γ+λ=  

(3) Let us note that ( ) ( ).4mod12mod1 ≡λ⇒≡ aa a  

(4) ,12, +∈∀ Zba  then .baab λλ=λ  In particular 12 =λ
a

 et .2 bba
λ=λ  

(5) .1,12, baabba λ=λ⇔=λ+∈∀ Z  

(6) In particular the following equalities hold: 

,1=λ=λ=λ=λ=λ=λ=λ
′′′′′′

′′′′′′ ldlmlnlnmdmndndm
n
n

m
m

n
n

d
d

md
dm  
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and will allow useful factorizations via point (5). 

(7) Let a and b be odd, then: 

( ).4modabbaab γλ+γλ≡γ  

Moreover, ,Z∈∀c  we have: 

( ) ( ).4mod02 ≡λ±λ bac  

All these formulas will be used extensively in the demonstrations. 

1.2.2. Chatelain’s writing of ( )lnmddndmK ′′′= ,,3 Q  

Definition 1.1. Let us take ( )lnmddndmK ′′′= ,,3 Q  with ( ddndm ′,,  

) ( ) ( ) ,4mod1,1,1≡′′ lnm  then we give a canonical writing of 3K  as follows: 

(i) We first choose ( )dndmK ,2,3 Q=  written in biquadratic canonical form 

such that ( )idd inf0 =<  and with maximal m among the eligible im  choices and 

maximum mn <  among the remaining .in  

(ii) Then choose ( )lnmd ′′′Q  among the four remaining quadratic fields such 

as: 









′′
′

′
′

′
′

′′
′′′=′′′ l

n

n

m

m
dl

n

n
m

d

d
ln

md

dm
lnmdlnmd ,,,inf  

and 

( ) ( ) ( ).nsmsds ′=′=′  

This last important condition is always possible, leaving us to change the sign of l. 

This has no effect on the field ( ).lnmd ′′′Q  Indeed for lnmd ′′′  chosen one can 

write: 

( ) ( ) ( ) ( ) ( ),if nsmsdslnmdlnmd ′≠′=′−′−′′=′′′•  

( ) ( ) ( ) ( ) ( )nsmsdslnmdlnmd ′=′≠′−′′′−=′′′• if  and 

( ) ( ) ( ) ( ) ( ).if msnsdslnmdlnmd ′≠′=′−′′−′=′′′•  
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We will note again and for the rest, this pre-writing of Chatelain for 3K  (leaving to 

explain the integers nmdnmd ′′′ ,,,,,  and l the moment came). 

These constraints will have their importance in the following when it comes to 

solving the system ( ).1S  

We recall that in the following cf. [5]: 

( ) ( ) ( ) ( ).,,, 4321 nmdssndssmdssdss nmdndmdd ′′λ=′′λ=′′λ=λ= ′′′′′′  

According to Definition 1.1(ii) we have: 

Proposition 1.1. Let ( )lnmddndmK ′′′= ,,3 Q  written in canonical form. 

Then 

( ) .,,,1 4321 nmdndmdd ssssandds ′′′′′′ λ=λ=λ=λ==  

In the following, 3K  is supposed to be written in canonical form. 

Let us recall the following results cf. [5] too. 

Theorem 1.1. Let ( )lnmddndmK ′′′= ,,3 Q  such that ( )lnmddndm ′′′,,  

( ) ( ).41,1,1 mod≡  Then ( )lnmddndmK ′′′= ,,3 Q  is one of Chatelain’s 

writing of ,3K  and: 

(a) The Chatelain basis-β  of 3K  is given by: 

,,,,,,,,1 4321
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with the is  defined in Proposition 1.1.  

(b) The basis-Z  of Chatelain, 
3KB  of ,

3KZ  consists of: 
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and its seven other conjugates. 

(c) 

( ) ln
m

m

d

d
lnmdmndndmdmnlDK ′

′′
×′′′×××== 4

3 Q
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n
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m

m
lm
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n

d

d
′
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×′
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×  

1.3. Change of bases 

We can (cf. [5]) make the tionstransforma-Z  of the matrix M  of =
3KB  

{ }70: ≤≤ε ii  relative to β  into a triangular matrix lower M ′  of { 0:
3 iK ε′=′B  

}7≤≤ i  which is another basis of .
3KZ  We get 

3KB′  from elementary operations 

that respect .Z  The goal is to minimize the number of square roots in the new matrix, 

making the system ( )1S  be easier to handle. We obtain the following result: 

Theorem 1.2. The following family { }70:
3

≤≤ε′=′ iiKB  is a new basis of 

integers of .3K  
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We will use this staggered basis to solve the problem of monogeneity. 

1.3.1. Monogeneity equations 

On this new scaled basis 
3KB′  of ,

3KZ  let us take ,
3KZ∈θ  then there exist 

Z∈76543210 ,,,,,,, llllllll  such that: 

.7700 ε′++ε′=θ ll K  (4) 

The equation of monogeneity (3) is written: 

( ) .1,, 71 ±=llI K  (5) 

For the actual calculation, we come back to the Chatelain basis-β  of :3K  
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−+−−++−=

−+−=+−−=−+−=

−=−=−==

.8444222

;422;422;422

;2;2;2;

765342107

642065410532103

40420210100

lllllllla

llllallllalllla

llallallala

 (6) 
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Note that conversely for these same :ia  
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As a result: 

( ) ( ).,,,, 71
2

71
2 aaIllI KK =  

So that, solve (5) is equivalent to solve: 

( ) .1,, 71 ±=aaI K  (8) 

1.3.2. Calculation of ( ) ( )θ=θ∆ discr  

Remarks 1.1. (1) We calculate ( ) ( ) ( ( ) ( ))2

70
θσ−θσ=θ=θ∆ ∏

≤<≤
ji

ji

discr  in 

terms of ( ) ,,, 71 aaI K  the variable 0a  disappearing, cf. Remark 1.1. So we can 

take =0a  ,00 =l  in (6), without affecting the generality of our resolution. So in the 

following we will have: 
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1

8
1

8
1

8
1

 

ld
nm

mn
salm

nd

dn
saln

md

dm
sa ′

′′
+′

′′
+′

′′
+ 473625 8

1
8
1

8
1

 

 with: 
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If later we want to give the general solution θ  including ,00 la =  we will use 

formulas (7), (6) and (4). 

(2) For the calculations of ( ) ,θ∆  let us make the following groupings and define 

by the same the following pairs of ( ) ( ) ( ) ,,,,,,: 111111
2 FEDBCAZ  

( ) ( ) ( ) ( ),,,,,,,, 11111111 NMLKJIHG  as well as the numbers of ,,: 213 θθK  

6543 ,,, θθθθ  and 7θ  as follows: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )θσ−θσ×θσ−θσ×θσ−θσ×θσ−θσ=∆• 753154201  

( ) Q1
2

kN
n

n
×

′
=  




















−′

+
′

′
−′

′
−′+′

×
2

48
4376132

2
7

2
6

2
3

2
2

dm
lssaansaald

m

m
alm

d

d
anmanda

 

( ) ( ) ( );
2 1

2112
11

θ×
′

=






 +
×

′
= QQ kk N

n

ndmCA
N

n

n
 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )θσ−θσ×θσ−θσ×θσ−θσ×θσ−θσ=∆• 537142602  

( ) Q1
2

kNn ×′=  



















 −
′+′′

−′′−
′

+
′

×
2

48

354132
2
5

2
4

2
3

2
2

dm
lsaa

n

n
saal

md

dm
almda

n

n
ma

n

n
da

 

( ) ( ) ( );
2 2

2112
11

θ×′=






 +
×′= QQ kk Nn

dmDB
Nn  
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( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )θσ−θσ×θσ−θσ×θσ−θσ×θσ−θσ=∆• 735162403  

( ) Q1
2

kNl ×=  




















′

−′
+

′
′′

−′
′′

−′
′′

+′′′

×
2

48

4376254
2
7

2
6

2
5

2
4

dmn

n
ssaansaad

nm

mn
am

nd

dn
an

md

dm
anmda

 

( ) ( ) ( );
2 3

2112
11

θ×=






 +
×= QQ kk Nl

dmFE
Nl  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )θσ−θσ×θσ−θσ×θσ−θσ×θσ−θσ=∆• 763254104  

( ) Q2
2

kN
m

m
×

′
=  




















−′

+
′

′
−′

′
−′+′

×
2

48
4275131

2
7

2
5

2
3

2
1

dn
lssaamsaald

n

n
aln

d

d
anmamda

 

( ) ( ) ( );
2 4

2112
22

θ×
′

=






 +
×

′
= QQ kk N

m

mdnHG
N

m

m
 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )θσ−θσ×θσ−θσ×θσ−θσ×θσ−θσ=∆• 637241505  

( ) Q2
2

kNm ×′=  



















 −
′+′′

−′′−
′

+
′

×
2

48

364131
2
6

2
4

2
3

2
1

dn
lsaa

m

m
saal

nd

dn
alndan

m

m
a

m

m
da

 

( ) ( ) ( );
2 5

2112
22

θ×′=






 +
×′= QQ kk Nm

dnJI
Nm  
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( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )θσ−θσ×θσ−θσ×θσ−θσ×θσ−θσ=∆• 435261706  

( ) Q3
2

kNd ×′=  



















 −
′+′′

−′′−
′

+
′

×
2

48

47421
2
7

2
4

2
2

2
1

mn
lsaa

d

d
aal

nm

mn
alnman

d

d
am

d

d
a

 

( ) ( ) ( );
2 6

2112
33

θ×′=






 +
×′= QQ kk Nd

mnLK
Nd  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )θσ−θσ×θσ−θσ×θσ−θσ×θσ−θσ=∆• 216574307  

( ) Q3
2

kN
d

d
×

′
=  

;
2

48
326521

2
6

2
5

2
2

2
1




















−′

+
′

′
−′

′
−′+′

×
mn

lssaadaalm
n

n
aln

m

m
andamda

 

( ) ( ) ( ).
2 7

2112
33

θ×
′

=






 +
×

′
= QQ kk N

d

dmnNM
N

d

d
 

It is clear that: 

( ) ( ) .2
7654321 ∆×∆×∆×∆×∆×∆×∆=θdiscr  

And that we have: 

( ( ) ( ))θσ−θσ∏
≤<≤

ji

ji 70

 

( ) ( )[ ] [ ( )]3
2

2
2

1

2

111
θ××θ×′×








θ×








′
= QQQ kkk NlNnN

n

n
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( ) [ ( )]5
2

4

2

22
θ×′×








θ×








′
× QQ kk NmN

m

m  

( )[ ] ( )







θ×








′
×θ×′× 7

2

6
2

33 QQ kk N
d

d
Nd  

( ) ( ) ( ) ( ) ( )4321
2

2111
θ×θ×θ×θ×= QQQQ kkkk NNNNdmnl  

( ) ( ) ( ).765 332
θ×θ×θ× QQQ kkk NNN  

Thus: 

Proposition 1.2. The powers of 
3KZ∈θ  form a basis of 

3KZ  if and only if 

( ) ( ) ( )321 111
θ×θ×θ QQQ kkk NNN  

( ) ( ) ( ) ( ) .17654 3322
±=θ×θ×θ×θ× QQQQ kkkk NNNN  (9) 

Equation equivalent to (8): ( ) .1,, 71 ±=aaI K  

And, we obtain the following system: 

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )















=θ

=θ

=θ

=θ

=θ

=θ

=θ

,

,

,

,

,

,

,

:

77

66

55

44

33

22

11

1

�

�

�

�

�

�

�

QQ

QQ

QQ

QQ

QQ

QQ

QQ

mn

mn

dn

dn

dm

dm

dm

N

N

N

N

N

N

N

S  

where .7,,1,0,1 K=±= kk�  

1.3.3. System of monogeneity equations 

Let us show that in the product ( ),,, 71 aaI K  each factor is in Z  and 

consequently is necessarily equal to .1±  This will give us the system ( ).1S  

● The detailed calculation hereafter show that the numbers 1111 ,,,, NMCA K  are 

in .Z  
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As an example we write 1A  et :1C  

( ) ( ( )2
5

2
354524232615131

2
4411 2 lllllllllllllllllllA ndnd −+++−−+−λ+−λ= ′′  

( ) ( ) ( )) (
ldldlmnmnd

m
m

m
m

d
d llllllll

′′′′′
′′′

λ+−−−γ++−γ++γ+γ+ 42
4

2
2

2
1

2
4

2
2

2
2

2
1

2
2  

( ) ( ) ( )) +−+γ+γ+−+++−−
′′

′′
42412142

2
66574726271 lllllllllllllllllll

ldlm
m
m

d
d  

( ( ) ( ) ( ))65747271
2
6646232318 lllllllllllllllll

ldlmnm
m
m

d
d +++−γ+−+−γ+−γ

′′′
′′

 

( ) ( )) and,3216 7675
2
765747271 lllllllllllll +−−++++−+  

( ) ( ) ( ( 74726254523261
2
4411 42 lllllllllllllllllC

ldndnd
m
m +−λ++−+−λ+−λ=

′′′
′

 

) ( ) ( )) ( 76
2
4

2
24121

2
221

2
665 8 llllllllllllll

ldlmnd
m
m

d
d ′′′

′′

λ−+−++−γλ+−γλ++−  

( )) ( ( 6574726254526132 16 llllllllllllllll lmlmnd
d
d

d
d −+−γλ++−−γλ+γλ+

′′′
′′

 

)) .32 76
2
6 lll lm

d
d γλ−+

′
′

 

● Moreover, the components of the following couples: ( ),, 11 CA ( ) ,, 11 DB  

( ) ,, 11 FE ( ) ( ) ( ) ( )11111111 ,,,,,,, NMLKJIHG  have the same parity. Indeed: 

( ) ( ) ( );2mod02
441

2
44111 ≡−λ−−λ≡− ′′ llllllCA ndnd  

( ) ( ) ( );2mod02
441

2
221

2
441

2
22111 ≡−−−λ−−−+−λ≡− ′′′′ llllllllllllDB lmdlmd  

( ) ( ) ( );2mod02
221

2
22111 ≡+−λ−−λ≡− ′′′′′′ llllllFE nmdnmd  

( ) ( ) ( );2mod02
442

2
44211 ≡+λ−−−λ≡− ′′ llllllHG mdmd  

( ) ( ) ( );2mod02
442

2
121

2
442

2
12111 ≡+−+−λ−−++−λ≡−

′′

llllllllllllJI
m
m

m
m dd
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( ) ( ) ( );2mod02
4424121

2
442412111 ≡++−λ−−−+λ≡−

′′

llllllllllllllLK
d
d

d
d m

 

( ) ( ) ( ).2mod02
44241

2
4424111 ≡+−λ−−+−λ≡− ′′ llllllllllNM dmd  

Note that for our demonstration, we will use only the reduced modulo 4 

computation of the values of the first three couples, whose expressions are: 

Proposition 1.3. We have the following relationships modulo 4: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

















−−−γ+−−γ+

+γ+γ+++λ+−λ≡

−−γ+−γ++γ+

γ+−+−−λ+−−+−λ≡

−−−γ++−γ++γ+γ+

−+++−−+−λ+−λ≡

′′

′′′′′′′′′′

′′

′′′′

′′

′′′′

′′

′′′

′′′

′′

,4mod22

222

,4mod222

22

,4mod2222

2

2
4

2
2

2
1

2
4

2
2

2
4

2
1

2
4526141

2
2211

2
4

2
1

2
4

2
2

2
1

2
2

2
5

2
3545131

2
441

2
2211

2
4

2
2

2
1

2
4

2
2

2
2

2
1

2
2

2
5

2
354524232615131

2
4411

lllll

llllllllllllE

lllll

lllllllllllllllB

llllllll

lllllllllllllllllllA

dm

nnmdnmdnmd

llmdm

ddd

ldlmnmnd

ndnd

nm
mn

nd
dn

md
dm

md
dm

n
n

n
n

n
n

n
n

m
m

d
d

 

and 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )







−−λ+−λ≡

−λ+−λ≡

+−+−λ+−λ≡

′′′′′′

′′′′

′′

.4mod2

,4mod2

,4mod2

526121
2
21

5432
2
2211

54523261
2
4411

lllllllF

lllllllD

lllllllllllC

nmdnmd

lmdlmd

ndnd

 

1.3.4. Resolution of the system ( )1S  - Modular Calculations - Lemmas 

We are particularly interested in the system formed by the first three equations of 

( ).1S  

We get: 

( )








=−

=−

=−

′

,4

,4

,4

:

3
2

1
2
1

2
2
1

2
1

1
2
1

2
1

1

�

�

�

dmFE

dmDB

dmCA

S  (10) 

where for recall the numbers 
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,
8

2
7

2
6

2
3

2
2

1

ld
m

m
alm

d

d
anmanda

A

′
′

−′
′

−′+′
=  

,
4

4376132
1

lssaansaa
C

−′
=  

,
8

2
5

2
4

2
3

2
2

1

l
md

dm
almda

n

n
ma

n

n
da

B
′′

−′′−
′

+
′=  

,
4

254132
1

lsaa
n

n
saa

D
−

′=  

,
8

2
7

2
6

2
5

2
4

1

d
nm

mn
am

nd

dn
an

md

dm
anmda

E

′
′′

−′
′′

−′
′′

+′′′
=  

4

4376254
1

n

n
ssaansaa

F
′

−′
=  

and the 71 ,, aa K  are defined in Remarks 1.1. 

In the next paragraph we give the following useful lemmas. 

Let put: 

( )

( )

( )







≥=

≥=

≥=

.1,gcd

,1,gcd

,1,gcd

113

112

111

FEd

DBd

CAd

 (11) 

It is clear that ( )1S ′  is solvable 2
2

2
1 , dd⇒  and 2

3d  divide { }.2,1,,4 321 ∈⇒ ddd  

We assume that ( )1S ′  is solvable, so we have the following results. 

Lemmas 1.1. We have the following three lemmas: 

(a) 

( )








+′=
′

+′=
′

.

,
:

111

111
0

lFDnC
n

n

lEBnA
n

n

S  
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(b) The following system ( )1S ′′  is solvable (exactly ( ) ( )11 SS ′′⇔′ ). 

( )















−′+







′
=




 −
×

+′−







′
=




 −
×

′

−′−







′
=




 −
×′

′′

.
4

2

,
4

2

,
4

2

:

3
2

2
2

1

2
1111

3
2

2
2

1

2
1111

3
2

2
2

1

2
1111

1

���

���

���

ln
n

ndmDCBA
n

ln
n

ndmFCEA
l

n

n

ln
n

ndmDFBE
ln

S  

(c) ( ) ( ).1,1,2,, 321 =ddd  So that 

( ) ( ) ( ).2mod12mod1,2mod0 111111 ≡≡≡≡≡≡ FEandDBCA  

Firstly; we demonstrate points (a) and (b). 

Proof  1.1. (a) Let us establish the system ( ):0S  

Evident (by simple calculation). 

(b) Let us show that ( )1S ′  and ( )1S ′′  sont équivalents when ( )0S  is checked. 

Transforms ( )1S ′  from the relations of ( ).0S  

We have: 

( ) ( ) 1

2
2

11
2

111
2
1

2
1 44 �� ×








′
=+′−+′⇔=−

n

n
dmlFDnlEBndmCA  

( ) ( ) [ ] 1

2

1111
2

1
2
1

22
1

2
1

2 42 �×







′
=−′+−+−′⇔

n

n
dmDFBElndmFEldmDBn  

[ ] .4244 1

2

11113
2

1
2 ��� ×








′
=−′+×+×′⇔

n

n
dmDFBElnln  

Which gives us: 

.
4

2 3
2

2
2

1

2
1111 ��� ln

n

ndmDFBE
ln −′−








′
=




 −
×′  

Note that; ( ).4mod13
2

2
2

1

2
±≡−′−








′
��� ln

n

n
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In the same way we have: 

2
2
1

2
1 4�=− dmDB  equals: 

3
2

2
2

1

2
1111

4
2 ��� ln

n

ndmFCEA
l

n

n
+′−








′
=




 −
×

′
 

and ( ).4mod13
2

2
2

1

2
±≡−′−








′
��� ln

n

n
 

Similarly; 1
2

1
2
1 4�=− dmFE  equals: 

3
2

2
2

1

2
1111

4
2 ��� ln

n

ndmDCBA
n −′+








′
=




 −
×  

and ( ).4mod13
2

2
2

1

2
±≡−′−








′
��� ln

n

n
 

The system ( )1S ′  gives rise to the system ( )1S ′′  below: 

( )















−′+







′
=




 −
×

+′−







′
=




 −
×

′

−′−







′
=




 −
×′

′′

.
4

2

,
4

2

,
4

2

:

3
2

2
2

1

2
1111

3
2

2
2

1

2
1111

3
2

2
2

1

2
1111

1

���

���

���

ln
n

ndmDCBA
n

ln
n

ndmFCEA
l

n

n

ln
n

ndmDFBE
ln

S  

For (c), 

Let us first establish that: ( ) ( )1,1,2,, 321 =ddd  or ( )2,1,1  or ( ).1,2,1  

● Suppose ,21 =d  then 1A  and 1C  are even. 

It is clear that the case 232 == dd  is impossible because otherwise 

0
4

2
4 3

2
2

2
1

2
11111111 ≡−′−








′
=




 −
×′⇒∈

−
��� ln

n

ndmDFBE
ln

dmDFBE
Z

( ) ,2mod  which is absurd. 
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Similarly, if ( ) ( )2,1, 32 =dd  or ( ),1,2  then either 1B  and 1D  are even and 

1E  and 1F  odd, or we have the opposite, in all cases as 111 lEBnA
n

n
+′=

′
 and 

111 lFDnC
n

n
+′=

′
 it comes that 1A  and 1C  would be odd, which is absurd. 

So the only possibility is ( ) ( ).1,1,2,, 321 =ddd  

● Now suppose that .11 =d  So 1A  and 1C  are odd. 

If we had 111132 ,,,2 FEDBdd ⇒==  would be even ⇒  impossible, see 

above. 

If we have ,132 == dd  then 1111 ,,, FEDB  would be odd, but then 

( 111 lEBnA
n

n
+′=

′
 and ) 1111 AlFDnC

n

n
⇒+′=

′
 and 1C  would be even. This is 

absurd. So ( ) ( )2,1,1,, 321 =ddd  or ( ).1,2,1  

In summary we have: ( ) ( )1,1,2,, 321 =ddd  or ( )2,1,1  or ( ).1,2,1  

● To show that ( ) ( ) ,1,1,2,, 321 =ddd  we use the computation of 111 ,, FDC  

cf. Proposition 1.2, from which we deduce the value of ( ).4mod111 lFDnC
n

n
+′=

′
 

We get ( ) ( ).4mod04mod 2
441111 ≡−⇒+′≡

′
llllFDnC

n

n
 

As a consequence ( ),2mod01 ≡C  so ( ) ,2mod01 ≡A  because they are of the 

same parity. 

So 21 =d  and consequently ( ) ( )1,1,2,, 321 =ddd  as announced in Lemmas 

1.1(c). 

The system ( )1S  being always supposed to be solvable, we also have the 

following Lemma: 

Lemmas 1.2. (i) ( ) ( )4mod0;2mod0 341 ≡≡≡ lll  and ( )2mod152 ≡≡ ll  

(ii) For the quantities ,,,,,, 111111 FDCEBA  we have: 
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( )

( ) ( )

( ) ( )







λ−−λ−≡

−λ≡

λ−≡

′′′′′′

′′

′

;4mod21

;4mod1

;4mod2

52211

211

521

llllF

llD

llC

nmdnmd

lmd

nd

 

and 

( )

( ) ( ) ( )

( ) ( ) ( )








γ+γλ−λ+−λ≡

γ+γλ+−λ−≡

λ+λ−≡

′′′′′′

′′

′′

.4mod221

;4mod21

;4mod22

52211

211

521

mdnlnmdnmd

mdd

ndnd

llllE

llB

llA

n
n

n
n  

Remark 1.3. Note that the point (i) of the lemma, is not sufficient to find a 

contradiction in computing modulo 4, the quantities ( ),, 11 CA  ( ) ,, 11 DB  ( ) ,, 11 FE  

( ) ( ) ( ) ( ).,,,,,,, 11111111 NMLKJIHG  

Proof 1.2. We had already calculated modulo 4, the quantities 111 ,, EBA  as 

well as 111 ,, FDC  cf. Lemmas 1.2. Recall also that we have shown cf. proof of 

Lemmas 1.1(c) that ( ).4mod02
441 ≡− lll  

From which we deduce that 1F  is odd that: ( )2mod12 ≡l  and ( )2mod01 ≡l  

and that accordingly ( ).2mod04 ≡l  

Said congruences simplify a first time, considering among other things that 

( ),4mod12
2 ≡l  we find: 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )











γ+γ−λ+−λ≡

γ+γ+−λ++−λ≡

γ−γ−γ+γ+−++−λ≡

′′′′′′′′

′′′′′

′′′′

′′′′

′′

4mod221

,4mod221

,4mod22

52211

2
5

2
3211

2
5

2
352321

dmnmdnmd

mddd

ldlmnmndnd

nm
mn

nd
dn

n
n

n
n

n
n

n
n

m
m

d
d

llllE

llllB

llllllA

 

and 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )







−λ+−λ≡

λ+−λ≡

−λ≡

′′′′′′

′′′′

′

.4mod21

,4mod21

,4mod2

52211

32211

52321

llllF

llllD

llllC

nmdnmd

lmdlmd

nd

 

● Now we consider: ( ) ,4mod111 lEBnA
n

n
+′≡

′
 (see Lemmas 1.1(a)) considering 
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that dnλ ,1=λ= ′′′ lnmd  gives the reduction: 

( )
ldlmnmnd

m
m

d
d

n
nll

′′′′
′′′

γ−γ−γ+γλ−≡− 232  

( ( ) ( )) ( ).4mod2
dmlmdn

nm
mn

nd
dn

n
n

n
n ′′′

′′′′′′

γ+γλ−γ+γλ+  

But the two quantities: 

( )
ldlmnmnd

m
m

d
d ′′′′

′′

γ−γ−γ+γ2  and ( ( ) ( ))
dmlmdn

nm
mn

nd
dn

n
n

n
n ′′′

′′′′′′

γ+γλ−γ+γλ2  

are ( ).4mod0≡  

Indeed, let us use the form of Remark 1.1. 

( ) ( mnnmdnndldlmnmnd
m
m

d
d γλ+γλ+γλ+γλ≡γ−γ−γ+γ• ′′′′′′′′

′′

22  

) ( )4mod
dlldmllm

m
m

m
m

d
d

d
d ′′′′

′′′′

γλ−γλ−γλ−γλ−  

( ( ) ( ) ( ) ( )) ( )4mod2
dmldmlmdnmdn

m
m

d
d

m
m

d
d ′′′′′′

′′′′

γ+γλ−λ+λγ−γ+γλ+λ+λγ≡  

( ( ) ( )) ( )4mod2
dmlmdn

m
m

d
d ′′′

′′

γ+γλ−γ+γλ≡  

( ( ) ( dmmlmmddn
m
m

d
d

d
d

m
m

m
m

d
d

d
d ′′′′′′′ γλ+γλ+γλλ−γλ+γλ+γλ+γλλ≡

′′′′′′′

2  

)) ( )4mod
m
md

′

γλ+ ′  

( ( dlmmlmnnmdnnd
m
m

d
d

d
d

m
m

m
m

d
d

d
d ′′′′′′′′′′′ γλ+γλ+γλ−γλ+γλ+γλ+γλ≡

′′′′′′′

2  

)) ( )4mod
m
mld

′

γλ+ ′  

( ( ) ( ) ( ) ( ))
lnmldnmlndlmnd

d
d

m
m

m
m

m
m

d
d

d
d

′′′′′′

λ−λγ+λ−λγ+λ−λγ+λ−λγ≡
′′′′′′′′′′2  

( ) ( ).4mod04mod ≡  

Similarly, we have: 
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( ) ( )) ( )4mod22 mdmd
n
n

n
n

n
n γ+γλ≡γ+γ

′′′

 

( )) ( )4mod2 md
n
n γ+γλ≡
′

 

( ) ( )4mod2
m
m

m
m

d
d

d
d

n
n mmdd

′′′′′

γλ+γλ+γλ+γλλ≡ ′′′′  

and 

( ) ( )) ( )4mod22
dmdm

m
m

d
d

n
n

nm
mn

nd
dn ′′′′

′′′′′′′

γ+γλ≡γ+γ  

( ) ( ).4mod2
m
m

d
d

d
d

m
m

n
n dmmd

′′′′′

γλ+γλ+γλ+γλλ≡ ′′′′  

So 

( ( ) ( ))
dmlmdn

nm
mn

nd
dn

m
m

n
n ′′′

′′′′′′

γ+γλ−γ+γλ2  

( ( ) ( ))
dmlmdn

m
m

d
d

n
n

n
n ′′′

′′′′

γ+γλλ−γ+γλλ≡ 2  

( ( ) ( ) ( )
lnmlmndlnd

n
n

d
d

m
m

n
n

d
d

n
n

m
m

d
d

′′′′′′′′

λ−λγ+λ−λγ+λ−λγ≡ ′′′′2  

( ) ( ).4mod0≡λ−λγ+
′′′

′ lnm
n
n

d
d

m
m  

This implies that ( ) ( ) :4mod04mod0 332 ≡⇒≡− lll  

But then ( )2mod15 ≡l  because otherwise we would have ,41 =d  which 

would be absurd. 

The congruences are re-written in finality as follows, noting the fact that 

( ) ( ) ( ) ( )4mod222 mdnlmdlndm
n
n

n
n

nm
mn

nd
dn γ+γλ≡γ+γλ≡γ+γ

′′′′′′
′′′

 what makes it 

possible to make appear this quantity in the expression of 1E  at the level of the 

Lemma. 

And we have as well as announced: 

( )

( ) ( )

( ) ( )







λ−−λ−≡

−λ≡

λ−≡

′′′′′′

′′

′

4mod21

,4mod1

,4mod2

52211

211

521

llllF

llD

llC

nmdnmd

lmd

nd

 



DIOPHANTINE PROOF OF NON-MONOGENEITY … 

 

35 

and 

( )

( ) ( ) ( )

( ) ( ) ( )








γ+γλ−λ+−λ≡

γ+γ+−λ−≡

λ+λ−≡

′′′′′′

′′

′

.4mod221

,4mod21

,4mod22

52211

211

521

mdnlnmdnmd

mdd

ndnd

llllE

llB

llA

n
n  

2. Non-monogeneity of the Fields ( )lnmddndmK ′′′= ,,3 Q  

with odd Discriminant 

We now state the main theorem of this article. 

Theorem 2.1. Let be a triquadratic field ( )lnmddndmK ′′′= ,,3 Q  with 

odd discriminant, i.e., such that ( ) ( ) ( ).4mod1,1,1,, ≡′′′ lnmddndm  Then 3K  is 

not monogenous, i.e., the system ( )1S  associated with the equation of monogeneity 

(8) of 3K  is not solvable. 

Proof  2.1. To demonstrate this theorem, it suffices to show that the system ( )1S  

admits no solution. Indeed the conditions of Lemmas 1.1 are strong enough to show 

that the system ( )1S  is not solvable because ( ) ( )( )11 i.e., SS ′′′  is not. We will show 

that in the first equation of ( ),1S ′  cf. Lemmas 1.1(b), we have: 

( ) ( ) ,2mod04mod0 3
2

2
2

1

2

1111 ≡−′−







′
⇒≡− ��� ln

n

n
dmDFBE  

which is absurd since all summed numbers are odd. 

To show this, let us calculate ( ) ( ).4mod1111 dmDFBE −  

Using the last Lemmas 1.2(ii), we have: 

( ( ) 522111111111 21 llllDFBEdmDFBE nmdnmd ′′′′′′ λ+−λ≡−≡−  

( )) ( ( ) ( ))mddmdnl ll
n
n γ+γ+−λ−×γ+γλ−
′

212 21  

( ( ) ) ( ( )) ( ).4mod121 215221 −λ×λ−−λ−− ′′′′′′′′ llllll lmdnmdnmd  

So that 
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( ) ( ) ( ) ( )lndnmdmdnmln lldmDFBE
d
d ′′′′′′ λ+λγ+γ−+λ−λ≡−
′

12 211111  

( ) ( ) ( ).4mod012 2152 ≡λ−λ−λ−
′′′

′′
nmlnnm

d
d

d
d llll  

Conclusion 2.1. If ( )lnmddndmK ′′′= ,,3 Q  with ( ) ≡′′′ lnmddndm ,,  

( ) ( ) ,4mod1,1,1  then the monogeneity equation does not admit solutions in .
3KZ  It 

means that: 

“Any triquadratic number field with odd discriminant is monogenous.” 

We find the result of Y. Motoda and T. Nakahara [7], they used the ramification 

of 2. G. Nyul [9] also got this result by using the index form and the indices of sub-

groups. 

This method of demonstration should be able to apply a priori when the 

discriminant is even; that is to say the two remaining cases: ( ) ≡′′′ lnmddndm ,,  

( )3or2,1,1  and ( ) ( ).4mod3,2,1≡  Indeed in each of these cases, similar lemmas 

to those used here have been established (cf. [4] ). 
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