CONTINUED FRACTION APPROXIMATION FOR THE WALLIS RATIO

XU YOU1, **YONGCHENG HE**2, **DE WEI**² **and HUAINIAN ZHANG**1,*

¹Department of Mathematics and Physics Beijing Institute of Petrochemical Technology Beijing, 102617 P. R. China e-mail: youxu@bipt.edu.cn

²School of Information Engineering Beijing Institute of Petrochemical Technology Beijing, 102617 P. R. China

Abstract

In this paper, we establish a quicker approximation of the Wallis ratio based on continued fraction. This approximation is fast in comparison with the recently discovered asymptotic series. We also establish the double-side inequalities related to the approximation. Finally, we also give some numerical computations to demonstrate the superiority of our approximation over the classical ones.

*Corresponding author

Received June 5, 2023; Accepted June 24, 2023

© 2023 Fundamental Research and Development International

Keywords and phrases: Wallis ratio, approximations, multiple-correction method.

²⁰²⁰ Mathematics Subject Classification: 33B15, 26A48, 26D07.

1. Introduction and Motivation

The factorial function *n*! and the gamma function $\Gamma(x)$ are important components in the researches of pure mathematics, statistics and other branches of science. The gamma function can be regarded as an extension of the factorial function. When *n* is larger, a general method in the researches is to find approximations of the two functions. A well-known formula approximating to the ratio of factorial function is the Wallis formula. The Wallis ratio is defined as

$$
W(n) = \frac{(2n-1)!!}{(2n)!!} = \frac{1}{\sqrt{\pi}} \frac{\Gamma\left(n + \frac{1}{2}\right)}{\Gamma(n + 1)},
$$

where $\Gamma(x)$ is the gamma function which has attracted the attention of many researchers [1-8] and can be defined by

$$
\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt, \quad \text{Re}\,(x) > 0.
$$

The study and applications of *W*(*n*) have a long history, many remarkable results and applications for the Wallis ration can be found in the literature [9-16] and references cited therein.

For every natural number *n*, Chen and Qi [9] presented the following inequalities for the Wallis ratio:

$$
\frac{1}{\sqrt{\pi \left(n + \frac{4}{\pi} - 1\right)}} \le \frac{(2n - 1)! \, !}{(2n)!} \le \frac{1}{\sqrt{\pi \left(n + \frac{1}{4}\right)}},\tag{1.1}
$$

where the constants $\frac{4}{\pi}$ – 1 and $\frac{1}{4}$ $\frac{1}{4}$ are the best possible.

Guo, Xu and Qi proved in [18] that the double-side inequalities

$$
\sqrt{\frac{e}{\pi}} \left(1 - \frac{1}{2n}\right)^n \frac{\sqrt{n-1}}{n} < W(n) \le \frac{4}{3} \left(1 - \frac{1}{2n}\right)^n \frac{\sqrt{n-1}}{n},\tag{1.2}
$$

for $n \geq 2$ is valid with the best possible constants $\sqrt{\frac{e}{\pi}}$ $\frac{e}{\pi}$ and $\frac{4}{3}$. $\frac{4}{9}$. They also obtained the approximation formula

$$
W(n) \sim \chi(n) \coloneqq \sqrt{\frac{e}{\pi}} \left(1 - \frac{1}{2n} \right)^n \frac{\sqrt{n-1}}{n}, \quad n \to \infty. \tag{1.3}
$$

Recently, Qi and Mortici [17] improved the approximation formula (1.3) as

$$
W(n) \sim \sqrt{\frac{e}{\pi}} \left(1 - \frac{1}{2\left(n + \frac{1}{3}\right)}\right)^{n + \frac{1}{3}} \frac{1}{\sqrt{n}}, \quad n \to \infty.
$$
 (1.4)

Motivated by these works, in this paper we will apply the multiplecorrection method [19-21] to obtain an improved asymptotic expansion for the Wallis ratio based on continued fraction as follows:

Theorem 1. For the Wallis ratio $W(n) = \frac{(2n-1)!}{(2n)!}$, $2n - 1)!$! $W(n) = \frac{(2n-1)! \, !}{(2n)! \, !}$, we have

$$
W(n) \sim \sqrt{\frac{e}{\pi}} \left(1 - \frac{1}{2\left(n + \frac{1}{3}\right)} \right)^{n + \frac{1}{3}} \frac{1}{\sqrt{n}}
$$

\$\times \exp\left(\frac{1}{n^2} \frac{a_1}{n + b_1 + \frac{a_2}{n + b_2 + \frac{a_3}{n + b_3}}} \right), \quad n \to \infty\$, (1.5)\$

where
$$
a_1 = \frac{1}{144}
$$
, $b_1 = \frac{1}{60}$; $a_2 = \frac{781}{3600}$, $b_2 = -\frac{4309}{109340}$;
\n $a_3 = \frac{51396085}{89664267}$, $b_3 = \frac{25682346121}{449571834712}$.

Using Theorem 1, we provide some double-side inequalities for the Wallis ratio.

Theorem 2. For every integer $n > 1$, it holds:

$$
\sqrt{\frac{e}{\pi}} \left(1 - \frac{1}{2\left(n + \frac{1}{3}\right)}\right)^{n + \frac{1}{3}} \frac{1}{\sqrt{n}} \exp\left(\frac{1}{n^2} \frac{a_1}{n + b_1 + \frac{a_2}{n + b_2 + \frac{a_3}{n + b_3}}}\right)
$$

$$
W(n) > \sqrt{\frac{e}{\pi}} \left(1 - \frac{1}{2\left(n + \frac{1}{3}\right)}\right)^{n + \frac{1}{3}} \frac{1}{\sqrt{n}} \exp\left(\frac{1}{n^2} \frac{a_1}{n + b_1 + \frac{a_2}{n + b_2}}\right), \quad (1.6)
$$

where $a_1 = \frac{1}{144}$, $a_1 = \frac{1}{144}$, $b_1 = \frac{1}{60}$; $b_1 = \frac{1}{60}$; $a_2 = \frac{781}{3600}$, $a_2 = \frac{781}{3600}$, $b_2 = -\frac{4309}{109340}$; $\frac{61650000}{89664267}$ $a_3 = \frac{51396085}{89664267}$, $b_3 = \frac{25682346121}{449571834712}$. $b_3 = \frac{25682346121}{449571834713}$

To prove Theorem 1, we need the following lemma which was used in [22-24] and is very useful for constructing asymptotic formulas.

Lemma 1. *If the sequence* $(x_n)_{n \in \mathbb{N}}$ *is convergent to zero and there exists the limit*

$$
\lim_{n \to +\infty} n^s (x_n - x_{n+1}) = l \in [-\infty, +\infty]
$$
\n(1.7)

with s > 1, *then*

$$
\lim_{n \to +\infty} n^{s-1} x^n = \frac{l}{s-1}.
$$
\n(1.8)

Lemma 1 was proved by Mortici in [22]. From Lemma 1, we can see that the rate of convergence of the sequences $(x_n)_{n\in\mathbb{N}}$ increases together with the values *s* satisfying (1.8) .

The rest of this paper is arranged as follows. In Section 2, we will apply the *multiple*-*correction method* to construct a new asymptotic expansion for the Wallis ratio based on continued fraction and prove Theorem 1 by the *multiple*-*correction method*. In Section 3, we established the double-side inequality for the Wallis ratio. In Section 4, we give some numerical computations which demonstrate the superiority of our new series over some formulas found recently.

2. Proof of Theorem 1

According to the argument of the Theorem 5.1 in [17], we can introduce a sequence $(u(n))_{n\geq 1}$ by the relation

$$
W(n) = \sqrt{\frac{e}{\pi}} \left(1 - \frac{1}{2\left(n + \frac{1}{3}\right)}\right)^{n + \frac{1}{3}} \frac{1}{\sqrt{n}} \exp u(n), \tag{2.1}
$$

and say that an approximation $W(n)$ $n + \frac{1}{2}$) \sqrt{n} $W(n) \sim \sqrt{\frac{e}{a}}$ *n* 1 3 $2(n + \frac{1}{2})$ $\sim \sqrt{\frac{e}{a}} \left(1 - \frac{1}{\sqrt{a}}\right)$ 3 $+\frac{1}{2}$ $\overline{}$ $\overline{}$ $\overline{}$ J \backslash $\overline{}$ \mathbf{r} \mathbf{I} l ſ \int $\left(n+\frac{1}{3}\right)$ $\left(n\right)$ $\frac{e}{\pi} \left| 1 - \frac{1}{\sqrt{n}} \right| \frac{1}{\sqrt{n}}$ is

better if the speed of convergence of $u(n)$ is higher.

(Step 1) The initial-correction. When $n \to \infty$, we define a sequence $(u_0(n))_{n\geq 1}$

$$
W(n) = \sqrt{\frac{e}{\pi}} \left(1 - \frac{1}{2\left(n + \frac{1}{3}\right)}\right)^{n + \frac{1}{3}} \frac{1}{\sqrt{n}} \exp u_0(n).
$$
 (2.2)

From (2.2), we have

$$
u_0(n) = \ln W(n) - \ln \sqrt{\frac{e}{\pi}} - \left(n + \frac{1}{3}\right) \ln \left(1 - \frac{1}{2\left(n + \frac{1}{3}\right)}\right) - \frac{1}{2} \ln \frac{1}{n}.
$$
 (2.3)

Thus,

$$
u_0(n) - u_0(n+1) = \ln \frac{2n+2}{2n+1} - \left(n + \frac{1}{3}\right) \ln \left(1 - \frac{1}{2\left(n + \frac{1}{3}\right)}\right) - \frac{1}{2} \ln \frac{1}{n}
$$

$$
+ \left(n + \frac{4}{3}\right) \ln \left(1 - \frac{1}{2\left(n + \frac{4}{3}\right)}\right) + \frac{1}{2} \ln \frac{1}{n+1}.
$$
 (2.4)

Developing (2.4) into power series expansion in $1/n$, we have

$$
u_0(n) - u_0(n+1) = \frac{1}{48} \frac{1}{n^4} + O\left(\frac{1}{n^5}\right).
$$
 (2.5)

By Lemma 1, we know that the rate of convergence of the sequence $(u_0(n))_{n\geq 1}$ is n^{-3} .

(Step 2) The first-correction. We define the sequence $(u_1(n))_{n\geq 1}$ by the relation

$$
W(n) = \sqrt{\frac{e}{\pi}} \left(1 - \frac{1}{2\left(n + \frac{1}{3}\right)}\right)^{n + \frac{1}{3}} \frac{1}{\sqrt{n}} \exp\left(\frac{1}{n^2} \frac{a_1}{n + b_1}\right) \exp u_1(n). \quad (2.6)
$$

From (2.6), we have

$$
u_1(n) - u_1(n+1) = \ln \frac{2n+2}{2n+1} - \left(n + \frac{1}{3}\right) \ln \left(1 - \frac{1}{2\left(n + \frac{1}{3}\right)}\right)
$$

$$
-\frac{1}{2}\ln\frac{1}{n} + \frac{1}{2}\ln\frac{1}{n+1} + \left(n + \frac{4}{3}\right)\ln\left(1 - \frac{1}{2\left(n + \frac{4}{3}\right)}\right)
$$

$$
-\frac{1}{n^2}\frac{a_1}{n+b_1} + \frac{1}{(n+1)^2}\frac{a_1}{n+1+b_1}.
$$
(2.7)

Developing (2.7) into power series expansion in $1/n$, we have

$$
u_1(n) - u_1(n+1) = \left(\frac{1}{48} - 3a_1\right) \frac{1}{n^4}
$$

$$
+ \left(-\frac{91}{2160} + a_1(6+4b_1)\right) \frac{1}{n^5} + O\left(\frac{1}{n^6}\right).
$$
 (2.8)

By Lemma 1, we know that the fastest possible sequence $(u_1(n))_{n\geq 1}$ is obtained as the first item on the right of (2.8) vanishes. So taking $\frac{1}{144}$, $a_1 = \frac{1}{144}$, $b_1 = \frac{1}{60}$, $b_1 = \frac{1}{60}$, we can get the rate of convergence of the sequence $(u_1(n))_{n\geq 1}$ is at least n^{-5} .

(Step 3) The second-correction. We define the sequence $(u_2(n))_{n\geq 1}$ by the relation

$$
W(n) = \sqrt{\frac{e}{\pi}} \left(1 - \frac{1}{2\left(n + \frac{1}{3}\right)} \right)^{n + \frac{1}{3}} \frac{1}{\sqrt{n}}
$$

$$
\times \exp\left(\frac{1}{n^2} \frac{a_1}{n + b_1 + \frac{a_2}{n + b_2}}\right) \exp u_2(n).
$$
 (2.9)

Using the same method as above, we obtain that the sequence $(u_2(n))_{n\geq 1}$

converges fastest only if $a_2 = \frac{701}{3600}$, $a_2 = \frac{781}{3600}$, $b_2 = -\frac{4309}{109340}$.

(Step 4) The third-correction. Similarly, define the sequence $(u_3(n))_{n\geq 1}$ by the relation

$$
W(n) = \sqrt{\frac{e}{\pi}} \left(1 - \frac{1}{2\left(n + \frac{1}{3}\right)} \right)^{n + \frac{1}{3}} \frac{1}{\sqrt{n}}
$$

$$
\times \exp\left(\frac{1}{n^2} \frac{a_1}{n + b_1 + \frac{a_2}{n + b_2 + \frac{a_3}{n + b_3}}}\right) \exp u_3(n). \tag{2.10}
$$

Using the same method as above, we obtain that the sequence $(u_3(n))_{n\geq 1}$ converges fastest only if $a_3 = \frac{51556666}{89664267}$, $a_3 = \frac{51396085}{89664267}$, $b_3 = \frac{25682346121}{449571834712}$. $b_3 = \frac{25682346121}{449571834713}$

The new asymptotic (1.5) is obtained.

3. Proof of Theorem 2

The double-side inequality (1.6) may be written as follows:

$$
f(n) = \ln W(n) - \frac{1}{2} + \frac{1}{2} \ln \pi - \left(n + \frac{1}{3}\right) \ln \left(1 - \frac{1}{2\left(n + \frac{1}{3}\right)}\right)
$$

$$
-\frac{1}{2}\ln\frac{1}{n} - \frac{1}{n^2}\n\qquad\n\frac{\frac{1}{144}}{n + \frac{1}{60} + \frac{\frac{781}{3600}}{n - \frac{4309}{109340}}}
$$

and

$$
g(n) = \ln W(n) - \frac{1}{2} + \frac{1}{2} \ln \pi - \left(n + \frac{1}{3}\right) \ln \left(1 - \frac{1}{2\left(n + \frac{1}{3}\right)}\right)
$$

$$
-\frac{1}{2}\ln\frac{1}{n}-\frac{1}{n^2}\frac{\dfrac{1}{144}}{n+\dfrac{1}{60}+\dfrac{\dfrac{781}{3600}}{n-\dfrac{4309}{109340}+\dfrac{\dfrac{51396085}{89664267}}{n+\dfrac{25682346121}{449571834712}}}\,.
$$

Suppose $F(n) = f(n+1) - f(n)$ and $G(n) = g(n+1) - g(n)$. For every $x > 1$, we can get

$$
F''(x) = \frac{A(x-1)}{\left(\frac{160x^4(1+x)^4(1+2x)^2(1+3x)(4+3x)}{x(6x-1)^2(5+6x)^2\psi_1^3(x; 2)\psi_2^3(x; 2)}\right)} < 0
$$
(3.1)

and

$$
G''(x) = \frac{B(x)}{\begin{pmatrix} 32x^4(1+x)^4(1+2x)^2(1+3x)(4+3x) \\ x(-1+6x)^2(5+6x)^2\psi_1^3(x; 3)\psi_2^3(x; 3) \end{pmatrix}} > 0,
$$
(3.2)

where

$$
\psi_1(x; 2) = 10642 - 1119x + 49203x^2,
$$

\n
$$
\psi_2(x; 2) = 58726 + 97287x + 49203x^2,
$$

\n
$$
\psi_1(x; 3) = 113505180 + 4083418255x + 178132605x^2
$$

\n
$$
+ 5180725368x^3,
$$

 $\Psi_2(x; 3) = 9555781408 + 19981859569x + 15720308709x^2$

$$
+ 5180725368x^3.
$$

 $A(x) = -461003, ..., 512n^{18} - ...$ is a polynomial of 18th degree with all negative coefficients and $B(x) = 212876, ..., 696x^{22} + ...$ is a polynomial of 22th degree with all positive coefficients.

It shows that $F(x)$ is strictly concave and $G(x)$ is strictly convex on $(0, \infty)$. According to Theorem 1, when $n \to \infty$ it holds that $\lim_{n \to \infty} f(n)$ $= \lim_{n \to \infty} g(n) = 0$; thus $\lim_{n \to \infty} F(n) = \lim_{n \to \infty} G(n) = 0$. As a result, we can make sure that $F(n) < 0$ and $G(n) > 0$ on $(0, \infty)$. Consequently, the sequence $f(n)$ is strictly increasing and $g(n)$ is strictly decreasing while they both converge to 0. As a result, we conclude that $f(n) > 0$, and $g(n) < 0$ for every integer $n > 1$.

The proof of Theorem 2 is complete.

4. Numerical Computations

In this section, we give Table 1 to demonstrate the superiority of our new series respectively. From what has been discussed above, we found out the new asymptotic function as follows:

Chen and Qi [10] gave:

$$
W(n) \sim \frac{1}{\sqrt{\pi \left(n + \frac{1}{4}\right)}} = \alpha(n). \tag{4.2}
$$

Qi and Mortici [17] gave the improved formula:

$$
W(n) \sim \sqrt{\frac{e}{\pi}} \left(1 - \frac{1}{2n} \right)^n \sqrt{\frac{1}{n}}
$$

$$
\times \exp \left(\frac{1}{24n^2} + \frac{1}{48n^3} + \frac{1}{160n^4} + \frac{1}{960n^5} \right) = \beta(n)
$$
 (4.3)

and

$$
W(n) \sim \sqrt{\frac{e}{\pi}} \left(1 - \frac{1}{2\left(n + \frac{1}{3}\right)} \right)^{n + \frac{1}{3}} \frac{1}{\sqrt{n}} = \gamma(n). \tag{4.4}
$$

We can easily observe that the new formula converges fastest of the

other three formulas.

\boldsymbol{n}	$\frac{W(n)-\alpha(n)}{W(n)}$	$\frac{W(n) - \beta(n)}{W(n)}$	$\frac{W(n)-\gamma(n)}{W(n)}$	$\frac{W(n)-\sigma(n)}{W(n)}$
50	-6.1876×10^{-6}	7.3576×10^{-14}	5.5532×10^{-8}	-3.8082×10^{-19}
500	-6.2438×10^{-8}	7.1643×10^{-20}	5.5554×10^{-11}	-3.8138×10^{-28}
1000	-1.5617×10^{-8}	1.1177×10^{-21}	6.9443×10^{-12}	-7.4489×10^{-31}
2000	-3.9053×10^{-9}	1.7452×10^{-23}	8.6805×10^{-13}	-1.4549×10^{-33}

Table 1. Simulations for $\alpha(n)$, $\beta(n)$, $\gamma(n)$ and $\sigma(n)$

Acknowledgements

This work was supported in part by URT Program for College Students at Beijing Institute of Petroleum and Chemical Technology (No. 2023X00082).

References

- [1] Z.-H. Yang, W.-M. Qian, Y.-M. Chu and W. Zhang, On rational bounds for the gamma function, J. Inequal. Appl. 2017, 2017, Article 210, 17 pages.
- [2] Z.-H. Yang, W. Zhang and Y.-M. Chu, Monotonicity of the incomplete gamma function with applications, J. Inequal. Appl. 2016, 2016, Article 251, 10 pages.
- [3] Z.-H. Yang, W. Zhang and Y.-M. Chu, Monotonicity and inequalities involving the incomplete gamma function, J. Inequal. Appl. 2016, 2016, Article 221, 10 pages.
- [4] Z.-H. Yang and Y.-M. Chu, Asymptotic formulas for gamma function with applications, Appl. Math. Comput. 270 (2015), 665-680.
- [5] T.-H. Zhao, Y.-M. Chu and H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal. 2011, 2011, Article ID 896483, 13 pages.
- [6] T.-H. Zhao and Y.-M. Chu, A class of logarithmically completely monotonic

functions associated with a gamma function, J. Inequal. Appl. 2010, 2010, Article ID 392431, 11 pages.

- [7] X.-M. Zhang and Y.-M. Chu, A double inequality for gamma function, J. Inequal. Appl. 2009, 2009, Article ID 503782, 7 pages.
- [8] T.-H. Zhao, Y.-M. Chu and Y.-P. Jiang, Monotonic and logarithmically convex properties of a function involving gamma function, J. Inequal. Appl. 2009, 2009, Article ID 728612, 13 pages.
- [9] C. P. Chen and F. Qi, Completely monotonic function associated with the gamma functions and proof of Wallis' inequality, Tamkang J. Math. 36(4) (2005), 303-307.
- [10] C. P. Chen and F. Qi, The best bounds in Wallis' inequality, Proc. Amer. Math. Soc. 133(2) (2005), 397-401.
- [11] F. Qi, Integral representations and complete monotonicity related to the remainder of Burnside's formula for the gamma function, J. Comput. Appl. Math. 268 (2014), 155-167.
- [12] F. Qi, L. H. Cui and S. L. Xu, Some inequalities constructed by Tchebysheff's integral inequality, Math. Inequal. Appl. 2(4) (1999), 517-528.
- [13] W.-M. Qian, X.-H. Zhang and Y.-M. Chu, Sharp bounds for the Toader-Qi mean in terms of harmonic and geometric means, J. Math. Inequal. 11(1) (2017), 121-127.
- [14] Z.-H. Yang, Y.-M. Chu and Y.-Q. Song, Sharp bounds for Toader-Qi mean in terms of logarithmic and identric means, Math. Inequal. Appl. 19(2) (2016), 721-730.
- [15] Z.-H. Yang and Y.-M. Chu, On approximating the modified Bessel function of the first kind and Toader-Qi mean, J. Inequal. Appl. 2016, 2016, Article 40, 21 pages.
- [16] Z.-H. Yang and Y.-M. Chu, A sharp lower bound for Toader-Qi mean with applications, J. Funct. Spaces 2016, 2016, Article ID 4165601, 5 pages.
- [17] F. Qi and C. Mortici, Some best approximation formulas and inequalities for the Wallis ratio, Appl. Math. Comput. 253 (2015), 363-368.
- [18] S. Guo, J. G. Xu and F. Qi, Some exact constants for the approximation of the quantity in the Wallis' formula, J. Inequal. Appl. 2013, 2013, Article 67, 7 pages.
- [19] X. D. Cao, H. M. Xu and X. You, Multiple-correction and faster approximation, J. Number Theory 149 (2015), 327-350.
- [20] X. D. Cao, Multiple-correction and continued fraction approximation J. Math. Anal. Appl. 424 (2015), 1425-1446.

- [21] X. D. Cao and X. You, Multiple-correction and continued fraction approximation (II), Appl. Math. Comput. 261 (2015), 192-205.
- [22] C. Mortici, Product approximations via asymptotic integration, Amer. Math. Monthly 117(5) (2010), 434-441.
- [23] C. Mortici, New improvements of the Stirling formula, Appl. Math. Comput. 217(2) (2010), 699-704.
- [24] C. Mortici, A continued fraction approximation of the gamma function, J. Math. Anal. Appl. 402 (2013), 405-410.