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Abstract 

In a four-dimensional space I shall construct all of the conformally 

invariant, scalar-vector-tensor field theories that are consistent with 

conservation of (electric) charge and flat space compatible. By the last 

assumption I mean that the Lagrangian of the theory in question, is 

well defined and differentiable when evaluated for either a flat metric 

tensor, (and) or constant scalar field, (and) or vanishing vector 

potential. The Lagrangian of any such field theory can be chosen to be a 

linear combination of six conformally invariant scalar-vector-tensor 

Lagrangians, with the coefficients being scalar functions of the scalar 

field. Five of these generating Lagrangians are at most of second-order, 

while the sixth one is of third-order. However, the third-order 

Lagrangian differs from a non-conformally invariant second-order 

Lagrangian by a divergence. Consequently, all of the conformally 

invariant scalar-vector-tensor field theories that are consistent with 
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conservation of charge and flat space compatible, can be obtained from a 

second-order Lagrangian. The vector equation of any such theory is at 

most of second-order and is an extension of Maxwell’s equations, 

incorporating two other first-order terms that vanish when the scalar 

field is constant. Hence in regions where the scalar field is constant, the 

vector equation reduces to Maxwell’s. 

1. Introduction 

If one is going to use a scalar-tensor field theory to describe 

gravitational effects in the Universe, then one needs to determine how 

that theory should be modified to incorporate electromagnetic 

phenomenon. The simplest way to accomplish this task is to derive the 

field equations from a Lagrangian L which is the sum of two Lagrangians: 

 ,SVTST LLL +=  (1.1) 

where STL  is a concomitant of the scalar field ,ϕ  and the gravitational 

field tensor, ,abg  along with their derivatives; and SVTL  is built from 

abg,ϕ  and the vector potential, ,aψ  along with its derivatives. STL  can, 

e.g., be chosen from the class of Horndeski Lagrangians presented in [1], 

which lead to second-order field equations. The possibilities for SVTL  are 

endless. For some guidance in the choice of SVTL  let us look at the 

Einstein-Maxwell equations. 

The vacuum field equations of the Einstein-Maxwell field theory are 

( ) 0412 =−− ab
abij

a
jiaij FFgFFG  

and 

,0=j
ijF  

where the notation employed in this paper is the same as that used in [2] 

and [3], in terms of which .: ,, abbaabF ψ−ψ=  A Lagrangian that yields 

the above field equations is 
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 .: 2121
ab

ab
EM FFgRgL −=  (1.2) 

The important thing to note here is that the part of EML  which 

represents electromagnetic phenomenon; viz., the Maxwell Lagrangian 

ab
ab

M FFgL 21: −=  

is conformally invariant, and leads to field equations consistent with 

conservation of electric charge. (Henceforth when I speak of charge I shall 

mean electric charge.) In [3] I investigate conformally invariant vector-

tensor field theories that are consistent with conservation of charge to 

determine to what extent ML  can be generalized. If we also require the 

Lagrangians to be flat space compatible; i.e., such that they are well 

defined and differentiable when evaluated for either flat metric tensors 

(and) or vanishing vector fields, then the resulting vector equation must 

be Maxwell’s. Hence we see that the requirements of conformal 

invariance, conservation of charge and flat space compatibility in a 

vector-tensor field theory, places quite a severe restriction on the form of 

the vector field equation. I would now like to investigate what the 

implications of these restrictions are, when they are applied to 

Lagrangians of the form .SVTL  To that end I need to introduce some 

nomenclature to fix ideas. 

We shall say that a physical field theory is a SVT =(: scalar-vector-

tensor) field theory if the field variables of that theory are the 

components of a scalar field, ,ϕ  a covariant vector field, ,aψ  and a metric 

tensor field, .abg  We shall require the field equations of that theory to be 

derivable from a variational principle with a Lagrangian of the form 

 ( )...;;...;;,;;;; ,, baaacabab ggLL ψψϕϕ= K  (1.3) 

which is scalar density of finite differential order in the field variables. 

The Euler-Lagrange tensor densities associated with L are defined by 
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( ) K+
∂

∂
+

∂

−∂
=

cab
c

ab

ab

g

L

dx

d

g

L
LE

,
:  (1.4) 

( ) K+
ϕ∂

∂
+

ϕ∂

−∂
=

a
adx

dL
LE

,
:  (1.5) 

and 

 ( ) .:
,

K+
ψ∂

∂
+

ψ∂

−∂
=

ba
b

a

a

dx

dL
LE  (1.6) 

The field theory will be said to be of thk  order if one of the sets of field 

tensor densities has derivatives of at least thk  order, in one of the field 

variables. 

Let L be the Lagrangian of a SVT field theory. Under the conformal 

transformation ,: 2
ababab gegg σ=′→  where σ  is a differentiable real 

valued scalar field, L generates a Lagrangian, ,L′  defined by 

( )...;;...;;,;;;; ,, baaacabab ggL ψψϕϕ′′′ K  

( )....;;...;;,;;;;: ,, baaacabab ggL ψψϕϕ′′= K  

L is said to be conformally invariant if ,LL =′  when abg ′  is replaced 

throughout L′  by .2
abge σ  

If a SVT field theory is such that ( ) ( )LELE a
b

a ,  and ( )LE  are 

conformally invariant, then that theory will be said to be conformally 

invariant. If L is conformally invariant, or conformally invariant up to a 

divergence, then it is well known that its associated SVT field theory will 

be conformally invariant. 

We shall say that a SVT field theory is consistent with conservation of 

charge, if the Euler-Lagrange tensor density ( )LEa  is identically 

divergence-free. This guarantees that charge is conserved, because in the 
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presence of charge the vector field equation is ( ) ,16 aa JLE π−=  where 

aJ  is the charge-current vector density. The Einstein-Maxwell field 

equations generated from the Lagrangian EML  given in Eq. 1.2 are 

consistent with conservation of charge. But they are not conformally 

invariant, since ( )EMb
a LE  is not conformally invariant. 

Another thing we note about the Einstein-Maxwell field equations is 

that the Lagrangian of that theory is well defined and differentiable (as a 

tensorial concomitant) when evaluated for either a flat metric tensor 

(and) or a vanishing vector field. With that in mind I shall say that a SVT 

field theory is flat space compatible, if the Lagrangian of that theory is 

well defined and differentiable when evaluated for either a flat metric 

tensor, (and) or constant scalar field, (and) or vanishing vector potential. 

When this is the case the field tensor densities of that theory will also be 

well defined and differentiable when evaluated for either a flat metric 

tensor (and) or constant scalar field, (and) or vanishing vector potential. 

Now it is fairly easy to construct examples of SVT Lagrangians that 

are conformally invariant. For let us set 

ab
ab

ab
ef

cdef
abcd

abcd
abcd FFFCCCJCCI === :,:,: 2

 

and 

,: ,, ba
abg ϕϕ=ρ  

where cd
b

aC  denotes the conformally invariant components of the Weyl 

tensor. Under the conformal transformation ,: 2
abab geg σ=′  we have 

,,,, 224264 ρ=ρ′==′=′ σ−σ−′σ−σ− eFeFJeJIeI  and .8 geg σ=′  

If γβα ,,  and δ  are any real numbers we can define a family of 

Lagrangians ( )δγβα ,,,L  by ( ) ( ) .:,,, 221 δγβα ρ=δγβα FJIgL  Under a 
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conformal transformation, we find that 

( ) ( ) ( ).,,,,,, 24644 δγβα=δγβα′ δ−γ−β−α−σ LeL  

Evidently ( )δγβα ,,,L  is conformally invariant if and only if 

.024644 =δ−γ−β−α−  For these choices of γβα ,,  and δ  we obtain 

an infinite family of conformally invariant Lagrangians, which in turn 

yield conformally invariant SVT theories. In fact, it is easily seen that the 

resultant theories will even be consistent with conservation of charge. 

However, only three of these Lagrangians are flat space compatible; viz., 

( ) ( )0,1,0,0,0,0,0,1 LL  and ( ).2,0,0,0L  All of the other Lagrangians 

(or some of their derivatives) blow up when the space is either empty, 

(and) or ϕ  is constant, (and) or aψ  (and hence )abF  vanish. Thus we see 

that the assumption of flat space compatibility places quite a severe 

constraint upon the class of admissible SVT field theories. 

In passing I would like to point out that we could even construct a 

larger class of conformally invariant Lagrangians then ( )δγβα ,,,L  using 

things like: 

str
arstcdb

abcd
cdab

abcd FCFCFFC ϕϕ,  and so on. 

In constructing these examples I have excluded aψ  since, although you 

can build a myriad of conformally invariant Lagrangians using it, the 

resultant theories would not be consistent with conservation of charge. 

This will follow from our latter work. 

Since every conformally invariant, flat space compatible ST =(:  

scalar-tensor) field theory is trivially consistent with conservation of 

charge, we can use the work presented in [2] to obtain four classes of 

Lagrangians which generate SVT field theories which are conformally 

invariant, consistent with conservation of charge, and flat space 

compatible. The Lagrangians of those theories are: 
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( ) ,: 221
2 ρϕ= kgL C  (1.7) 

( ) ,:3 pqcdab
pqabcd

C CCpL εϕ=  (1.8) 

( ) abcd
abcd

C CCbgL ϕ= 21
4 :  (1.9) 

and 

( )[ ( )221 3212: ϕ−ρ+ϕϕ−ϕ= □RRugL ba
ab

UC  

],126 ba
ba

ab
ab ϕϕ−ϕϕ−  (1.10) 

where hijk
ba

ab Cg ,: ϕϕ=ρ  denotes the components of the Weyl tensor 

which are defined by 

( )hjikikhjhkijijhkhijkhijk RgRgRgRgRC −−++= 21:  

( ),61 ijhkikhj ggggR −+  (1.11) 

,:
KK abab ϕ=ϕ  with bpk ,,  and u being differentiable functions of ,ϕ  

and a vertical bar denoting covariant differentiation. The Euler-Lagrange 

tensor densities associated with the Lagrangians presented in Eqs. 1.7-

1.11 can be found in [2]. 

We shall say that a SVT field theory is a true SVT field theory if all 

three fields appear somewhere (not necessarily together) in the field 

equations. Thus the SVT field theories generated by CCC LLL 432 ,,  and 

UCL  are not true SVT field theories. However, if we were to add ML  to 

any combination of those four Lagrangians, we would obtain a true SVT 

field theory which is conformally invariant, consistent with conservation 

of charge, and flat space compatible. 

Now if we were to multiply the Maxwell Lagrangian by ( ),ϕβ  which is 

an arbitrary scalar function of ,ϕ  we would obtain the Lagrangian 
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 .: 21
ab

ab
SM FFgL β−=  (1.12) 

We could adjoin this Lagrangian to any combination of our four other 

pure scalar-tensor Lagrangians to obtain true SVT field theories which 

were conformally invariant, and consistent with conservation of charge. 

The Euler-Lagrange tensor densities of SML  are given by 

( ) ( )cd
cdab

c
bac

SM
ab FFgFFgLE 412 21 −β−=  (1.13) 

( ) ,21
ab

ab
SM FFgLE β′=  (1.14) 

and 

 ( ) ( ),4 21
b

ab
b

ab
SM

a FFgLE ϕβ′+β−=  (1.15) 

where here ”'“  denotes a derivative with respect to ,ϕ  and not a 

conformal transformation. 

Associated with the Lagrangian SML  is the Lagrangian ,*SML  

defined by 

 ,:* jkhi
hijk

SM FFL γε=  (1.16) 

where γ  is a differentiable function of .ϕ  Note that when γ  is a constant 

*SML  is a divergence. The field tensor densities associated with *SML  

are given by 

( ) 0* =SM
ab LE  (1.17) 

( ) ,* jkhi
hijk

SM FFLE εγ′−=  (1.18) 

and 

 ( ) .4* jki
aijk

SM
a FLE ϕεγ′=  (1.19) 

It is apparent that *SML  generates a conformally invariant, flat space 
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compatible SVT field theory, which is consistent with conservation of 

charge. The purpose of this paper is to demonstrate that in an orientable 

four-dimensional space, SML  and *SML  are essentially the only 

Lagrangians which can be adjoined to CCC LLL 432 ,,  and UCL  to obtain 

a SVT field theory with the properties that we are looking for. More 

exactly, I shall establish the following 

Theorem. In an orientable four-dimensional pseudo-Riemannian 

space, any conformally invariant, SVT field theory which is consistent 

with conservation of charge, and flat space compatible, can have its field 

equations derived from the Lagrangian. 

 *432 SMSMUCCCC LLLLLL +++++  (1.20) 

for a suitable choice of the functions β,,,, ubpk  and γ  appearing in 

SMUCCCC LLLLL ,,,, 432  and *SML  respectively. These six 

Lagrangians are defined by Eqs. 1.7-1.10, 1.12 and 1.16. 

The first thing you will note about the theorem is that I demand that 

the spaces of interest must be orientable. This was done to guarantee that 

the Levi-Civita symbol, ,abcdε  is a globally well defined tensor density. 

However, since most of our work will be done on a coordinate domain, 

which is an orientable manifold, this assumption is not a severe 

restriction upon the class of SVT field theories we are investigating. 

Nevertheless, when we consider coordinate transformations, it will be 

assumed that the Jacobian is positive. 

Another aspect of this theorem that you may have noticed, is that no 

assumption was made concerning the differential order of the SVT field 

theories under consideration. That is because I shall prove that all 

theories which satisfy the assumptions of the theorem must have 

differential order less that or equal to four. You should also note that all 

theories satisfying the assumptions of the theorem can be obtained from a 

Lagrangian which is at most of second-order. This is so because the third-
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order Lagrangian UCL  is equivalent to a second-order Lagrangian UCL2  

(see, Eqs. 1.25 and 1.26 in [2]) which is conformally invariant up to a 

divergence. 

As an immediate consequence of the Theorem we have the following 

Corollary. If a SVT field theory satisfies the assumptions of the 

Theorem, then the Euler-Lagrange tensor density obtained by varying the 

vector field is given by 

( ) [ b
ab

SMSM
a FgLLE β−=+ 21

* 4  

],cdb
abcd

b
ab FF ϕεγ′−ϕβ′+  (1.21) 

for a suitable choice of the scalar functions ( )ϕβ=β  and ( ).ϕγ=γ  

Eq. 1.21 is very interesting. We know that here on earth, Maxwell’s 

equations of electromagnetism do an excellent job of describing 

electromagnetic effects down to the scale of atoms. Thus if Eq. 1.21 is to 

be taken as a possible generalization of Maxwell’s equations, the scalar 

field must be fairly constant near the earth. In any case, the Corollary 

tells us that under the assumptions of the theorem there are very few 

alternatives to Maxwell’s equations of electromagnetism. 

I shall now quickly sketch how the theorem will be established. I 

begin by showing that if L satisfies the assumptions of the theorem, then 

( ) ( )LEBLEA ijij == :,:  and ( ),: LEC ii =  must be devoid of explicit 

dependence on the vector field. I then go on to compute what the 

maximum differential order of BAij ,  and iC  can be, with iC  turning 

out to be at most of third-order in abg  and ,ϕ  and second-order in .aψ  

Next I construct the general form of iC  and show that ii EC =  

( ).*SMSM LL +  The Lagrangian ,: *SMSM LLLL −−=  will satisfy the 

assumptions of the theorem and be such that ( ) .0=LE i  The proof then 
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ends by demonstrating that L is equivalent to the Lagrangian CC LL 32 +  

,4 UCC LL ++  for a suitable choice of the functions bpk ,,  and u. Now for 

the details, which should be familiar to those who have read [2] and [3]. 

2. Proof of the Theorem 

As in [2] and [3] the proof will consist of a sequence of lemmas. Since 

the signature of the metric tensor will not be significant in what we are 

about to do, I shall assume that it is arbitrary, but fixed. 

The first lemma will provide us with the means to recognize 

conformally invariant SVT field theories. 

Lemma 1. Let L be the Lagrangian of SVT field theory. That field 

theory will be conformally invariant if and only if ( )LEab  is trace-free. If 

( )LEab  is trace-free, then L is conformally invariant up to a divergence. 

Proof. ⇒ The Euler-Lagrange tensor densities of a SVT field theory 

are related by the identity (see, page 49 of [4]) 

 ( ) ( ) ( ) ( ) .212121 b
b

a
b

abab
b

a LELEFLELE ψ−−ϕ=  (2.1) 

If ,: 2
abab geg σ=′  we let ( ) ( )′′

LELE
b

a ,  and ( )′LEa  denote ( ) ( )LELE
b

a ,  

and ( )LEa  built from ϕ′ ,abg  and .aψ  Since Eq. 2.1 is an identity it is 

valid for every scalar, vector and tensor field. Thus we must have 

 ( ) ( ) ( ) ( ) ,212121 '' b
b

a
b

abab
b

a LELEFLELE
′ψ−′−′ϕ=′

 (2.2) 

where ”“ 'b  denotes covariant differentiation with respect to the Levi-

Civita connection of .abg ′  Due to our assumption of conformal invariance 

( ) ( ) ,
′= LELE  and ( ) ( ) .

′= LELE aa  Since ( )LEb  is a contravariant 

vector density, the right-hand sides of Eq. 2.1 and Eq. 2.2 are identical. 

Consequently, 
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 ( ) ( ) .' b
b

ab
b

a LELE =′
 (2.3) 

Since, by assumption, ( ) ( ) ,
′= LELE

b
a

b
a  we can use the fact that 

m
rm

sts
r

tt
r

sst
r

st
r gg ,,,
' σ−δσ+δσ+Γ=Γ  

in Eq. 2.3 to deduce that ( ) .0=LE
a

a  

⇐ Let ( ) ( ) ,10,1: ≤≤′+−= tgtgttg ababab  denote the convex 

combination of abg  and .abg ′  So ( ) ( ) ,1 2
abab gtettg σ+−=  is a pseudo-

Riemannian metric tensor with the same signature as .abg  We now 

define a one-parameter family of Lagrangians, ( ),tL  by 

( ) ( ( ) ( ) ).;;;;;;;;: ,,, KKK baaacabab tgtgLtL ψψϕϕ=  

If we let ( )( )tLEab  denote ( )LEab  evaluated for ( ) ϕ,abtg  and ,aψ  then 

it is a straightforward matter to demonstrate that 

 
( )

( )( )
( )

( ) ,
i

i

abab tV
dx

d

dt

tdg
tLE

dt

tdL
+−=  (2.4) 

where ( )itV  is a contravariant vector density, built from ϕσ ,,, abgt  and 

.aψ  Since ( )LEab  is trace-free, we know that 

( )( ) ( ) ( )( ) ( ),10 2σ+−== tetgtLEtgtLE ab
ab

ab
ab  

and thus 

( )( )
( )

.0=
dt

tdg
tLE abab  

Consequently Eq. 2.4 implies that 

 
( )

( ) .
i

i
tV

dx

d

dt

tdL
=  (2.5) 
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If we integrate Eq. 2.5 with respect to t from 0 to 1 we find that 

( ) ( ) aLL =− 01  divergence. 

But ( ) LL ′=1  and ( ) .0 LL =  Thus if ( )LEab  is trace-free, L is 

conformally invariant up to a divergence. This in turn implies that 
b

aE  

( ) ( )LEL ,  and ( )LEa  are conformally invariant.g 

Now that we have found an easy way to recognize conformally 

invariant SVT field theories, we require an equally facile way to 

determine when a SVT field theory is consistent with conservation of 

charge. The next lemma provides us with the means to do just that. 

Lemma 2. Let BAab ,  and aC  denote the field tensor densities of a 

SVT field theory. This theory is consistent with charge conservation if and 

only if BAab ,  and aC  are independent of explicit dependence on .aψ  

Proof. ⇐ Suppose that BAab ,  and aC  are independent of ;aψ  i.e., 

0,0 ;; == ccab BA  and ,0; =caC  

where ”;“ c  denotes a partial derivative with respect to .cψ  Since 

BAab ,  and aC  are the field tensor densities of a SVT field theory they 

must satisfy Eq. 2.1, and so, 

 .212121 b
b

a
b

abab
b

a CCFBA ψ−−ϕ=  (2.6) 

Upon differentiating Eq. 2.6 with respect to aψ  we get 

,0 b
bC=  

which implies that charge is conserved. 

⇒ The proof of the lemma in this direction is virtually identical to the 
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proof of Lemma 2 in [3], and will be omitted.g 

When dealing with SVT field theories that are of thp  order in the 

metric tensor, thq  order in the scalar field, and thr  order in the vector 

field, the derivatives of the field tensor densities BAab ,  and aC  with 

respect to ϕ∂∂ q
ab

pg ,  and a
rψ∂  are tensorial concomitants. Here I am 

letting ϕ∂∂ q
ab

pg ,  and a
rψ∂  denote abbreviations for the local 

components of the thth qp ,  and thr  derivatives of ϕ,abg  and .aψ  

However, in general, the derivatives of BAab ,  and aC  with respect to 

qtpsg t
ab

s <ϕ∂<∂ ,,,  and ;, rua
u <ψ∂  are not tensorial concomitants. 

But under the assumptions of Lemma 2, ,0,0 ;; == ccab BA  and caC ;
 

,0=  are tensorial equations. Our next lemma addresses the implications 

of this observation. 

Lemma 3. In an n-dimensional space, if BAij ,  and iC  are the field 

tensor densities of a thk  order SVT field theory, which is consistent with 

conservation of charge, then for every collection of s indicies ba ,, K  

( )1,,2 += ks K  

( ) ( )
0,0

...,...,

=
ψ∂

∂
=

ψ∂

∂

baba

ij BA
 and 

( )
,0

...,

=
ψ∂

∂

ba

iC
 

where parentheses around a string of indices denotes symmetrization 

over the enclosed indices. 

Proof. The proof is an obvious generalization of the proof of Lemma 3 

in [3], and hence it will be omitted.g 

One might think that Lemma 3 implies that BAij ,  and iC  must be 

built from abF  and its derivatives. This is in fact true, and two proofs of 
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this fact are provided in [5]. E.g., in the case where iC  is of fourth-order, 

we have the replacement theorem 

( ;21;0;...;;;:...; ,, ababcdcdefabab
ii FggCC ϕϕ=  

( ) ( ) ( ) ).54;43;32 ,,, cdebacdbacba FFF  

However, we shall not need this fact in what follows. 

The next tool we require to prove the Theorem is a generalization of a 

powerful identity that Aldersley developed to treat conformally invariant 

concomitants of the metric tensor (see, page 70 of Aldersley [6], or [7]). To 

assist in the statement of this Lemma, I shall use, as I did above, the 

symbols ϕ∂∂ m
ab

mg ,  and a
mψ∂  as abbreviations for the components of 

the thm  derivatives of ϕ,abg  and .aψ  

Lemma 4 (Aldersley’s Lemma for SVT Field Theories). In an n-

dimensional space let 

( ),;...;;;;...;;;;...;; h
r

hh
q

hi
p

hihi
abab gggAA ψ∂ψ∂ψϕ∂ϕ∂ϕ∂∂=  

( ),;...;;;;...;;;;...;; h
r

hh
q

hi
p

hihi gggBB ψ∂ψ∂ψϕ∂ϕ∂ϕ∂∂=  

and 

( )h
r

hh
q

hi
p

hihi
aa gggCC ψ∂ψ∂ψϕ∂ϕ∂ϕ∂∂= ;...;;;;...;;;;...;;  

denote the field tensor densities of a conformally invariant SVT field 

theory. Then for every real number 0>λ  

( )h
r

hh
q

hi
p

hihi
abn gggA ψ∂ψ∂ψϕ∂ϕ∂ϕ∂∂λ ;...;;;;...;;;;...;;  

( ;;;;...;; ϕ∂λϕ∂λ∂λ= hi
pp

hihi
ab gggA  

),;...;;;;... 12
h

rr
hh

qq ψ∂λψ∂λλψϕ∂λ +
 (2.7) 
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( )h
r

hh
q

hi
p

hihi
n gggB ψ∂ψ∂ψϕ∂ϕ∂ϕ∂∂λ ;...;;;;...;;;;...;;  

( ;;;;...;; ϕ∂λϕ∂λ∂λ= hi
pp

hihi gggB  

),;...;;;;... 12
h

rr
hh

qq ψ∂λψ∂λλψϕ∂λ +
 (2.8) 

and 

( )h
r

hh
q

hi
p

hihi
an gggC ψ∂ψ∂ψϕ∂ϕ∂ϕ∂∂λ − ;...;;;;...;;;;...;;1  

( ;;;;...;; ϕ∂λϕ∂λ∂λ= hi
pp

hihi
a gggC  

)h
rr

hh
qq ψ∂λψ∂λλψϕ∂λ +12 ;...;;;;...  (2.9) 

where there is no sum over repeated p’s, q’s or r’s in the arguments of ,abA  

B and .aC  

Proof. The proof is similar to the proof of Aldersley’s Lemma given in 

[2] and [3]. To make the proof more comprehensible, I shall only prove it 

for the case where .4=== rqp  From that proof it will be evident how 

to go about establishing the Lemma in general. 

Let P be an arbitrary point in our n-dimensional space, and let x be a 

chart at P. We define a new chart x ′  at P by .ii xx ′λ=  Since abA  is a 

tensor density we know from the tensor transformation law it must 

satisfy that at P 

( ) ( )jklmhhjklmjklmhihi
cd

d
b

c
a

v
u ggAJJJ ,,, ;...;;;...;;;...;det ψψϕϕ′′  

( ),;...;;;...;;;...; ,,, jklmhhjklmjklmhihi
ab ggA ψ′ψ′ϕ′ϕ′′′=  (2.10) 

where the Jacobian matrices are defined by 
v

u

v
u

x

x
J

′∂

∂
=:  and =′ :c

aJ  

.
c

a

x

x

∂

′∂
 The tensor transformation laws for ϕ,hig  and hψ  tell us that 
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;;...;; ,
6

,,
3

,
2

jklmhijklmhijhijhihihi gggggg λ=′λ=′λ=′  

;;...;; ,
4

,,, jklmjklmjj ϕλ=ϕ′λϕ=ϕ′ϕ=ϕ′  

.;...;; ,
5

,,
2

, jklmhjklmhjhjhhh ψλ=ψ′ψλ=ψ′λψ=ψ′  

Using the above expressions in Eq. 2.10, shows us that for every ,0>λ  

and any chart x at P 

( ;;...;;;;...;; ,,,,
2

jklmjjklmhijhihi
abn gggA ϕϕϕλ −

 

) ( ;;;;...;;;...;; ,,
6

,
32

,, jjklmhijhihi
ab

jklmhjhh gggA λϕϕλλλ=ψψψ  

)....;;;;;... ,
5

,
2

,
4

jklmhjhhjklm ψλψλλψϕλ  (2.11) 

I shall now demonstrate how the assumption of conformal invariance can 

be employed to rewrite Eq. 2.11 in the form of Eq. 2.7. To that end let 

ζγ ,ab and aξ  be the x components of a metric tensor, scalar field and 

vector field defined on a neighborhood of P. Under the conformal 

transformation ,: 2
ababab γλ=γ′→γ  we find that 

( )jklmhhjklmjklmhijhihi
abA ,,,

2
,

22 ;...;;;...;;;...;; ξξζζγλγλγλ  

( ).;...;;;...;;;...;; ,,,,
2

jklmhhjklmjklmhijhihi
abA ξξζζγγγλ= −

 (2.12) 

We set 

( ) ( ) ( ) kj
jkhi

j
jhihihi PgPgPg χχλ+χλ+=γ ,

2
, 21:  

( ) ( ) ,!41!31 ,
4

,
3 mlkj

jklmhi
lkj

jklhi PgPg χχχχλ+χχχλ+  

( ) ( ) ( ) kj
jk

j
j PPP χχϕλ+χλϕ+ϕ=ζ ,

2
, 21:  

( ) ( ) ,!41!31 ,
4

,
3 mlkj

jklm
lkj

jkl PP χχχχϕλ+χχχϕλ+  
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and 

( ) ( ) ( ) kj
jkh

j
jhhh PPP χχψλ+χψλ+λψ=ξ ,

3
,

2 21:  

( ) ( ) ,!41!31 ,
5

,
4 mlkj

jklmh
lkj

jklh PP χχχχψλ+χχχψλ+  

where ( ).: Pxx jjj −=χ  Since ( ) ( ) hihihi PgP γ=γ ,  is a well defined 

metric tensor on a neighborhood of P. Using the above expressions for 

ζγ ,hi  and hξ  in Eq. 2.12 we find that at P 

( ;;;;...;;;;...;; ,
2

,
4

,,
6

,
32

jhhjklmjjklmhijhihi
ab gggA ψλλψϕλλϕϕλλλ  

) =ψλ jklmh,
5...; ( ;...;;;;...;; ,,

4
,

2
jjklmhijhihi

ab gggA λϕϕλλλ−
 

).;...;;; ,
5

,
2

,
4

jklmhjhhjklm ψλψλλψϕλ  (2.13) 

Upon combining Eqs. 2.11 and 2.13, we discover that at P 

( )jklmhjhhjklmjjklmhijhihi
abn gggA ,,,,,, ;...;;;;...;;;;...;; ψψψϕϕϕλ  

( ;;;;...;;;;...;; ,
2

,
4

,,
4

, jhhjklmjjklmhijhihi
ab gggA ψλλψϕλλϕϕλλ=  

).;... ,
5

jklmhψλ  (2.14) 

Since P was an arbitrary point, Eq. 2.14 is valid in general, and Eq. 2.14 

agrees with Eq. 2.7 when .4=== rqp  

It should be apparent how the above argument can be generalized to 

demonstrate the validity of Eq. 2.7 when qp,  and r are arbitrary. In a 

similar way we can corroborate the validity of Eqs. 2.8 and 2.9.g 

As an immediate consequence of Aldersley’s identity we have 

Lemma 5. In an n-dimensional space, let 

( )h
r

hh
q

hi
p

hihi
abab gggAA ψ∂ψ∂ψϕ∂ϕ∂ϕ∂∂= ;...;;;;...;;;;...;;  
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( )h
r

hh
q

hi
p

hihi gggBB ψ∂ψ∂ψϕ∂ϕ∂ϕ∂∂= ;...;;;;...;;;;...;;  

and 

( ),;...;;;;...;;;;...;; h
r

hh
q

hi
p

hihi
aa gggCC ψ∂ψ∂ψϕ∂ϕ∂ϕ∂∂=  

denote the field tensor densities of a conformlly invariant, flat space 

compatible, SVT field theory. Then 1,, −≤≤≤ nrnqnp  in abA  and B, 

while ( ) ( )1,1 −≤−≤ nqnp  and ( )2−≤ nr  in .aC  In particular, in a 

four-dimensional space p and q are 4≤  and 3≤r  in abA  and B, while p 

and ,3≤q  and 2≤r  in .aC  

Proof. If we differentiate Eq. 2.9 with respect to ,h
rψ∂  we obtain 

( )

( )
( )h

r
hh

q
hi

p
hihi

h
r

a
n ggg

C
ψ∂ψ∂ψϕ∂ϕ∂ϕ∂∂

ψ∂∂

∂
λ − ;...;;;;...;;;;...;;1  

( )

( )
( ;...;;;;...;;;;...;; 21 ψ∂λλψϕ∂λϕ∂λϕ∂λ∂λ

ψ∂∂

∂
λ= +

h
qq

hi
pp

hihi

h
r

a
r ggg

C
 

).1
h

rr ψ∂λ +  

Upon multiplying this equation by ( ),1 n−λ  we get 

( )
( )ψ∂ψ∂ψϕ∂ϕ∂ϕ∂∂

ψ∂∂

∂ r
hh

q
hi

p
hihi

h
r

a

ggg
C

;...;;;;...;;;;...;;  

( )

( )
( ;...;;;;...;;2 ϕ∂λϕ∂λ∂λ

ψ∂∂

∂
λ= +−

hi
pp

hihi

h
r

a
nr ggg

C
 

).;...;;; 12
h

rr
hh

qq ψ∂λψ∂λλψϕ∂λ +
 (2.15) 

Now if ,12 ≥+− nr  then when we take the limit as +→λ 0  in Eq. 2.15 

the right-hand side vanishes due to flat space compatibility. Therefore if 
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aCnr ,1−≥  must be independent of .h
rψ∂  Consequently if aC  is of thr  

order in .2, −≤ψ nrh  

In a similar way we can establish the other restrictions on qp,  and r 

in BAab ,  and .aC g 

Our next objective is to construct all aC ’s that satisfy the 

assumptions of the Theorem. To assist in that endeavor I need to 

introduce some more notation. If 
K

KT  denotes the components of a SVT 

concomitant we denote the derivatives of 
K

KT  with respect to ;...,cabg  

...,abϕ  and ...,baψ  by 

...:......,;... ...;... abcab TT  and ...,;...... baT  with .:...'...

ϕ∂

∂
= K

KT
T  

So, e.g., 

c

ab
cab

efcd

ab
efcdab A

A
g

A
A

,

:

,

,; ,
ϕ∂

∂
=

∂

∂
=  and .

,

,;

dc

ab
dcab A

A
ψ∂

∂
=  

With this notation in hand I can now state 

Lemma 6. If aC  satisfies the assumptions of the Theorem then 

( ) ( ) ( )
,0,0,0

,;:,; === cdbabcdadefbca
CCC  

( ) ,0,0 ,;,; == defbca
bc

defcba CgC  (2.16) 

( ) 0,; =cbaC  and ( ) .0,; =cdbaC  (2.17) 

Proof. From Lemma 5 we know that aC  is at most of third-order in 

abg  and ,ϕ  and at most of second-order in .aψ  Thus the charge 

conservation equation ,0, =a
aC  can be written as follows: 
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defabc
defbca

deabc
debca

dabc
dbca

abc
bca gCgCgCgC ,

,;
,

,;
,

,;
,

;0 +++=  

bcda
bcda

bca
bca

ba
ba

a
a CCCC ,

:
,

:
,

:
,

' ϕ+ϕ+ϕ+ϕ+  

.,
,;

,
,;

,
;

cdab
cdba

cab
cba

ab
ba CCC ψ+ψ+ψ+  

Upon differentiating this equation with respect to rstutuvwrsg ,, , ϕ  and 

,,sturψ  we obtain 

( ) ( )sturuvwrst
CC :,;

0,0 ==  and 
( )

,0
,; turs

C=  

which establishes the first three conditions in Eq. 2.16. 

Since aC  is a contravariant vector density it must satisfy various 

invariance identities (see, e.g., Lovelock and Rund [8]), which can be 

established as follows. 

Let P be an arbitrary point in our space, and let x and x ′  be charts at 

P. Due to the tensor transformation law we must have 

( )jkhjhhjkljkjjklhijkhijhihi
a ggggC ,,,,,,,, ;;;;;;;;;; ψ′ψ′ψ′ϕ′ϕ′ϕ′ϕ′′′′′  

( ) ( ;;;;;;det ,,,, jjklhijkhijhihi
b

b
a

v
u ggggCJJ ϕϕ′=  

),;;;; ,,,, jkhjhhjkljk ψψψϕϕ  

where the Jacobian matrices v
uJ  and b

aJ ′  have been previously defined. 

At the point P 

( ),oftindependenterms, stuv
r

ijkl
n

n
m

mni
n

hjkl
m

mnjklhi JJJgJJgg ++=′  

where the sJ K′  are defined inductively by cb
a

d
cdb

a J
x

J
KK

′∂

∂
=:  

Using this equation, we discover that if we differentiate Eq. 2.18 with 

respect to ,stuv
rJ  and evaluate the result for the identity coordinate 
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transformation, we obtain 

[ ( ) ( ) ] ,0,; =δδδδ+δδδδ l
v

k
u

j
t

i
s

hrl
v

k
u

j
t

h
s

ri
jklhia ggC  

which implies that 

( ) .0,; =tuvsraC  

Thus we have established the fourth condition in Eq. 2.16. 

To obtain the last condition of Eq. 2.16 let’s consider the conformal 

transformation .: 2
ababab gegg σ=′→  aC  is invariant under this 

transformation, so we must have 

(( ) ( ) )jkhhjkljklhihi
a gegeC ,,,

22 ;;;;;;;; ψψϕϕσσ
KKK  

( ).;;;;;;;; ,,, jkhhjkljklhihi
a ggC ψψϕϕ= KKK  

If we differentiate this identity with respect to ,,rstσ  and then evaluate 

the result for the identity conformal transformation we obtain 

.0,; =hi
rsthia gC  

This completes our proof of Eq. 2.16. 

Eq. 2.17 follows from Lemma 3.g 

At last we are ready to determine the basic functional form of .aC  

This will be done in our next Lemma. 

Lemma 7. If aC  satisfies the assumptions of the Theorem, then 

fdebc
abcdef

ifhdebc
abcdefhi

defbc
abcdefa ggggC ,,2,,,1 ϕΘ+Θ+Θ=  

bcd
abcd

fedbc
abcdef

kijhefdbc
abcdefhijk gggg ,1,,,3,,, ϕΦ+ϕϕΘ+Θ+  

dcb
abcd

fdebc
abcdef

dbc
abcd

g ,,,3,,,,2 ϕϕϕΦ+ϕΦ+ϕϕΦ+  
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,,,2,,,1 dcb
abcd

fdecb
abcdef

cdb
abcd

g ϕψΨ+ψΨ+ψΨ+  (2.19) 

where the Θ ’s, Φ ’s and Ψ ’s are concomitants of abg  and .ϕ  ,1
abcdefΘ  

abcd
1Φ  and 

abcd
1Ψ  must have the following symmetries: 

( ) ( )
,111

defabcdefbcaabcdef Θ=Θ=Θ  

( ) ( )
,0,0,0 111 =Θ=Θ=Θ abcdef

bc
defbcacdefab

g  (2.20) 

( ) ( )
,0, 111 =ΦΦ=Φ abcdbcdaabcd
 (2.21) 

and 

( ) ( ) ( )
.0,0, 1111 =Ψ=ΨΨ=Ψ bcdacdbacdababcd
 (2.22) 

Proof. Due to Lemma 2, Aldersley’s Identity (Lemma 4), and Lemma 

5, we know that for every ,0>λ  

( )jkhjhjkljklhihi
a ggC ,,,,

3 ;;;;;;; ψψϕϕλ KK  

( ;;;;; ,
3

,
2

, ϕλλλ= jklhijkhijhihi
a ggggC  

).;;;; ,
3

,
2

,
3

,
2

, jkhjhjkljkj ψλψλϕλϕλλϕ  (2.23) 

Upon differentiating this equation with respect to ,,tuvrsg  we find that 

( )jkhjhjkljklhihi
tuvrsa ggC ,,,,
,; ;;;;;;; ψψϕϕ KK  

( ;;;;;; ,,
3

,
2,;

jjklhijkhihihi
tuvrsa ggggC λϕϕλλλ=  

).;;; ,
3

,
2

,
3

,
2

jkhjhjkljk ψλψλϕλϕλ  (2.24) 

If we differentiate this equation with respect to ,, jklhig  and then take the 

limit as ,0+→λ  recalling that aC  is well defined and differentiable for a 
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flat metric tensor, constant vector field and vanishing vector potential, we 

see that 

.0,;,; =jklhituvrsaC  

Similarly we can use Eq. 2.24 to prove that 

,0,0,0,0 ,;,;,;,;,;,;,;,; ==== ihtuvrsaijhtuvrsajhituvrsajkhituvrsa CCCC  

.00,0 :,;:,;:,; === jkltuvrsajktuvrsajtuvrsa CCC  

Consequently, defbcg ,  must appear linearly in ,aC  with coefficients that 

are functions of only abg  and .ϕ  

Analogously we can demonstrate that bcd,ϕ  and cdb,ψ  must appear 

linearly in aC  with coefficients that are functions of only abg  and .ϕ  

Continuing in this fashion we can use Eq. 2.23 to show that aC  must 

be a linear combination of 

bcdfedbckijhefdbcfdebcifhdebcdefbc gggggggg ,,,,,,,,,,,, ;;;;; ϕϕϕϕ  

fdecbcdbdcbfdebcdbc gg ,,,,,,,,,, ;;;; ψψϕϕϕϕϕϕ  and dcb ,, ϕψ  

with coefficients which are simply functions of abg  and .ϕ  

The symmetries satisfied by ΦΘ,  and Ψ  in Eqs. 2.20-2.22 follow 

from Lemma 6, along with the symmetries inherent in the partial 

derivatives with respect to ,,defbcg bcd,ϕ  and .,cdbψ g 

In order to simplify the form of aC  given in Lemma 7 we need 

Lemma 8. (Thomas’s Replacement Theorem for SVT Concomitants): 

If τ  is a tensorial concomitant which locally has the form 

( ;;;; ,,,...
...

...
...

jklhijkhijhihi ggggτ=τ  
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)ijhihhhijhih ,,,,, ;;;;;; ψψψϕϕϕϕ  

then the value of τ ’s components are unaffected if their arguments are 

replaced as shown below: 

( ( ) ( jhklilhkjilhjkihkjihjkihi RRRRRg +++τ=τ 61;31;0;...
...

...
...

 

) ( );;;;; hijhihkhjlikhljijhlki RRR ϕϕϕϕ+++  

( ) ( )).61;;
hi

m
jhj

m
imijhihh RR +ψ+ψψψ  (2.25) 

Proof. In [2] and [3] I essentially explain why Thomas’s Replacement 

Theorem [9] gives rise to the result presented in Eq. 2.25.g 

Due to Thomas’s Replacement Theorem we see that Eq. 2.19 reduces 

to 

( ) dbc
abcd

bcd
abcd

fbdec
abcdef

fbdec
abcdefa RRC ϕϕΦ+ϕΦ+ϕΘ+Θ= 2121  

( ) ,31 213 dcb
abcd

bd
m

cmcdb
abcd

dcb
abcd

R ϕψΨ+ψ+ψΨ+ϕϕϕΦ+  (2.26) 

where I have made use of the symmetries of ΦΘ,  and .Ψ  

At first sight you might think that Eq. 2.26 must be incorrect since 

Lemma 2 stipulates that aC  must be independent of explicit aψ  

dependence. However, we need to know something about 
abcd

1Ψ  before 

we start to panic. This is where our next Lemma comes to the rescue. 

Lemma 9. If 
abcdabcdef

11 , ΦΘ  and 
abcd

1Ψ  are tensorial concomitants 

of abg  and ϕ  which satisfy Eqs. 2.20-2.22, then 

 ,0,0 11 =Φ=Θ abcdabcdef
 (2.27) 

and 
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 ( ),212121
1

bcadbdaccdababcd
ggggggg −−β=Ψ  (2.28) 

where ( ).ϕβ=β  The tensorial concomitants 
abcdabcd

32 , ΦΦ  and 
abcd

2Ψ  

have the following symmetries: 

( ) ( ) ( )
,0,, 23322 =ΨΦ=ΦΦ=Φ dbcabcdaabcddbcaabcd
 

and are given by 

( ( )),21
2

bdaccdabadbcabcd
ggggggg +ζ+τ=Φ  (2.29) 

( ),21
3

bcadbdaccdababcd
ggggggg ++µ=Φ  (2.30) 

and 

 ( ) ,21
2

abcdbdaccdababcd
ggggg ωε+−ν=Ψ  (2.31) 

where ( ) ( ) ( ) ( )ϕν=νϕµ=µϕζ=ζϕτ=τ ,,,  and ( ).ϕω=ω  

Proof. In [2] and [3], I build quantities with the same symmetries as 

abcdef
1Θ  and show that they vanish. The main tools used to build 

concomitants such as ΦΘ,  and ,Ψ  are presented in Weyl [10]. There he 

demonstrates that concomitants such as those we are trying to construct 

are generated by all suitable products of ...g ’s and ...ε ’s. The details of 

how this is accomplished, are presented in Appendix C of [2].g 

Our next Lemma provides us with our long sought general form for 

.aC  

Lemma 10. If aC  satisfies the assumptions of the Theorem then 

 ,2121
dbc

abcd
b

ab
b

aba FFgFgC ϕωε+ϕµ′+µ=  (2.32) 

where ( )ϕµ=µ  and ( )ϕω=ω  are differentiable functions. A Lagrangian 
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that yields aC  as its Euler-Lagrange tensor density when the vector field 

is varied is ,*SMSM LL +  where SML  and *SML  are defined by Eqs. 1.12 

and 1.16 with ,41: µ−=β  and .41: ∫ ϕω=γ d  

Proof. Under the assumptions of the Theorem it was shown that aC  

must have the form given in Eq. 2.26. Thus due to Lemma 9 we can 

conclude that 

 ,212121
dbc

abcd
b

ab
b

abaa FFgFgJgC ϕωε+ϕν+µ+=  (2.33) 

where 

 .: 54321 ρϕα+ϕϕα+ϕϕα+ϕα+ϕα= aa
b

aba
b

aba RRJ □  (2.34) 

In deriving the expression for the “junk vector,” ,aJ  we need to evaluate 

.2 fbdec
abcdef

R ϕΘ  In order to do this one does not really need to employ 

Weyl’s results to first determine the form of .2
abcdefΘ  It is enough to 

know that 
abcdef

2Θ  must be built from either the product of three ...g ’s 

or one ...g  and one ....ε  That is how I obtained the first two terms in the 

expression for .aJ  The remaining terms were arrived at using the 

expressions presented in Lemma 9. 

Now aC  is supposed to be conformally invariant. It is clear that the 

second, third and fourth terms appearing on the right-hand side of Eq. 

2.33 are conformally invariant. Consequently aJg 21  must also be 

conformally invariant. Imposing this demand upon Eq. 2.34 shows that 

,04321 =α=α=α=α  with 5α  being an arbitrary scalar function of .ϕ  

Thus aJg 21  reduces to 

 ( ).21
5

21
5

21
b

baaa gEgJg ψρϕα−=ρϕα=  (2.35) 
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The last term in Eq. 2.33 also comes from a variational principle since 

it is easily seen that 

 ( ),*SM
a

dbc
abcd LEF =ϕωε  (2.36) 

where *SML  is defined by Eq. 1.16 with .41: ∫ ϕω=γ d  

So right now aC  is given by 

 .212121
5 dbc

abcd
b

ab
b

abaa FFgFggC ϕωε+ϕν+µ+ρϕα=  (2.37) 

aC  is supposed to be divergence free. Upon taking the divergence of Eq. 

2.37 we obtain 

[ ( ) ] ( ) .0 21
5

212
5

21
ab

ab
a

a Fggg ϕν−µ′+ρϕα+ρ′α=  

The only way that this equation can hold identically is for ,05 =α  and 

.µ′=ν  When this choice is made we see that Eq. 2.37 implies that 

( ),*SMSM
aa LLEC +=  

with β  and γ  in Eqs. 1.12 and 1.16, chosen so that µ−=β 41:  and 

.41: ∫ ϕω=γ d  This observation completes the proof of the Lemma.g 

We are now sufficiently prepared to finish the proof of the Theorem. 

To that end let L be a Lagrangian satisfying the assumptions of the 

Theorem. We define ,: *SMSM LLL −−=L  where, due to Lemma 10, 

we know that we can choose β  and γ  in SML  and *SML  so that 

( ) .0=L
aE  The purpose of our next Lemma is to determine a pure 

scalar-tensor Lagrangian equivalent to L  from a variational point of 

view. 

Lemma 11. Suppose that in a four-dimensional space the thk  order 
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Lagrangian L generates a conformally invariant, flat space compatible, 

SVT field theory for which ( ) .0=LEa  Then 

( ) ( )UCCCC
abab LLLLELE +++= 432  

and 

( ) ( )UCCCC LLLLELE +++= 432  

for a suitable choice of the scalar functions ( ) ( ) ( )ϕϕϕ bpk ,,  and ( ),ϕu  

appearing in CCC LLL 432 ,,  and ,UCL  which are defined by Eqs. 1.7-

1.10. 

Proof. Let us consider a 1-parameter variation of aψ  defined by 

( ) .10,: ≤≤ψ=ψ ttt aa  Correspondingly, we define a 1-parameter family 

of Lagrangians ( )tL  by 

( ) ( ;;;;,;;: ϕ∂ϕ∂∂= ab
k

abab gggLtL K  

( ) ( ) ( ) ).;;;;; a
k

aa
k ttt ψ∂ψ∂ψϕ∂ KK  (2.38) 

Note that since L is flat space compatible, the Lagrangian ( )0L  is a well 

defined scalar-tensor Lagrangian which generates a conformally 

invariant field theory which is trivially consistent with conservation of 

charge. If we now use the usual variational arguments we find that since 

( )( ) ,0=tLEa  

 
( ) ( )

,
i

i

dx

tdV

dt

tdL
=  (2.39) 

where ( )itV  is a 1-parameter family of contravariant vector fields. Upon 

integrating Eq. 2.39 with respect to t from 0 to 1, we get 

 ( ) ( ) aLL =− 01  divergence  (2.40) 



GREGORY W. HORNDESKI 

 

122 

Since Eq. 2.38 tells us that ( ) ,1 LL =  we may use Eq. 2.40 to deduce that 

the SVT field theory generated by L, can also be generated a scalar-tensor 

Lagrangian which is flat space compatible, and gives rise to a conformally 

invariant field theory. In [2] I show that the field theory generated by 

such a scalar-tensor Lagrangian can also be generated by a Lagrangian of 

the form ,432 UCCCC LLLL +++  for a suitable choice of the scalar 

functions ( ) ( ) ( )ϕϕϕ bpk ,,  and ( )ϕu  appearing in these Lagrangians. This 

observation completes the proof of the Lemma.g 

Due to Lemmas 10 and 11, we know that if L is a Lagrangian that 

satisfies the assumptions of the theorem, then there exists scalar 

functions ( )ϕβ=β  and ( )ϕγ=γ  for which *SMSM LLL −−  generates a 

theory that could also be obtained from UCCCC LLLL +++ 432  for a 

suitable choice of the scalar functions ( ) ( ) ( )ϕϕϕ bpk ,,  and ( )ϕu  in these 

scalar-tensor Lagrangians. Thus the SVT field theory generted by L can 

also be generated by .*432 SMSMUCCCC LLLLLL +++++  This is 

precisely what we have been trying to prove. So, at long last, our proof of 

the Theorem is complete.g 

It should be noted that Lemma11 marks the first and only time that I 

used the assumption that L was defined and differentiable for a vanishing 

vector field in the proof of the Theorem. I believe that the Theorem can be 

proved if we replace the current assumption of flat space compatibility, by 

the weaker demand that the field tensor densities determined by L are 

defined and differentiable for either a flat metric tensor, (and) or constant 

scalar field, (and) or vanishing vector field. (These weaker conditions are 

all that Aldersley’s Lemma requires.) However, proving the Theorem 

under these weaker assumptions will be much more difficult. What one 

would have to do is actually construct ( ),: LEA abab =  and ( ),: LEB =  

when ( ) .0=LEa  To that end one can use Aldersley’s Identity to get the 

basic form of abA  and B, as we did for aC  in Lemma 7. Then the problem 



CONFORMALLY INVARIANT SCALAR-VECTOR-TENSOR … 

 

123 

would be to prove that abA  and B are independent of the vector field, and 

hence are just scalar-tensor concomitants. (To assist in that endeavor one 

can use the following facts: ( ) ( ) 0,0 == BEAE cabc  and 21=b
abA  

,Baϕ  when ( ) .)0=LEa  Once this task is accomplished, one can use the 

Theorem established in [2] to finish the proof. 

3. Concluding Remarks 

In the introduction I briefly discussed how one might go about 

generalizing the Einstein-Maxwell equations to incorporate a scalar field. 

Let’s attempt to do that by considering a SVT field theory obtained from a 

Lagrangian L of the form 

 ,STVT LLL +=  (3.1) 

where TL  is a pure tensor Lagrangian and STVL  is a scalar-vector-

tensor Lagrangian. If we require TL  to generate metric field equations 

which are at most of second-order, then due to Lovelock’s work [11], we 

know that TL  can be taken to be ,2121 Λ+κ= gRgLT  where κ  and Λ  

are constants. Now there are multifarious choices for .SVTL  If we 

demand that SVTL  satisfies the assumptions of the Theorem then 

 ,*432 SMSMUCCCCSVT LLLLLLL +++++=  (3.2) 

where there are six arbitrary scalar functions of ϕ  appearing on the 

right-hand side of Eq. 3.2. We now want to find reasons to pare away 

some of the Lagrangians appearing in Eq. 3.2. 

The Lagrangian CL2  is fairly innocuous, and its field equations are at 

most of second-order, and quite reasonable. On the other hand, CL3  and 

CL4  are more problematic. 

CL3  is a scalar-tensor version of the Chern-Simons [12] Lagrangian, 
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while CL4  is a scalar-tensor version of the Lagrangian that yields the 

Bach tensor [13]. CL3  generates a third-order scalar-tensor field theory, 

while CL4  generates a fourth-order scalar-tensor field theory. It is 

pointed out in Takahashi and Kobayashi [14], that both of these scalar-

tensor theories are afflicted by Ostrogradsky [15] type instabilities. In 

addition, Crisostomi, et al., [16], have shown that CL3 ’s Ostrogradsky 

singularity gives rise to two ghosts. 

Of the four pure scalar-tensor Lagrangians in Eq. 3.2, UCL  is my 

favorite, although it has numerous problems. The field equations 

generated by ,UCL  are presented in Eqs. 1.23 and 1.24 in [2]. The 

equations ( ) ,0=UC
ab LE  are of second-order in the metric tensor, and 

third-order in the scalar field, while the equation ( ) ,0=UCLE  is of third-

order in the metric tensor and of fourth-order in the scalar field. When 

working in the vacuum with a theory involving only UCL  the equation 

( ) ,0=UCLE  is satisfied identically when ( ) ,0=UC
ab LE  due to the 

identity presented in Eq. 2.1. Thus, as far as I am concerned, the vacuum 

theory generated by UCL  is a third-order scalar-tensor field theory. 

However, UCL  has numerous problems as far as Ostrogradsky 

instabilities go. 

In [14] Takahashi and Kobayashi show that, due to the conformal 

invariance of ,UCL  the theory it generates is degenerate and so it does 

not satisfy the assumptions of Ostrogradsky’s Theorem, which pertains to 

non-degenerate higher order field theories. Thus one is tempted to say 

that the theory UCL  generates is free of Ostrogradsky ghosts. However, 

Takahashi has informed me “if one defines Ostrogradsky ghosts by the 

appearance of linear momentum in the HamiltonianKthen UCL  is 

plagued by ghosts. Since it suffers from that deficiency.” This also follows 

from the work of Achour, et al., in [17], as well as that of Takahashi and 



CONFORMALLY INVARIANT SCALAR-VECTOR-TENSOR … 

 

125 

Kobayashi in [14]. 

Takahashi and Kobayashi also discuss in [14] another problem from 

which the field theories generated by UCL  suffer. It appears that these 

theories exhibit ghost/gradient instabilities under perturbations about a 

cosmological background. I am not sure if that should be regarded as the 

straw that broke the Camel’s back as far as UCL  is concerned. However, 

there is another much more serious problem afflicting it. 

In the final section of [2] I point out how UCL  is the sum of cubic, 

quartic and quintic Horndeski Lagrangians. It is shown in Ezquiaga and 

Zumalaćarregui [18], Baker, et al., [19], Sakstein and Jain [20], and 

Creminelli and Vernizzi [21], that because of the observation of two 

colliding neutron stars on August 17, 2017, gravitational waves must 

propagate at the speed of light up to one part in .1015  These articles 

explain that this implies that any scalar-tensor Lagrangian involving a 

quintic Horndeski Lagrangian must be excluded from consideration, since 

such Lagrangians allow the speed of gravitational waves, denoted by ,gc  

to be appreciably less than c. Thus we must dispense with UCL  on very 

significant physical grounds. 

I should also mention that the work by Lombriser and Lima, found in 

[22], lays the groundwork for some of the analysis presented in [18]-[21]. 

So right now, if we only consider Lagrangians that are devoid of 

Ostrogradsky instabilities, and are consistent with observation, then the 

Lagrangian SVTL  of Eq. 3.2 reduces to 

 .*2 SMSMCSVT LLLL ++=  (3.3) 

Thus due to Eq. 3.1 our simplest scalar-vector-tensor generalization of the 

Einstein-Maxwell Lagrangian would be 

[ ( ) ( ) ] ( ) .221
simple cdab

abcd
ab

ab FFFFkRgL εϕγ+ϕβ+ρϕ+Λ+κ=  (3.4) 
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It has been pointed out to me by L. Heisenberg, that Lagrangians similar 

to those presented in Eq. 3.4, with the addition of a potential term, 

( ),21 ϕVg  have been extensively investigated in the study of cosmological 

magnetic fields. For an excellent review article dealing with that subject, 

please see R. Durrer and A. Neronov [23]. 

The next simplest modification of the Einstein-Maxwell Lagrangian 

would be a Lagrangian of the form 

 ,*simplest-nx SMSMST LLLL ++=  (3.5) 

where STL  can be taken to be any scalar-tensor Lagrangian which 

predicts .1≈gc  Due to [18]-[21], we know that the quadratic, cubic and 

quartic Horndeski Lagrangians (with 4G  independent of )ρ  give rise to 

suitable choices for .STL  Some of the Beyond Horndeski Lagrangians for 

which ,1≈gc  are discussed in Ezquiaga and Zumalaćarregui [18], 

Crisostomi and Koyama [24], and Dima and Vernizzi [25]. 

A different type of generalization of the Einstein-Maxwell field 

equations is provided by the Einstein-Yang-Mills field equations, which 

present us with an example of a gauge-tensor field theory. (See, Yang and 

Mills, [26], for a discussion of their theory.) If we let i
αψ  denote the 

gauge potentials (where small Greek indices run from 1 to n, where n is 

the dimension of the gauge (Lie) group, G), then the components of its 

associated curvature tensor are given by 

,: ,, jiijjiij CF γβ
βγ

αααα ψψ−ψ−ψ=  

where βγ
αC  denotes the structure constants of the Lie algebra, LG, of the 

gauge group G. (I realize that my Greek and Latin indices are just the 

opposite of those conventionally employed, but they are consistent with 

my previous usage.) A Lagrangian that yields the Einstein-Yang-Mills 

field equations is given by 
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 ,: 2121
YMEYM LgRgL +Λ+κ=  (3.6) 

where 

 
ij

ijYM FFBgL βα
αβ= 21:  (3.7) 

and αβB  denotes the components of a symmetric, Ad G invariant bilinear 

form on LG. (By αβB  being Ad G invariant I mean that for every ∈h  

( ) ( ).), hAdhAdBBG β
ν

α
µ

µναβ =  The Yang-Mills Lagrangian given in Eq. 

3.7 is conformally invariant, and by itself it generates a gauge-tensor field 

theory which is consistent with conservation of gauge-charge, in that 

( ) ,0=α aYM
a LE  where 

( ) ( ) ( ) .: , aYM
a

aYM
a

aYM
a CLELELE γ

αγ
β

βαα ψ−=  

We recover the Einstein-Maxwell theory (with cosmological term) from 

this gauge-tensor theory by choosing the Lie group G to be ,R  and then 

αβB  has only one component which we take to equal .1−  

Now I believe that it should be possible to modify the theory 

presented in Section 2 using the material presented in Horndeski [27], to 

establish the following 

Conjecture: In an orientable four-dimensional space let L be a 

Lagrangian which generates a conformally invariant, flat space 

compatible, scalar-gauge-tensor field theory which is consistent with 

conservation of gauge charge. Then the Euler-Lagrange tensor densities 

associated with L can also be obtained form the Lagrangian 

*432 SYMSYMUCCCC LLLLLL +++++  

where CCC LLL 432 ,,  and UCL  are defined by Eqs. 1.7-1.10, 

( ) ij
ijSYM FFBgL βα

αβ ϕ= 21:  
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and 

( ) ,:* jkhi
hijk

SYM FFDL βα
αβ εϕ=  

with ( )ϕαβB  and ( )ϕαβD  being symmetric, Ad G invariant bilinear forms 

on LG which are differentiable functions of .ϕ g 

If the Conjecture can be proved to be true, then one wonders just how 

useful that result would be. After all, so far the non-Abelian gauge 

theories being employed apply in regions governed by quantum 

mechanics. Clearly that is outside of the realm of a classical field theory. 

E.g., in [28] I have constructed all of the second-order gauge-tensor field 

theories that are consistent with conservation of gauge charge, and give 

rise to the Yang-Mills equation in a flat space. However, very few people 

have found any use for that result yet. But you can never tell what value 

a purely mathematical result may have for future physicists. 

In keeping with the above remarks about Yang-Mills fields it might 

be of interest to include spinor fields representing matter in the 

Lagrangian. This can be done using 2-spinors techniques as described by 

Wainwright in [29] and [30], or using a 4-spinor approach as was done by 

Hehl and Datta [31]. 

Lastly I have to admit that I have not really bothered to keep track of 

all the divergences that I have cavalierly dismissed in my quest to prove 

the Theorem. I was not too interested in these divergences since all of 

them were globally defined due to the assumption of flat space 

compatibility. But there are times when divergences are geometrically 

significant, as I shall now illustrate. In [32] Lovelock and I found the 

most general Lagrangian of the form 

( )ccdabcabab gggLL ,,, ;;;, ϕϕ=  

which is such that its Euler-Lagrange tensor densities are at most of 

second-order. One of the Lagrangians that arose during that analysis was 
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( ) ( ),4: GBfLSTGB ϕ=  

where f is an arbitrary scalar function of ,ϕ  and the Gauss-Bonnet 

Lagrangian in a four-dimensional space, ( ),4GB  is defined by 

( ) ( )abcd
abcd

ab
ab RRRRRgGB ++= 221:4  

.41 21
cd

jk
ab

hi
hijk

abcd RRg δ=  

Since STGBL  yields second-order ST field equations, we know that these 

equations must also be expressible using the Lagrangians of Horndeski 

Scalar Theory. But all of those Lagrangians are algebraically at most of 

first-order in the curvature tensor. Well, a lengthy calculation shows that 

a Horndeski Lagrangian, ,HL  can be found that yields the same field 

equations as .STGBL  Using ,HL  we discover that if we choose ( ) ,1=φf  

then 

( ) { [ jk
ef

i
d

h
hijk

cdef RgGB ϕϕδρ−= −12124  

( ) ]} .34
12

c
k

f
j

e
i

d
h

hijk
cdef ϕϕϕϕδρ+ −

 (3.8) 

Hence the Gauss-Bonnet Lagrangian is locally a divergence in a space of 

four-dimensions, which in turn explains why its Euler-Lagrange tensors 

vanish in a four-dimensional space. ( )4GB  will be a divergence globally, 

provided we can find a scalar field ϕ  for which ρ  never vanishes. The 

existence of such a field is connected to topological properties of the 

underlying manifold (when working with compact Riemannian spaces). In 

[33] I generalized the result presented in Eq. 3.8 to the other Gauss-

Bonnet Lagrangians, ( ),nGB  in spaces of dimension ....,2,1,2 == mmn  

However, Chern [34] was the first to come up with the general form of 

( )nGB  as a local divergence in spaces of dimension .2mn =  I would also 

like to mention that in [35] and [36], Buchdahl uses 2-spinors to 
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demonstrate that ( )4GB  is locally a divergence in a four-dimensional 

space. However, it takes a bit of work to show that Buchdahl’s result can 

be written in the form of Eq. 3.8. 

These observations concerning the Lagrangians ( )nGB  give us some 

idea of when local divergences can turn out to be geometrically very 

significant. 
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