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Abstract

In a four-dimensional space I shall construct all of the conformally
invariant, scalar-vector-tensor field theories that are consistent with
conservation of (electric) charge and flat space compatible. By the last
assumption I mean that the Lagrangian of the theory in question, is
well defined and differentiable when evaluated for either a flat metric
tensor, (and) or constant scalar field, (and) or vanishing vector
potential. The Lagrangian of any such field theory can be chosen to be a
linear combination of six conformally invariant scalar-vector-tensor
Lagrangians, with the coefficients being scalar functions of the scalar
field. Five of these generating Lagrangians are at most of second-order,
while the sixth one is of third-order. However, the third-order
Lagrangian differs from a non-conformally invariant second-order
Lagrangian by a divergence. Consequently, all of the conformally

invariant scalar-vector-tensor field theories that are consistent with
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conservation of charge and flat space compatible, can be obtained from a
second-order Lagrangian. The vector equation of any such theory is at
most of second-order and is an extension of Maxwell’s equations,
incorporating two other first-order terms that vanish when the scalar
field is constant. Hence in regions where the scalar field is constant, the

vector equation reduces to Maxwell’s.

1. Introduction

If one is going to use a scalar-tensor field theory to describe
gravitational effects in the Universe, then one needs to determine how
that theory should be modified to incorporate electromagnetic
phenomenon. The simplest way to accomplish this task is to derive the

field equations from a Lagrangian L which is the sum of two Lagrangians:
L = Lgy + Lgyr, (1.1)

where Lgp is a concomitant of the scalar field ¢, and the gravitational
field tensor, g, along with their derivatives; and Lgyp is built from
©, 8,5 and the vector potential, y,, along with its derivatives. Lgp can,

e.g., be chosen from the class of Horndeski Lagrangians presented in [1],

which lead to second-order field equations. The possibilities for Lgyp are
endless. For some guidance in the choice of Lgyy let us look at the

Einstein-Maxwell equations.
The vacuum field equations of the Einstein-Maxwell field theory are
GY - 2(F“Fl, —~1/4 g'F®F ) =0
and
FYj =0,

where the notation employed in this paper is the same as that used in [2]

and [3], in terms of which F,, = v, — ¥ . A Lagrangian that yields

the above field equations is
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Lgy = g/?R - g/*F%F,,. (1.2)

The important thing to note here is that the part of Lpgp; which

represents electromagnetic phenomenon; viz., the Maxwell Lagrangian
LM = _g1/2FabFab

is conformally invariant, and leads to field equations consistent with
conservation of electric charge. (Henceforth when I speak of charge I shall
mean electric charge.) In [3] I investigate conformally invariant vector-
tensor field theories that are consistent with conservation of charge to

determine to what extent Lj;; can be generalized. If we also require the

Lagrangians to be flat space compatible; i.e., such that they are well
defined and differentiable when evaluated for either flat metric tensors
(and) or vanishing vector fields, then the resulting vector equation must
be Maxwell’s. Hence we see that the requirements of conformal
invariance, conservation of charge and flat space compatibility in a
vector-tensor field theory, places quite a severe restriction on the form of
the vector field equation. I would now like to investigate what the
implications of these restrictions are, when they are applied to

Lagrangians of the form Lgyp. To that end I need to introduce some

nomenclature to fix ideas.

We shall say that a physical field theory is a SVT (:=scalar-vector-
tensor) field theory if the field variables of that theory are the

components of a scalar field, ¢, a covariant vector field, y,, and a metric
tensor field, g,,. We shall require the field equations of that theory to be

derivable from a variational principle with a Lagrangian of the form
L= L(8ap: Sab.cs 3 O @ a5 s Vai Vg b5 -) (1.3)

which is scalar density of finite differential order in the field variables.

The Euler-Lagrange tensor densities associated with L are defined by
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9L d oL

E®(L) = + +o. (1.4)

agab dx* agab,c
L d 9
E(L) = + (1.5)
() 90 gx? 99 4

and

o)=L, d 9 (1.6)

a‘l’a dxb a\Vot,b

The field theory will be said to be of k" order if one of the sets of field

tensor densities has derivatives of at least k" order, in one of the field

variables.

Let L be the Lagrangian of a SVT field theory. Under the conformal
transformation g,, — gup = ezcgab, where ¢ is a differentiable real

valued scalar field, L generates a Lagrangian, L', defined by
L'(gab; 8ab,cs 5 & @ b 3 Vo Va, b5 )
= L(8ups Cab.cs 3 O P gi s Vs W bs o)

L is said to be conformally invariant if L" = L, when g, is replaced

throughout L’ by e2%g,;.

If a SVT field theory is such that E%(L), E*(L) and E(L) are

conformally invariant, then that theory will be said to be conformally
invariant. If L is conformally invariant, or conformally invariant up to a
divergence, then it is well known that its associated SVT field theory will

be conformally invariant.

We shall say that a SVT field theory is consistent with conservation of
charge, if the Euler-Lagrange tensor density E®(L) is identically

divergence-free. This guarantees that charge is conserved, because in the
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presence of charge the vector field equation is E%(L) = —16mJ %, where
J? is the charge-current vector density. The Einstein-Maxwell field
equations generated from the Lagrangian Lgps given in Eq. 1.2 are
consistent with conservation of charge. But they are not conformally

invariant, since E%y(Lgy ) is not conformally invariant.

Another thing we note about the Einstein-Maxwell field equations is
that the Lagrangian of that theory is well defined and differentiable (as a
tensorial concomitant) when evaluated for either a flat metric tensor
(and) or a vanishing vector field. With that in mind I shall say that a SVT
field theory is flat space compatible, if the Lagrangian of that theory is
well defined and differentiable when evaluated for either a flat metric
tensor, (and) or constant scalar field, (and) or vanishing vector potential.
When this is the case the field tensor densities of that theory will also be
well defined and differentiable when evaluated for either a flat metric

tensor (and) or constant scalar field, (and) or vanishing vector potential.

Now it 1s fairly easy to construct examples of SVT Lagrangians that

are conformally invariant. For let us set
I:=C%Cq, J = C®C,40C 0y, F? = FF,,
and

p =27 .0,

where Cabcd denotes the conformally invariant components of the Weyl

tensor. Under the conformal transformation g, = ezcgab, we have
I'=e J =e5, FZ = ¢19F2 o' = ¢2% and g’ = %%.

If a,B,y and 8 are any real numbers we can define a family of

Lagrangians L(a, B, v, 8) by L(a, B, v, 8) = g1/2I°‘JB(F2 )Yps. Under a
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conformal transformation, we find that
Lo, B, v, 8) = U 40=6B-4v=2) 1 g, 5).

Evidently L(a, B, v, 8) is conformally invariant if and only if
4 — 40— 6p —4y—28 = 0. For these choices of a, B, y and 8 we obtain

an infinite family of conformally invariant Lagrangians, which in turn
yield conformally invariant SVT theories. In fact, it is easily seen that the
resultant theories will even be consistent with conservation of charge.
However, only three of these Lagrangians are flat space compatible; viz.,
L@, 0, 0, 0), L(0, 0,1, 0) and L(0, 0, 0, 2). All of the other Lagrangians
(or some of their derivatives) blow up when the space is either empty,

(and) or ¢ 1is constant, (and) or y, (and hence F_;) vanish. Thus we see

that the assumption of flat space compatibility places quite a severe

constraint upon the class of admissible SVT field theories.

In passing I would like to point out that we could even construct a

larger class of conformally invariant Lagrangians then L(a, B, v, §) using

things like:
CopeaFPF?, Copeq®® FAC5 g, F,, and so on.

In constructing these examples I have excluded v, since, although you

can build a myriad of conformally invariant Lagrangians using it, the
resultant theories would not be consistent with conservation of charge.

This will follow from our latter work.

Since every conformally invariant, flat space compatible ST (=
scalar-tensor) field theory is trivially consistent with conservation of
charge, we can use the work presented in [2] to obtain four classes of
Lagrangians which generate SVT field theories which are conformally
invariant, consistent with conservation of charge, and flat space

compatible. The Lagrangians of those theories are:



CONFORMALLY INVARIANT SCALAR-VECTOR-TENSOR ... 99

Lo = g"/*k(g)p?, (1.7)
Lyc = p(@E™ICP0pC pyeq, (1.8)
Lic = 877600 Capeq (1.9)
and
Lyc = g"2u(e) - 12R%¢,q, + 2Rp - 3(0¢)”
- 60" 0qp —120%9"ba ], (1.10)

where p = gab(pa(pb, CM* denotes the components of the Weyl tensor

which are defined by
Chijk = Rhijk T 1/2 (ghkRij n ginhk _ gthik _ githj)
+1/6 R(gVg™ - g"*g¥), (1.11)

Pab... = P|gb...,» With k, p, b and u being differentiable functions of ¢,

and a vertical bar denoting covariant differentiation. The Euler-Lagrange
tensor densities associated with the Lagrangians presented in Eqgs. 1.7-
1.11 can be found in [2].

We shall say that a SVT field theory is a true SVT field theory if all
three fields appear somewhere (not necessarily together) in the field

equations. Thus the SVT field theories generated by Loc, L3, Lyc and
Lyc are not true SVT field theories. However, if we were to add Ljy; to

any combination of those four Lagrangians, we would obtain a true SVT
field theory which is conformally invariant, consistent with conservation

of charge, and flat space compatible.

Now if we were to multiply the Maxwell Lagrangian by B(¢), which is

an arbitrary scalar function of @, we would obtain the Lagrangian
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Ly = —g/*BFF,,. (1.12)

We could adjoin this Lagrangian to any combination of our four other
pure scalar-tensor Lagrangians to obtain true SVT field theories which
were conformally invariant, and consistent with conservation of charge.

The Euler-Lagrange tensor densities of Lgy; are given by

E®(Lgy ) = ~28"PB(FF ~1/4 g FF,y) (1.13)
E(Lgy ) = g/%pFPF,, (1.14)

and
E%(Lgy ) = ~4gV2(BF P + pF%qy), (1.15)

@

where here denotes a derivative with respect to ¢, and not a

conformal transformation.
Associated with the Lagrangian Lgys is the Lagrangian Lgys+,
defined by

Loy = " FiFy,, (1.16)

where v is a differentiable function of ¢. Note that when 7y is a constant
Lgys+ is a divergence. The field tensor densities associated with Lgys«

are given by

E®(Lgy+)=0 (1.17)

E(Lgy+) = ~Ye"* Fy; Fy,, (1.18)
and

E*(Lgy+) = 47", Fy,. (1.19)

It is apparent that Lgps+ generates a conformally invariant, flat space
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compatible SVT field theory, which is consistent with conservation of
charge. The purpose of this paper is to demonstrate that in an orientable

four-dimensional space, Lgj; and Lgp+ are essentially the only
Lagrangians which can be adjoined to Loc, L3c, Ly and Ly to obtain

a SVT field theory with the properties that we are looking for. More
exactly, I shall establish the following

Theorem. In an orientable four-dimensional pseudo-Riemannian
space, any conformally invariant, SVT field theory which is consistent
with conservation of charge, and flat space compatible, can have its field

equations derived from the Lagrangian.

L2C + L3C + L4C + LUC + LSM + LSM* (1.20)

for a suitable choice of the functions k, p, b, u, B and 7y appearing in
Loc, Lsc, Lyc, Lyc, Lspyy  and  Lgps+ respectively.  These  six
Lagrangians are defined by Eqs. 1.7-1.10, 1.12 and 1.16.

The first thing you will note about the theorem is that I demand that

the spaces of interest must be orientable. This was done to guarantee that

abed

the Levi-Civita symbol, € , 1s a globally well defined tensor density.

However, since most of our work will be done on a coordinate domain,
which 1s an orientable manifold, this assumption is not a severe
restriction upon the class of SVT field theories we are investigating.
Nevertheless, when we consider coordinate transformations, it will be

assumed that the Jacobian is positive.

Another aspect of this theorem that you may have noticed, is that no
assumption was made concerning the differential order of the SVT field
theories under consideration. That is because I shall prove that all
theories which satisfy the assumptions of the theorem must have
differential order less that or equal to four. You should also note that all
theories satisfying the assumptions of the theorem can be obtained from a

Lagrangian which is at most of second-order. This is so because the third-
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order Lagrangian L is equivalent to a second-order Lagrangian Logc
(see, Egs. 1.25 and 1.26 in [2]) which is conformally invariant up to a
divergence.

As an immediate consequence of the Theorem we have the following

Corollary. If a SVT field theory satisfies the assumptions of the
Theorem, then the Euler-Lagrange tensor density obtained by varying the

vector field is given by

E*(Lgps + Lgpy+) = —4g1/2[l3Fab\b

+BF g, — Ye g F g, (1.21)
for a suitable choice of the scalar functions B = B(¢) and vy = (o).

Eq. 1.21 is very interesting. We know that here on earth, Maxwell’s
equations of electromagnetism do an excellent job of describing
electromagnetic effects down to the scale of atoms. Thus if Eq. 1.21 is to
be taken as a possible generalization of Maxwell’s equations, the scalar
field must be fairly constant near the earth. In any case, the Corollary
tells us that under the assumptions of the theorem there are very few

alternatives to Maxwell’s equations of electromagnetism.

I shall now quickly sketch how the theorem will be established. I
begin by showing that if L satisfies the assumptions of the theorem, then
AY = EY(L), B:= E(L) and C' := E'(L), must be devoid of explicit
dependence on the vector field. I then go on to compute what the
maximum differential order of Aij, B and C' can be, with Ct turning
out to be at most of third-order in g,, and ¢, and second-order in .
Next I construct the general form of C' and show that C' = E!
(Lgpr + Lgpy+ ). The Lagrangian L = L — Lgyy — Lgpr+, will satisfy the

assumptions of the theorem and be such that £ i(L) = 0. The proof then
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ends by demonstrating that L is equivalent to the Lagrangian Loc + L3¢
+L,4c + Ly, for a suitable choice of the functions k&, p, b and u. Now for
the details, which should be familiar to those who have read [2] and [3].

2. Proof of the Theorem

As in [2] and [3] the proof will consist of a sequence of lemmas. Since
the signature of the metric tensor will not be significant in what we are

about to do, I shall assume that it is arbitrary, but fixed.

The first lemma will provide us with the means to recognize

conformally invariant SVT field theories.

Lemma 1. Let L be the Lagrangian of SVT field theory. That field
theory will be conformally invariant if and only if Eab(L) is trace-free. If
E (L) is trace-free, then L is conformally invariant up to a divergence.

Proof. = The Euler-Lagrange tensor densities of a SVT field theory
are related by the identity (see, page 49 of [4])

Eab(L)‘b = 1/20,E(L) —1/2 Fop E°(L) = 1/2 y, B (L), (2.1)

’ ’

It gy = 2°gyy, welet E,(L), E(L) and E%(L) denote E,(L), E(L)

and E%(L) built from g,;, ¢ and y,. Since Eq. 2.1 is an identity it is

valid for every scalar, vector and tensor field. Thus we must have
EL(L)|p =1/20,E(L) —1/2 FE°(L) —1/2y,E°(L)|»,  (2.2)

(3

where “3” denotes covariant differentiation with respect to the Levi-

Civita connection of g,;. Due to our assumption of conformal invariance
E(L) = E(L),, and E%(L) = Ea(L)I. Since EP’(L) is a contravariant

vector density, the right-hand sides of Eq. 2.1 and Eq. 2.2 are identical.

Consequently,
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b _ b
ES L)y = B (L), (2.3)

’

Since, by assumption, Eab(L) = Eab(L) , we can use the fact that
Mg =Tt +6,48"t +6,8"s — g48™0

in Eq. 2.3 to deduce that E,“(L) = 0.

<Let g(t)y =0 —-t)gqy +180p,0<t <1, denote the convex

combination of g,, and gg;. So g(t),, = (1-t+ teo )8ap, 1s a pseudo-
Riemannian metric tensor with the same signature as g,,. We now

define a one-parameter family of Lagrangians, L(¢), by
L(t) = L(g(t) g 8)apes -3 & @5 -5 Was Waps - ).

If we let E®°(L(t)) denote E%°(L) evaluated for 8(t)yp, ® and y,, then

it is a straightforward matter to demonstrate that

dL(t) _ ab dg(t)ab d i
—5 = ETL@) =+ s Vi), (2.4)

where V(t)i is a contravariant vector density, built from ¢, 6, g,5, ® and

V,. Since E ab(L) is trace-free, we know that

0= E(L(t)g(t)y = E®(L(t)gap(1 —t + ),

and thus
dg ()
ab ab _
E (L(t))—dt 0.
Consequently Eq. 2.4 implies that
aLe) _ _d V(t). (2.5)

dt da’
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If we integrate Eq. 2.5 with respect to ¢ from 0 to 1 we find that
L) - L(0) = a divergence.
But L(1)= L and L(0)= L. Thus if E%(L) is trace-free, L is
conformally invariant up to a divergence. This in turn implies that Eab

(L), E(L) and E%(L) are conformally invariant. ll

Now that we have found an easy way to recognize conformally
invariant SVT field theories, we require an equally facile way to
determine when a SVT field theory is consistent with conservation of

charge. The next lemma provides us with the means to do just that.

Lemma 2. Let A%, B and C%® denote the field tensor densities of a
SVT field theory. This theory is consistent with charge conservation if and

only if Aab, B and C? are independent of explicit dependence on .
Proof. « Suppose that A?°, B and C? are independent of Y, ie.,
A%%¢ = 0, B = 0 and C%¢ = 0,

where “>€¢” denotes a partial derivative with respect to wv,. Since

A% B and C% are the field tensor densities of a SVT field theory they

must satisfy Eq. 2.1, and so,
Al =1/204B —1/2 F ), C° —1/2y,C%. (2.6)
Upon differentiating Eq. 2.6 with respect to y, we get
0= C%,

which implies that charge is conserved.

= The proof of the lemma in this direction is virtually identical to the
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proof of Lemma 2 in [3], and will be omitted. B

When dealing with SVT field theories that are of pth order in the
metric tensor, qth order in the scalar field, and ™" order in the vector
field, the derivatives of the field tensor densities A?, B and C% with
respect to 9”g,;, 990 and 90"y, are tensorial concomitants. Here I am
letting 9”g,, 09%¢ and 0"y, denote abbreviations for the local
components of the pth, qth and r* derivatives of Sab, © and v,.
However, in general, the derivatives of Aab, B and C% with respect to
9°8ups S < D at(p, t < q and 9"y, u < r; are not tensorial concomitants.

But under the assumptions of Lemma 2, A% =0, B¢ =0, and C%¢

= 0, are tensorial equations. Our next lemma addresses the implications

of this observation.

Lemma 3. In an n-dimensional space, if Al , B and C' are the field

tensor densities of a k" order SVT field theory, which is consistent with
conservation of charge, then for every collection of s indicies a, ..., b
(s=2,...,k+1)

0AY OB aC"

=0, =0 and — =0,
N (q,...b) N(q,...b) N(q,...b)

where parentheses around a string of indices denotes symmetrization

over the enclosed indices.

Proof. The proof is an obvious generalization of the proof of Lemma 3

in [3], and hence it will be omitted.H

One might think that Lemma 3 implies that AY, B and C’ must be

built from F_; and its derivatives. This is in fact true, and two proofs of
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this fact are provided in [5]. E.g., in the case where C' is of fourth-order,

we have the replacement theorem
C' = CH(Zab - * Zabyedef’ @ - Pabeas 03 1/2 Fop;
2/3 Fa(b,c); 3/4 Fa(b,cd); 4/5 Fa(b,cde) )

However, we shall not need this fact in what follows.

The next tool we require to prove the Theorem is a generalization of a
powerful identity that Aldersley developed to treat conformally invariant
concomitants of the metric tensor (see, page 70 of Aldersley [6], or [7]). To

assist in the statement of this Lemma, I shall use, as I did above, the

symbols 9™ g, 9™ ¢ and 0™y, as abbreviations for the components of

the m™" derivatives of Sap, © and y,.

Lemma 4 (Aldersley’s Lemma for SVT Field Theories). In an n-

dimensional space let
A% = A (gpis Ogpis 5 9P nis @ 995 39905 Wi Y3 39T ),
B = B(gpi; 98nis - 5 0 8his @5 00; ... ;0905 wp; oWp; .. 507wy ),
and
C% = C%(gpis 08nis -5 0P gpis @ 095 ... ;0795 Wy OWy; o 597 yy)

denote the field tensor densities of a conformally invariant SVT field

theory. Then for every real number A > 0
N'A® (ghi: 0gpis 5 0P gpis 5 005 .. 50703 Wy OWh: ... 107 Wy)
= A (gni; Nghis - s WP gnis @ Mg

3 09090; My W20y L N Ty, ), (2.7)
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N'B(gpi; 98his -+ 5 9P 8his @ 0Q; .. 50905 W3 OWp; .. 30 W)
= B(gp;; Mgp;; - 3 WP gy ¢; Mg;
3 09099; My W20y L N Ty ), (2.8)
and
N ICH (ghis 0gnis - 5 OP&his @ 005 ... 3095 Wy OWps . 507y )
= C(gpis MNoghis - 5 WOPgpi; @; Mg
3 M909g; My W20y L N Oy, (2.9)

where there is no sum over repeated p’s, ¢’s or r’s in the arguments of Aab,
Band C“.
Proof. The proof is similar to the proof of Aldersley’s Lemma given in

[2] and [3]. To make the proof more comprehensible, I shall only prove it

for the case where p = ¢ = r = 4. From that proof it will be evident how

to go about establishing the Lemma in general.

Let P be an arbitrary point in our n-dimensional space, and let x be a

chart at P. We define a new chart x” at Pby x' = Ax". Since A% is a
tensor density we know from the tensor transformation law it must
satisfy that at P

| det(J %) el Pa A (gps; ... ; Shi, jkims @ 5 @, jkims YA - 5 Wh jkim)

b ’ ’ ’ ’ ’ ’
= AY(8his 5 Shijkims s o s O jrims Whs - 5 Vhjkim )> (2.10)

u

where the Jacobian matrices are defined by J%, = and J'% =

ox’®

ox*

. The tensor transformation laws for gp;, ¢ and y;, tell us that
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A Y A X N I =20g,. .., -

8hi 8hi> 8hi,j 8hi,j> - > 8hi,jklm 8hi, jkims

O =00 =N j5 s O g = N i

Vi = M Wh = MYt e Wiitim = XYW jkim-

Using the above expressions in Eq. 2.10, shows us that for every A > 0,

and any chart x at P
)
N'"2ADL (gpis 8hiji e s 8hisjhims @ @3 3 @ jkim’
2 3 6
Vis Whjs o5 W jkim) = A (W2 gpis N 8hijs - > N 8&hijkims € M
Y . a2 . .95
e 3 MO jpims MRS AW 55 s KW i )- (2.11)

I shall now demonstrate how the assumption of conformal invariance can
be employed to rewrite Eq. 2.11 in the form of Eq. 2.7. To that end let

Yab, Gand &, be the x components of a metric tensor, scalar field and
vector field defined on a neighborhood of P. Under the conformal

transformation Y, — Ygp = kzyab, we find that
b(r2, .12 . .32 e . . . .
A (N Ynis MYnijs 5 MV jims G 5 8 jrims Ens 5 S jrim)

2 4ab
= N A (Yhis Yhijs o 5 Yhijkims G o5 G jkims Ehs -5 Gnjuim ). (2.12)

We set
Vi = gni(P)+ Agpi j(PY! +1/202gp; i (P/x"
+1/31 3 gh P b + 14 W g am (P A ™,
¢ = o(P)+ Ao (P’ +1/22%¢ jj, (P’

+ 1310 ju (PYx 1" + /4 W0 jpm (PY/x 2™,
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and

& = Wy (P)+ 2y (P +1/2 0%, (P
+1/3 0 PO+ 1AW, jpam P A

where x/ = x/ — x/(P). Since Yni(P) = 8x;(P), v5; 1is a well defined
metric tensor on a neighborhood of P. Using the above expressions for

Yni>» G and & in Eq. 2.12 we find that at P

AP (\2g; 7~3ghi,j; s 7‘6ghi,jklm§ 0 AQ i oo 3 A jpims Mg 7»2\Ifh,j§
7~5\Ifh,jklm) = 12A% (g Mhijs s N Ghijkims @ MO j5 oo

MO ikim: Mons A2 5 s KW ihim )- (2.13)

Upon combining Eqgs. 2.11 and 2.13, we discover that at P
N A (8his hijs -+ 5 Shijkims B @5 w5 @ jkims Va5 Whjs - 5 Whjkim )

b . . .4 R . Y . .12 .
= A (gpis Mhijs -+ 3 N &hijkims © M j3 e 5 KO jpims MIps KW 5

Since P was an arbitrary point, Eq. 2.14 is valid in general, and Eq. 2.14
agrees with Eq. 2.7 when p =g =r = 4.

It should be apparent how the above argument can be generalized to

demonstrate the validity of Eq. 2.7 when p, ¢ and r are arbitrary. In a

similar way we can corroborate the validity of Eqs. 2.8 and 2.9.H
As an immediate consequence of Aldersley’s identity we have

Lemma 5. In an n-dimensional space, let

A% = A% (gpi; 9gnis 3 OP&his @ 905 - 5 3795 i3 AW e 5 3TV
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B = B(gpi; 98nis - 5 0P 8nis @ 00; ... ; 0995 Wy 0wy 5 0T Wy)
and
C* = C(gnis 0his -5 0P ghis @ 005 ... ; 395 Wy; AWy o5 O yy),

denote the field tensor densities of a conformlly invariant, flat space
compatible, SVT field theory. Then p < n,q<n,r<n-1in A% gnd B,
while p<(n-1),g<(n-1) and r < (n-2) in C% In particular, in a
four-dimensional space p and q are < 4 and r < 3 in A% gnd B, while p

and g <3, and r <2 in C%.
Proof. If we differentiate Eq. 2.9 with respect to 0"y}, we obtain

2 (n-1) oC?

3oy )(ghi; 08nis -3 0P 8nis @ 00; ... 5 09 Wy oYy s 0Ty )
h

a
2 0 (g At e s WP gt 0 A e 3 AL A WP
9(0"wp,)
xr+larwh )
Upon multiplying this equation by k(l_n), we get

aC*

a(a,—w)(ghi; 0gni; -3 0Pgnis @ 00; ... ; 09@; wy; Oyy; ... ; OTY)
h

_ y(r-n+2) oC® NI < AP3Ps. . © AIO: .
- }\‘ r (ghl? ;\‘ ghl’ st }\‘ ghl, (P7 ;\‘ (p5 AR
9(0"yy,)
A20%; My p; Aoy, ... s N y). (2.15)

Now if r —n + 2 > 1, then when we take the limit as A — 0" in Eq. 2.15
the right-hand side vanishes due to flat space compatibility. Therefore if
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r > n—1, C* must be independent of 9"y;,. Consequently if C? is of rth

orderin yj,r < n-2.

In a similar way we can establish the other restrictions on p, ¢ and r

in A% B and c®. W

Our next objective is to construct all C%’s that satisfy the

assumptions of the Theorem. To assist in that endeavor I need to

introduce some more notation. If 7" denotes the components of a SVT

concomitant we denote the derivatives of 7. .

D ab... and Vab... by

T...m;ab,c... : T...m:ab... and T“'...;a’b“'

So, e.g.,

agcd,ef ’ a(p,c

Aab;cd,ef — aAab Aab:c _ ﬁ

With this notation in hand I can now state

o

with T... = E)(pm

and A%bed _ ﬁ
a\Vc,d

Lemma 6. If C% satisfies the assumptions of the Theorem then

C(a;\bc\,def) -0, clabed) _ 0, C(a; bl,cd) _ 0

i

o b(c,def) _ 0, gbcca; be,def _ 0,

Ca;(b,c) -0 and Ca;(b,cd) _

0.

with respect to g4p . ;

(2.16)

(2.17)

Proof. From Lemma 5 we know that C% is at most of third-order in

8qp and ¢, and at most of second-order in wy,. Thus the charge

conservation equation C? 4 = 0, can be written as follows:
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a; be a;be,d a;be,de a;be,de,
0=C 8be,a T C 8be,da t C 8be,dea t C fgbc,defa
+ Cav(p,a + Ca:bq),ba + Ca:bcq),bca + Ca:de(P,bcda

;b b, ;b,ed
+C* VYpa t c* C\Vb,ca + e Vb,cda

Upon differentiating this equation with respect to g, 1yuws @ s, and

W, stu» We obtain

0= C(t;\rs\,uvw) 0= C(r:stu) and 0 = C(Sﬂr‘,tu)
which establishes the first three conditions in Eq. 2.16.

Since C? is a contravariant vector density it must satisfy various
invariance identities (see, e.g., Lovelock and Rund [8]), which can be

established as follows.

Let P be an arbitrary point in our space, and let x and x” be charts at

P. Due to the tensor transformation law we must have
C(8his &hi.js &hijks hijkls O O3 Ojrs O jris Whs Whjs Vhjk)
= | det(J %) “bCO (gnis &hiji Ghijks Ehijks B .3
® ik @ ki Vhs Vs Whjk)»

where the Jacobian matrices J%, and J’% have been previously defined.

At the point P
Ehi, jkl = 8mnd " ikl i + ppd " nd "ijki + (terms independent of J” st ),

where the J..'s are defined inductively by J%. cqd = o J% . .¢

ox’?
Using this equation, we discover that if we differentiate Eq. 2.18 with

respect to s, and evaluate the result for the identity coordinate
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transformation, we obtain
Cahi M [ g,,5°(18" 18" k8%1) + g4, 8° (8" j8"8°)] = 0,
which implies that

Ca;r(s,tuv) - 0.

Thus we have established the fourth condition in Eq. 2.16.

To obtain the last condition of Eq. 2.16 let’s consider the conformal
transformation g,, — gup = €2°84p. C? is invariant under this

transformation, so we must have

2 2
CU (e gni ); -+ 5 (€™°8ni) jris @ -5 @ jkis Whs -5 W jk)

= CUghis -5 Shijkis B -5 O jrl> Yhs - 5 Whjk)-

If we differentiate this identity with respect to ¢ ,y, and then evaluate

the result for the identity conformal transformation we obtain

a;hi,rst _
C &ni = 0.

This completes our proof of Eq. 2.16.

Eq. 2.17 follows from Lemma 3.1

At last we are ready to determine the basic functional form of C?.

This will be done in our next Lemma.

Lemma 7. If C% satisfies the assumptions of the Theorem, then

d 1 b
cY = @labc efgbc,def I ®ab0defhlgbc,degfh,i 4 ®2a Cdefgbc,de(p,f

4 ®abcdefhijk abcedef

bed
8be,d8ef,n8ijk + O3 Zbe.dPe0.f + P17 peq

abed

b
o Cdef(P,bcgde,f + P30 00 g

abed
+ P00 g +
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+ lPlade\Vb,cd + lPadeef\Vb,cgde,f + lpzade\Vb,c(p,d’ (2.19)

where the @’s, ®’s and ¥ s are concomitants of g4, and . @, bcdef

®,% gnd W,%°°? must have the following symmetries:

®1abcdef _ ®1a(bc)def _ @labc(def),

®1ab(cdef) -0, ®l(a\bc‘\def) =0, gbcglabc‘ief =0, (2.20)

@ @bed _ g albed) g (abed) _ (2.21)
and

p,abed _ p abled) -y (albled) _ o g albed) _ o (2.22)

Proof. Due to Lemma 2, Aldersley’s Identity (Lemma 4), and Lemma

5, we know that for every A > 0,
NCU(Ghis v s &hijhts @ -5 O ks Whjs Vajk)
= C*(gnis Mnijs No8nijrs N 8nijnts @
A 5 220 jrs K20 jrs Mwi i K ). (2.23)
Upon differentiating this equation with respect to g, ;,,,, we find that

a;rs,tuv . . . (e . . .
C (8his -5 Shijrls O -5 O jkis Wh, j5 Vh,jk)

= COTSY gy Agnis N gni s Nogniins @ M@ j;

N s Ko s Mg s Ky ). (2.24)

If we differentiate this equation with respect to gj; jr;, and then take the

limit as A — 07, recalling that C% is well defined and differentiable for a
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flat metric tensor, constant vector field and vanishing vector potential, we

see that

Ca;rs,tuv;hi,jkl = 0.
Similarly we can use Eq. 2.24 to prove that

Ca;rs,tuv;hz,]k =0, Ca;rs,tuv;hz,] =0, Ca;rs,tuv;h,lj =0, Ca;rs,tuv;h,l =0,

Ca;rs,tuv:j =0 Ca;rs,tuv:jk =0 Ca;rs,tuv:jkl =0
Consequently, gp. 4, must appear linearly in C?%, with coefficients that
are functions of only g,;, and ¢.

Analogously we can demonstrate that ¢;.; and W, .4 must appear

linearly in C? with coefficients that are functions of only g,; and ©.

Continuing in this fashion we can use Eq. 2.23 to show that C% must

be a linear combination of
8bc,def> 8bc,de8 fh,is 8be,de®, s 8be,d8ef,h8ij,k> 8bc,dP,e®,f5 @ bed
PbcP.d> Poc8de,fs PoPe®ds Voeds Vo,c8de,f ad Yp @ g

with coefficients which are simply functions of g,; and ¢.

The symmetries satisfied by ©, ® and ¥ in Egs. 2.20-2.22 follow

from Lemma 6, along with the symmetries inherent in the partial

derivatives with respect to Zpe dof» @ peqd a0d Yp o.M

In order to simplify the form of C% given in Lemma 7 we need

Lemma 8. (Thomas’s Replacement Theorem for SVT Concomitants):

If © is a tensorial concomitant which locally has the form

T = U (8his 8hi js Ehi,jks Ehi,jkls
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D15 D his Phijs Vs Whis Vhij)

then the value of t’s components are unaffected if their arguments are

replaced as shown below:
v = U8R 05 13 (Rpyjrg + Rpgji )i 1/6 (Ryjriy + R + Rpkaij
+Rpiij + Rpgjir + Bajiir ); 9 O3 @nis Q(nij)s

m

Vas Wais Wal() + 1/6 W (B, + ™)), (2.25)

Proof. In [2] and [3] I essentially explain why Thomas’s Replacement
Theorem [9] gives rise to the result presented in Eq. 2.25.1

Due to Thomas’s Replacement Theorem we see that Eq. 2.19 reduces

to
bed bed bed bed
C* = 0,7 ebedec\f + @, ebedec(Pf + 1O peq) + P2 Op 04

Pl op0e0q + B (Whea +1/3WnB " pa) + ¥ Py 0q, (2.26)

+ ®g
where I have made use of the symmetries of @, ® and P.

At first sight you might think that Eq. 2.26 must be incorrect since

Lemma 2 stipulates that C® must be independent of explicit W,

dependence. However, we need to know something about ‘Plade before

we start to panic. This is where our next Lemma comes to the rescue.

Lemma 9. If ©,%°°%/ ¢ ,9%¢d anq ,%°? gre tensorial concomitants

of 8ap and @ which satisfy Eqs. 2.20-2.22, then

®1abcdef =0, cI)labcd =0, (2.27)

and
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lplade _ gl/ZB(gabgcd ~1/2 gacgbd ~1/2 gadgbc ), (2.28)

where B = P(¢). The tensorial concomitants ®,%, &,9°4 gnd w204
have the following symmetries:

(I)zabcd _ (I)za(bc)d, cI)3ade _ (I)3a(bcd), \P2a(bc)d -0,

and are given by

q)zabcd _ gl/Z(Tgbcgad I C(gabg"d + gacgbd ), (2.29)
0,20 = g2 (g% g + ggh? + g*ghe), (2:30)

and
q,zabcd _ gl/Zv(gabgcd _ gacgbd)+ Q)Sade, (2.31)

where © = 1), { = {(9), 1 = W), v = v(9) and ® = o(p).

Proof. In [2] and [3], I build quantities with the same symmetries as
®,%°%l and show that they vanish. The main tools used to build
concomitants such as ®, ® and ¥, are presented in Weyl [10]. There he
demonstrates that concomitants such as those we are trying to construct

are generated by all suitable products of g~’s and € ’s. The details of

how this is accomplished, are presented in Appendix C of [2].l

Our next Lemma provides us with our long sought general form for

ce.
Lemma 10. If C® satisfies the assumptions of the Theorem then
e = g1/2HFab‘b +g1/2u'Fab(Pb + (DeadeFbc(pd’ (232)

where W = W) and ® = o(Q) are differentiable functions. A Lagrangian
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that yields C% as its Euler-Lagrange tensor density when the vector field
is varied is Lgys + Lgpr+, where Lgyy and Lgys+ are defined by Egs. 1.12

and 1.16 with B = —1/4 p, and 7y = 1/4 j ode.

Proof. Under the assumptions of the Theorem it was shown that C¢
must have the form given in Eq. 2.26. Thus due to Lemma 9 we can

conclude that

Cc? = gl/zJ“ + gl/zuFab\b + gl/va“b(pb + uueadeFbC(pd, (2.33)
where

J = oclRab(pb + a9 Re? + ocg(p“b(pb + 0o 000 + az0%p.  (2.34)

In deriving the expression for the “junk vector,” J¢, we need to evaluate
@,bedef Rpgec®s. In order to do this one does not really need to employ
Weyl’s results to first determine the form of ®,%°°% It is enough to
know that ©,%°°%/ must be built from either the product of three g’s
or one g and one €. That is how I obtained the first two terms in the
expression for J%. The remaining terms were arrived at using the

expressions presented in Lemma 9.

Now C¢ is supposed to be conformally invariant. It is clear that the

second, third and fourth terms appearing on the right-hand side of Eq.

2.33 are conformally invariant. Consequently gl/zJa must also be

conformally invariant. Imposing this demand upon Eq. 2.34 shows that

0y =0y =03 = ay =0, with ay being an arbitrary scalar function of ¢.

Thus gl/zJa reduces to

g1/2Ja — u5g1/2(pap — Ea( _ 055g1/2P(Pb\|/b ) (235)
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The last term in Eq. 2.33 also comes from a variational principle since

it is easily seen that

(,l)EadeFbc([)d = EG(LSM* ), (236)
where Ly« is defined by Eq. 1.16 with y := 1/4 j wd¢.

So right now C¢ is given by
e = (x5g1/2(pap +g1/2uFab‘b + gl/QVFab(Pb + (DfladeFbc(Pd- (237)

C? is supposed to be divergence free. Upon taking the divergence of Eq.

2.37 we obtain
0 = [¢¥%af p? + g"%a5(9%), 1+ 82 (W = V)Fpg,.

The only way that this equation can hold identically is for o5 = 0, and

v = 1. When this choice is made we see that Eq. 2.37 implies that
CcY = Ea(LSM + LSM* ),

with B and y in Egs. 1.12 and 1.16, chosen so that B := -1/4u and

Y =1/4 J od¢. This observation completes the proof of the Lemma.l

We are now sufficiently prepared to finish the proof of the Theorem.
To that end let L be a Lagrangian satisfying the assumptions of the
Theorem. We define & = L — Lgpy — Lgps+, where, due to Lemma 10,

we know that we can choose B and y in Lgy, and Lgp+ so that
E?%(~) =0. The purpose of our next Lemma is to determine a pure

scalar-tensor Lagrangian equivalent to < from a variational point of

view.

Lemma 11. Suppose that in a four-dimensional space the k" order
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Lagrangian L generates a conformally invariant, flat space compatible,

SVT field theory for which E*(L) = 0. Then

E®(L) = E®(Lyc + Lyc + Lyc + Lyc)
and

E(L) = E(Lgc + Lc + Lyc + Lyc)

for a suitable choice of the scalar functions k(¢), p(¢), b(p) and u(e),
appearing in Lgc, L3c, Lyc and Ly, which are defined by Egs. 1.7-
1.10.

Proof. Let us consider a 1l-parameter variation of vy, defined by
y(t), =ty,, 0 <t < 1. Correspondingly, we define a 1-parameter family

of Lagrangians L(t) by
L(t) = L(8ab; 9ab; -+ 5 9" gav; & 0¢;

s R wlt) s AW()gs ... 5 3FW(E),). (2.38)

Note that since L is flat space compatible, the Lagrangian L(0) is a well

defined scalar-tensor Lagrangian which generates a conformally
invariant field theory which is trivially consistent with conservation of

charge. If we now use the usual variational arguments we find that since

E“(L)) = 0,

— = = —, (2.39)

where V(t)i is a 1-parameter family of contravariant vector fields. Upon

integrating Eq. 2.39 with respect to t from 0 to 1, we get

L(1) - L(0) = a divergence (2.40)
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Since Eq. 2.38 tells us that L(1) = L, we may use Eq. 2.40 to deduce that

the SVT field theory generated by L, can also be generated a scalar-tensor
Lagrangian which is flat space compatible, and gives rise to a conformally
invariant field theory. In [2] I show that the field theory generated by
such a scalar-tensor Lagrangian can also be generated by a Lagrangian of

the form Loc + L3c + Lyc + Ly, for a suitable choice of the scalar
functions k(@), p(e), b(¢) and u(e) appearing in these Lagrangians. This

observation completes the proof of the Lemma.l

Due to Lemmas 10 and 11, we know that if L is a Lagrangian that
satisfies the assumptions of the theorem, then there exists scalar

functions B = B(e) and v = y(¢) for which L — Lgy; — Lgps+ generates a
theory that could also be obtained from Loc + L3¢ + Lyc + Ly for a
suitable choice of the scalar functions k(9), p(9), b(¢) and u(9) in these

scalar-tensor Lagrangians. Thus the SVT field theory generted by L can
also be generated by Loc + Lgc + Lyc + Lyc + Lgpyr + Lgps+. This is

precisely what we have been trying to prove. So, at long last, our proof of

the Theorem is complete.l

It should be noted that Lemmall marks the first and only time that I
used the assumption that L was defined and differentiable for a vanishing
vector field in the proof of the Theorem. I believe that the Theorem can be
proved if we replace the current assumption of flat space compatibility, by
the weaker demand that the field tensor densities determined by L are
defined and differentiable for either a flat metric tensor, (and) or constant
scalar field, (and) or vanishing vector field. (These weaker conditions are
all that Aldersley’s Lemma requires.) However, proving the Theorem

under these weaker assumptions will be much more difficult. What one

would have to do is actually construct A% = E*(L), and B = E(L),
when E%(L) = 0. To that end one can use Aldersley’s Identity to get the

basic form of A% and B, as we did for C% in Lemma 7. Then the problem
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would be to prove that A% and B are independent of the vector field, and

hence are just scalar-tensor concomitants. (To assist in that endeavor one

can use the following facts: E(A%) =0, E‘(B)=0 and Aab\b =1/2

©?B, when E%(L) = 0.) Once this task is accomplished, one can use the
Theorem established in [2] to finish the proof.

3. Concluding Remarks

In the introduction I briefly discussed how one might go about
generalizing the Einstein-Maxwell equations to incorporate a scalar field.
Let’s attempt to do that by considering a SVT field theory obtained from a

Lagrangian L of the form

L =Ly +Lgyy, (3.1

where Lp is a pure tensor Lagrangian and Lgpy is a scalar-vector-
tensor Lagrangian. If we require Ly to generate metric field equations
which are at most of second-order, then due to Lovelock’s work [11], we
know that Ly can be taken to be Lp = gl/sz + g1/2A, where x and A
are constants. Now there are multifarious choices for Lgyp. If we

demand that Lgyp satisfies the assumptions of the Theorem then
Lgyr = Loc + Lyc + Lyc + Lyc + Lsy + Lsp+, (3.2)

where there are six arbitrary scalar functions of ¢ appearing on the
right-hand side of Eq. 3.2. We now want to find reasons to pare away
some of the Lagrangians appearing in Eq. 3.2.

The Lagrangian Lo is fairly innocuous, and its field equations are at
most of second-order, and quite reasonable. On the other hand, L3- and

L, are more problematic.

Ly is a scalar-tensor version of the Chern-Simons [12] Lagrangian,
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while Ly is a scalar-tensor version of the Lagrangian that yields the
Bach tensor [13]. Lgc generates a third-order scalar-tensor field theory,
while L,- generates a fourth-order scalar-tensor field theory. It is

pointed out in Takahashi and Kobayashi [14], that both of these scalar-
tensor theories are afflicted by Ostrogradsky [15] type instabilities. In
addition, Crisostomi, et al., [16], have shown that Lsc’s Ostrogradsky

singularity gives rise to two ghosts.

Of the four pure scalar-tensor Lagrangians in Eq. 3.2, Ly¢ is my
favorite, although it has numerous problems. The field equations
generated by Ly, are presented in Egs. 1.23 and 1.24 in [2]. The
equations Eab(LUC) = 0, are of second-order in the metric tensor, and
third-order in the scalar field, while the equation E(Lgyc) = 0, is of third-
order in the metric tensor and of fourth-order in the scalar field. When
working in the vacuum with a theory involving only Ly the equation
E(Lyc) =0, is satisfied identically when Eab(LUc) =0, due to the

identity presented in Eq. 2.1. Thus, as far as [ am concerned, the vacuum

theory generated by Lyc is a third-order scalar-tensor field theory.
However, Lyc has numerous problems as far as Ostrogradsky
instabilities go.

In [14] Takahashi and Kobayashi show that, due to the conformal
invariance of Ly, the theory it generates is degenerate and so it does

not satisfy the assumptions of Ostrogradsky’s Theorem, which pertains to
non-degenerate higher order field theories. Thus one is tempted to say

that the theory Ly generates is free of Ostrogradsky ghosts. However,
Takahashi has informed me “if one defines Ostrogradsky ghosts by the
appearance of linear momentum in the Hamiltonian...then Lyc is

plagued by ghosts. Since it suffers from that deficiency.” This also follows
from the work of Achour, et al., in [17], as well as that of Takahashi and
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Kobayashi in [14].
Takahashi and Kobayashi also discuss in [14] another problem from

which the field theories generated by Ly suffer. It appears that these

theories exhibit ghost/gradient instabilities under perturbations about a
cosmological background. I am not sure if that should be regarded as the

straw that broke the Camel’s back as far as Ly is concerned. However,

there is another much more serious problem afflicting it.

In the final section of [2] I point out how Ly is the sum of cubic,

quartic and quintic Horndeski Lagrangians. It is shown in Ezquiaga and
Zumalacarregui [18], Baker, et al., [19], Sakstein and Jain [20], and
Creminelli and Vernizzi [21], that because of the observation of two
colliding neutron stars on August 17, 2017, gravitational waves must
propagate at the speed of light up to one part in 10", These articles
explain that this implies that any scalar-tensor Lagrangian involving a
quintic Horndeski Lagrangian must be excluded from consideration, since

such Lagrangians allow the speed of gravitational waves, denoted by ¢,
to be appreciably less than c. Thus we must dispense with Lg;c on very

significant physical grounds.

I should also mention that the work by Lombriser and Lima, found in

[22], lays the groundwork for some of the analysis presented in [18]-[21].

So right now, if we only consider Lagrangians that are devoid of
Ostrogradsky instabilities, and are consistent with observation, then the

Lagrangian Lgyp of Eq. 3.2 reduces to

LSVT = L2C + LSM + LSM*' (3.3)

Thus due to Eq. 3.1 our simplest scalar-vector-tensor generalization of the

Einstein-Maxwell Lagrangian would be

Lgimple = 872[KR + A + k(0)p? + B@)F P F | + Y(@)e U Fy Foy. (3.4)
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It has been pointed out to me by L. Heisenberg, that Lagrangians similar
to those presented in Eq. 3.4, with the addition of a potential term,
gl/ 2V (9), have been extensively investigated in the study of cosmological
magnetic fields. For an excellent review article dealing with that subject,

please see R. Durrer and A. Neronov [23].

The next simplest modification of the Einstein-Maxwell Lagrangian

would be a Lagrangian of the form
Ly simplest = Lst + Ly + Lsp+, (3.5)

where Lgp can be taken to be any scalar-tensor Lagrangian which
predicts cg = 1. Due to [18]-[21], we know that the quadratic, cubic and
quartic Horndeski Lagrangians (with G, independent of p) give rise to
suitable choices for Lgp. Some of the Beyond Horndeski Lagrangians for
which cg =1, are discussed in Ezquiaga and Zumalacéarregui [18],

Crisostomi and Koyama [24], and Dima and Vernizzi [25].

A different type of generalization of the Einstein-Maxwell field
equations is provided by the Einstein-Yang-Mills field equations, which

present us with an example of a gauge-tensor field theory. (See, Yang and
Mills, [26], for a discussion of their theory.) If we let y% denote the

gauge potentials (where small Greek indices run from 1 to n, where n is
the dimension of the gauge (Lie) group, G), then the components of its

associated curvature tensor are given by
o.. . o. . . . o . .
F% =vy7ij-vy"ji-C BY‘I’BL\IIYJ,

where C%gy denotes the structure constants of the Lie algebra, LG, of the

gauge group G. (I realize that my Greek and Latin indices are just the
opposite of those conventionally employed, but they are consistent with
my previous usage.) A Lagrangian that yields the Einstein-Yang-Mills

field equations is given by



CONFORMALLY INVARIANT SCALAR-VECTOR-TENSOR ... 127
Luyy = 87%kR + g2A + Ly, (3.6)

where
Lyy = gl/zBaBF“ijFBij (3.7)
and Bgg denotes the components of a symmetric, Ad G invariant bilinear

form on LG. (By By being Ad G invariant I mean that for every h €

G, Byg = ByyAd"a(h)Ad"g(h).) The Yang-Mills Lagrangian given in Eq.
3.7 1s conformally invariant, and by itself it generates a gauge-tensor field
theory which is consistent with conservation of gauge-charge, in that

Ea(x(LYM )Ha =0, where

E%(Lyy Yo = E%a(Lyy ) o = E%(Lyn )CPar¥a.

We recover the Einstein-Maxwell theory (with cosmological term) from

this gauge-tensor theory by choosing the Lie group G to be R, and then

B,p has only one component which we take to equal -1.

Now I believe that it should be possible to modify the theory
presented in Section 2 using the material presented in Horndeski [27], to

establish the following

Conjecture: In an orientable four-dimensional space let L be a
Lagrangian which generates a conformally invariant, flat space
compatible, scalar-gauge-tensor field theory which is consistent with
conservation of gauge charge. Then the Euler-Lagrange tensor densities

associated with L can also be obtained form the Lagrangian
Loc + Lyc + Lyc + Lyc + Lsym + Lsyn+

where Loc, L3o, Ly and Ly are defined by Egs. 1.7-1.10,

Lsyy = g/ 2Bog (@)F % P
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and
LSYM* = DO‘B ((p)Ehiij(xhiFBjk,

with Byg(9) and Dyg(¢) being symmetric, Ad G invariant bilinear forms

on LG which are differentiable functions of ¢. H

If the Conjecture can be proved to be true, then one wonders just how
useful that result would be. After all, so far the non-Abelian gauge
theories being employed apply in regions governed by quantum
mechanics. Clearly that is outside of the realm of a classical field theory.
E.g., in [28] T have constructed all of the second-order gauge-tensor field
theories that are consistent with conservation of gauge charge, and give
rise to the Yang-Mills equation in a flat space. However, very few people
have found any use for that result yet. But you can never tell what value

a purely mathematical result may have for future physicists.

In keeping with the above remarks about Yang-Mills fields it might
be of interest to include spinor fields representing matter in the
Lagrangian. This can be done using 2-spinors techniques as described by
Wainwright in [29] and [30], or using a 4-spinor approach as was done by
Hehl and Datta [31].

Lastly I have to admit that I have not really bothered to keep track of
all the divergences that I have cavalierly dismissed in my quest to prove
the Theorem. I was not too interested in these divergences since all of
them were globally defined due to the assumption of flat space
compatibility. But there are times when divergences are geometrically
significant, as I shall now illustrate. In [32] Lovelock and I found the

most general Lagrangian of the form
L= L(gab’ 8ab,cs 8ab,cds P (P,c)

which is such that its Euler-Lagrange tensor densities are at most of

second-order. One of the Lagrangians that arose during that analysis was
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Lsrgp = f(9)GB(4),

where f is an arbitrary scalar function of ¢, and the Gauss-Bonnet

Lagrangian in a four-dimensional space, GB(4), is defined by

GB(4) = g/2(R% + RyR™ + Ry R™)

abc
_ 1/4 gl/zaadehiijhiaijkcd-

Since Lgpgp vyields second-order ST field equations, we know that these

equations must also be expressible using the Lagrangians of Horndeski
Scalar Theory. But all of those Lagrangians are algebraically at most of
first-order in the curvature tensor. Well, a lengthy calculation shows that
a Horndeski Lagrangian, Lpg, can be found that yields the same field
equations as Lgpgp. Using Ly, we discover that if we choose f(¢) =1,

then

GB(4) = { - 2¢"2[p716°% hijng" ¢4 Ry

+4(30% )18 hijno"0q 0. 07" T (3.8)

Hence the Gauss-Bonnet Lagrangian is locally a divergence in a space of
four-dimensions, which in turn explains why its Euler-Lagrange tensors
vanish in a four-dimensional space. GB(4) will be a divergence globally,
provided we can find a scalar field ¢ for which p never vanishes. The
existence of such a field is connected to topological properties of the
underlying manifold (when working with compact Riemannian spaces). In
[33] I generalized the result presented in Eq. 3.8 to the other Gauss-

Bonnet Lagrangians, GB(n), in spaces of dimension n = 2m, m =1, 2, ... .

However, Chern [34] was the first to come up with the general form of

GB(n) as a local divergence in spaces of dimension n = 2m. I would also

like to mention that in [35] and [36], Buchdahl uses 2-spinors to
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demonstrate that GB(4) is locally a divergence in a four-dimensional

space. However, it takes a bit of work to show that Buchdahl’s result can

be written in the form of Eq. 3.8.

These observations concerning the Lagrangians GB(n) give us some

idea of when local divergences can turn out to be geometrically very

significant.
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