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Abstract 

This paper provides a survey on the recent results of us which 

completely answer the challenging question “Given a real number :x  

for which value of a natural number ( )2≥nn  the n-th root of x  is still 

rational and, if so, what is the precise value of n x ?”. We show, in 

particular, that it is sufficient to answer the question for the special 

case that x  is a natural number, because - as we prove - this also 

covers the more general case of x  being a real number. Finally, we also 

offer extremely simple tests which allow one to determine with a high 

probability, for an arbitrary natural number ,x  that: Q∉
n x  ,N∈∀n  

.2≥n  
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1. Introduction 

Since ancient times the problem “Is the value x   (for )N∈x  

rational or irrational?” has been investigated. As an example of those 

activities, more than 2000 years ago, Euclid has proven that Q∉2  [1]. 

Meanwhile, the mathematical research related to the square roots of 

natural numbers has led to numerous further results, cf. [2]. Moreover, 

also investigating the properties of n-th roots of natural numbers has 

become an important research topic, cf. [3, 4]. To the best of our 

knowledge, until the very recent past, the mathematical research related 

to the general question “Given a real number :x  for which value of a 

natural number ( )2≥nn  the n-th root of x  is still rational and, if so, 

what is the precise value of ?n
x ” was still in its infancy. This status led 

to the motivation for us to search for a solution of this question - a 

solution which should be both, as complete and at the same time as 

simple as possible. Fortunately, we succeeded in our efforts to 

significantly advance the state-of-the-art in the domain of n-th roots of 

real numbers. In particular, during the last year, we discovered and 

published quite a few innovative results, cf. [5, 6, 7]. As our results 

related to n
x  should be of quite strong interest to numerous 

mathematicians (and non-mathematicians), we decided to publish this 

survey paper. It summarizes in a compact manner the most fundamental 

results and insights gained regarding the rationality resp. irrationality of 

n-th roots of real numbers as well as the (pleasingly simple) algorithm to 

calculate the value of n x  ( ).if Q∈
n x  

Let us now introduce several abbreviations (denoting specific sets) 

which will allow us to simplify our argumentation and the notation 

throughout this paper: 

� { }.2:2 ≥∈=≥ xx NN  
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� { }.,: 2rat_roots QNR ∈∈∃∈= ≥
n
xnxX  

� { }.,: 2sirrat_root ≥∈∀∉∈= NQR nxxX
n  

� { };0<∈=− xx QQ { };0>∈=+ xx QQ  

analogous definitions for: −R  and .+R  

We want to demonstrate now, that for various sets of numbers ( ),NS  

we obtain: ,N
n Sxx ∈∀∉ Q  .2≥∈ Nn  

In particular, in [5] we have proven that: 

�   .\ sirrat_rootX⊂QR  Example: .2≥∈∀∉π NQ nn  

�   For :−∈ Rx  

� if n  is even then C∈
n
x  (C  denoting the set of complex 

numbers), 

�  if n  is odd then n x  is considered to be undefined ( )1Vview→  

by some mathematicians or others argue nn xx −=  (for n  

odd, and ),−∈ Rx  ( view→ ,V2  which represents the more 

conventional view). 

So, to summarize, we get two different results for both views: 

» view :V1  ,−
∈ Rx  then: .rat_rootsXx ∉  

» view :V2  −
∈ Rx  and n  odd, then: QQ ∈⇔∈ nn xx  

which means .rat_rootsrat_roots XxXx ∈⇔∈  

Example. ,8−=x  then according to view ,V2  Q∈−=− 283  and 
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therefore .8 rat_rootsX∈−  

� For :+∈ Qx  

x  can be represented by ,qpx =  where { },0\, N∈qp  p  and q  

being coprime. 

Then, ,2rat_roots ≥∈∃⇔∈ NnXx  Q∈n p  and .Q∈n q  

Example. ,
27
8

rat_rootsX∈  because for ,3=n  we get 
3

3
3

27

8
27
8

=  

,
3
2

Q∈=  but ,
9
8

rat_rootsX∉  though Q∈
3 8  and Q∈

2 9  (because: 3 

and 2 are coprime). 

So, in summary, we have proven that the question 

“ Q∈
n
x ( ) ?for R∈x ” can be simplified by investigating the question 

“ Q∈
n
x  ( ) ?for 2≥∈ Nx ”. We will make use of this fact in the rest of 

this paper. 

The paper is structured as follows: In Section 2, we tackle the 

challenging problem to find out whether a natural number 2≥∈ Nn  

exists such that Q∈
n
x  (for )2≥∈ Nx  and - if so - to precisely determine 

the value of .n
x  Section 3 introduces various elementary tests which 

allow one to determine whether n
x  (for )2≥∈ Nx  is rational or 

irrational by only looking at the prime factorization of .x  In Section 4, we 

no longer assume the availability of the prime factorization of .x  Anyway 

- for a large percentage of all 2≥∈ Nx  - we still are able to apply a set of 

(rather trivial) tests to decide with certainty that n x  is an irrational 

number. Section 5 shortly concludes this survey paper. 
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2. Criteria for the n-th Root of a Natural Number x  being 

Rational and an Algorithm to Determine the 

Corresponding Value of 
n
x  

In this section, we want to answer the rather general and challenging 

question of n x  being rational or irrational (for )., 2≥∈ Nxn  The answer 

to this question becomes astonishingly simple if we make use of the 

(unique) prime factorization of ,x  cf. [8], as it has been suggested in [5]. 

So, let us assume that the prime factorization of ,x  ,2≥∈ Nx  is given 

by: 

 ,__2_
2

1_
1

mk
m

ik
i

kk
ppppx •••••••=  (1) 

where ip  are prime numbers { }mi ...,,2,1∈∀  and ,jipp ji ≠∀≠  

,1≥m  { }....,,2,1 miki ∈∀∈ N  

Note. ik _  to be read as .ik  

The result derived in [5] was: 

For any ,, N∈xn  :2, ≥xn  

 { }( ),...,,,CD 21 m
n kkknx ∈⇔∈ Q  (2) 

where ( ),CD M  for M  being a subset of ,N  denotes the set of common 

divisors ,c  ,2≥c  of all elements of the set .M  

Therefore, if :2≥m  

{ }( ) ( ){ },:2,:...,,,CD 21 iiiiiim kckkcckkk =ν•∈ν=ν∃∀≥∈= NN  

and, if :1=m  

{ }( ) { }.:2,:CD 11 kccck =ν•∈ν∃≥∈= NN  
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It should be noted that for answering our question “ ?Q∈
n
x ” by 

applying eq. (2) the values of the ip  appearing in eq. (1) are not of 

interest but only the values of the exponents ik  (resp. ik _  in eq. (1)) are 

relevant. 

In [5] it has been proven that (for ) :, 2≥∈ Nxn  ⇒∈ Q
n
x  

.2≥∈ Nn x  

Examples 2.1. 

� ,6
3

36
2

12
1 pppx ••=  ip  arbitrary (different) prime numbers, 

{ }3,2,1∈i  

⇒  of interest: { }( ) { }6,3,26,36,12CD =  

and therefore ,2 N∈x  N∈
3
x  and .6

N∈x  

� 9
1px =  ⇒  of interest: { }( ) { }9,39CD =  

and therefore ,3
N∈x  .9

N∈x  

� ⇒••=
5

3
36

2
12

1 pppx  of interest: { }( ) ∅=5,36,12CD  

and therefore ,Q∉
n
x  .2≥∈∀ Nn  

What remains is the task to calculate the exact value of ,n
x  if 

Q∈
n
x  (resp. )N∈

n x  for ., 2≥∈ Nxn  

So, we can give the complete algorithm (coarse specification using 

pseudo-code) to determine whether n x  is rational or irrational and, in 

the former case, to calculate the value of :n x  
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Algorithm. n x  being rational or not? Value of n x ? (if n x  is 

rational) 

Given: ., 2≥∈ Nxn  

Step 1: Determine prime factorization of x  (cf. eq. (1)). 

Step 2: Consider the exponents mkkk ...,,, 21  of the prime 

factorization of .x  

Step 3: Evaluate { }( ) ⇒mkkk ...,,,CD 21  resulting set denoted by 

:xN  { },...,,, 21 rx nnnN =  where 1≥r  or 0=r  ( ).,i.e. ∅=xN  

Step 4: If ,∅=xN  then 2, ≥∈∀∉ NQ nxn  and STOP else go to 

Step 5. 

Step 5: For all ,xj Nn ∈  we know that N∈
jn
x

_
 and 

jnmk
m

jnkjnkjn
pppx

___2_
2

_1_
1

_
••••=  is the exact value of 

.
_ jn
x  � 

Examples 2.2. 

� ,26
3

36
2

12
1 N∈⇒••= xpppx  N∈

3
x  and N∈

6
x  yield to the 

corresponding values of 
jn
x

_
 ( { }):6,3,2for ∈jn  =

2 x  

;3
3

18
2

6
1 ppp ••  ;2

3
12

2
4

1
3 pppx ••=  ;3

6
2

2
1

6 pppx ••=  

� N∈⇒=
39

1 xpx  and Nx ∈
9  yield to the corresponding values 

of 
jn
x

_
  ( { }):9,3for ∈jn  ;3

1
3 px =  .1

9 px =  

3. Is 
n
x  Rational or Irrational? - Elementary Tests if the 

Prime Factorization of x  is Available 

The aim of this section is to provide simple test methods to decide 



BERND E. WOLFINGER 

 

8 

whether n x  is rational or irrational ( )., 2≥∈ Nxn  We assume that the 

notation introduced in the previous section continues to hold and also 

that the prime factorization of x  is known and still given by eq. (1). 

Thus: .__2_
2

1_
1

mk
m

ik
i

kk
ppppx •••••••=  

Furthermore, we denote the set of exponents ik  (resp. )ik _  appearing in 

the prime factorization by { }mx kkkE ...,,, 21=  and the set of common 

divisors of xE  is denoted again by ( ).CD xE  

Now, ( )xECD  can be used (cf. Section 2 and [5]) to determine in a 

simple manner whether rat_rootsXx ∈  or .sirrat_rootXx ∈  

In particular, 

� ( ) ,CD rat_rootsXxEx ∈⇔∅≠  (3) 

� ( ) .CD sirrat_rootXxEx ∈⇔∅=  (4) 

It is evident that a sufficient condition for ( ) ∅≠xECD  is that at least 

one value of n  exists such that Q∈
n
x  (also implying ).N∈

n x  

And it is also evident that a sufficient condition for ( ) ∅=xECD  is 

that at least for a subset of ,xE  denoted by ,*
xE  we get ( ) .CD *

∅=xE  

This holds because: ( ) ( )*CDCD xx EE ⊆  if .*
xx EE ⊆  

We now consider the special case that - in the prime factorization of 

x  - there exists at least one i  that the value of exponent ik _  ( )ik.resp  

of ip  is .1_ =ik  Then it is sufficient to choose the subset *
xE  as 

{ }ix kE =
*  which implies ( ) { }( ) ∅== 1CDCD *

xE  and thus ( )xECD  

,∅=  implying .sirrat_rootXx ∈  
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To summarize, we have presented rather simple tests which allow us 

to recognize whether n x  is rational or irrational ( )2,for ≥∈ Nxn  if the 

prime factorization of x  is available. 

Examples 3.1. n x  being rational 

� mk
m

kk
pppx

_2_
2

1_
1 ••••=  and all ik _  are even numbers 

( ) { } ( ) .CD2CD rat_rootsXxEE xx ∈⇒∅≠⇒⊇⇒  

� 1_
1
k

px =  and the prime factorization of x  does not include other 

primes than ,1p  i.e., ,1=m  and furthermore we assume 

( )xEk CD21_ ⇒≥  is equal to the set of all divisors of 1_k  and 

as :21_ ≥k  ( ) { } ( ) .CD1_CD rat_rootsXxEkE xx ∈⇒∅≠⇒⊇  

Examples 3.2. n x  being irrational 

� ( ) .CD sirrat_root
_2_

21 XxEpppx x
mk

m
k

∈⇒∅=⇒••••=  

� ;px =  p  being a prime number. This is a special case of the 

precedent example and it implies that, for all prime numbers, we 

recognize that sirrat_rootXp ∈  (besides, this can also be considered 

as a rather simple proof of Euclid’s theorem, i.e., ).2 Q∉  

4. Elementary Tests to Determine the Value of 
n
x  if 

n
x  is 

Irrational without given Prime Factorization 

In Sections 2 and 3, the question “whether Q∈
n
x  or ?Q∉

n
x ” has 

been answered completely (i.e., for any ).2≥∈ Nxn,  Nevertheless, we 

were not fully satisfied with our results, in particular, for cases when the 

value of x  is extremely large. It is well-known that in cases of very large 

numbers x  even very powerful supercomputers are reaching practical 
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limits when they try to determine the corresponding prime factorization 

of .x  So, we looked for solutions (or at least for partial solutions) to 

answer the question “Is n x  irrational for all ?2≥∈ Nn ” assuming now 

that the prime factorization of x  is not available. 

Indeed, we succeeded - at least for a high percentage of all natural 

numbers - to determine with certainty whether ,2≥∈∀∉ NQ nxn  even 

for the case that the prime factorization of x  is unavailable. These 

results have been published in [7] and they are summarized in this 

section. 

We discovered that for a lot of ,2≥∈ Nx  it can be proven in an 

extremely simple manner that: .2≥∈∀∉ NQ nxn  

To come up with this result, we made use of the fact that if x  is an 

integer multiple of a prime number p  but no integer multiple of ,2p  then 

,2≥∈∀∉ NQ nxn  i.e., .sirrat_rootXx ∈  Though we do not have to know 

the exact structure of the prime factorization of ,x  we see that, here, it 

exists N∈z  such that: ,zpx •=  p  and z  being coprime. So, eq. (4) can 

be applied and yield: .sirrat_rootXx ∈  

Therefore - for an arbitrary 2≥∈ Nx  given - to determine whether 

,sirrat_rootXx ∈  we just can apply the following: 

� Test .Tp  We choose a prime number .p  Then we can conclude: 

if x  is an integer multiple of p  and no integer multiple of ,2p  then 

.sirrat_rootXx ∈  � 

Evidently, it is possible to repeat test pT  by means of using the 

following: 
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Algorithm. Test, whether .sirrat_rootXx ∈  

Given: ;2≥∈ Nx  p  denotes a prime number. 

Step 1: .2:=p  

Step 2: if ,2≠p  then replace p  by the next higher prime number. 

Step 3: Apply Test pT  to x  based on the prime number p  currently 

considered. If the test yields sirrat_rootXx ∈  then STOP. 

Step 4: If test for an additional prime number is desirable, then go to 

Step 2 else STOP. � 

Remarks regarding this algorithm: 

- The coarse specification should be sufficiently elementary to be 

understandable even to non-Computer Scientists; 

- Test pT  is applied choosing ...;13;11;7;5;3;2=p  in this 

sequence and the algorithm can be terminated in Step 4, e.g., because of 

the steadily increasing expenditure (in particular, executing Steps 2 and 

3) or because we are satisfied with the result obtained up to this point; 

- Tests ,T2  3T  and 5T  can be even executed by hand (even for large 

numbers of ),x  cf. Examples 4.1. 

Examples 4.1. 

� Test .T2  :2=p  here, the following two conditions have to be 

tested: 

- is x  an integer multiple of →?2  i.e., is x  an even number? 

- is x  NOT an integer multiple of →= ?422  i.e., are the last 

two digits of x  NOT an integer multiple of ?4  
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Result of Test :T2  sufficient condition for :sirrat_rootXx ∈  the last 

two digits of x  are →98,94,90...,,22,18,14,10,06,02  corresponds to 

%25  of all natural numbers. 

� Test .T3  :3=p  here, the following two conditions have to be 

tested: 

- is x  an integer multiple of →?3  i.e., is the sum of all digits of 

x  an integer multiple of ?3  

- is x  NOT an integer multiple of →= ?932  i.e., is the sum of 

all digits of x  NOT an integer multiple of ?9  

Result of Test :T3  sufficient condition for :sirrat_rootXx ∈  

{ } →∈ ...,48,42,39,33,30,24,21,15,12,6,3x  corresponds to about 

%22  of all natural numbers. 

� Test .T5  :5=p  here, the following two conditions have to be 

tested: 

- is x  an integer multiple of →?5  i.e., is the last digit of x  “0” or 

“5”? 

- is x  NOT an integer multiple of →= ?2552  i.e., are the last 

two digits of x  different from “00”, “25”, “50”, “75” ? 

Result of Test :T5  sufficient condition for :sirrat_rootXx ∈  the last 

two digits of x  are ,80,70,65,60,55,45,40,35,30,20,15,10,05  

→95,90,85  corresponds to %16  of all natural numbers. 

Remarks. The tests 2T  and 5T  are indeed trivial to be carried out 

and even for numbers of x  possessing millions of digits their application 

is just a matter of seconds. Nevertheless, they cover a pleasingly high 

percentage of natural numbers x  given ( )2≥∈ Nx  for which the question 
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“ ?sirrat_rootXx ∈ ” can be answered with complete certainty. For 

example, in [7] it has been shown that even the simple tests introduced in 

this section allow one to prove that sirrat_rootXx ∈  for about %85  of all 

,x N∈  .100≤x  

5. Conclusions 

This paper summarizes the major results published most recently 

which represent a significant progress in the mathematical state-of-the-

art regarding the understanding of n-th roots of real numbers. In 

particular, it is possible now to determine in a straightforward manner 

whether Q∈
n
x  or Q∉

n
x  ( ).,for 2 RN ∈∈ ≥ xn  We showed how 

understanding the properties of n
x  ( )2,for ≥∈ Nxn  helps to 

understand the more general case “n-th root of a real number x ”. 

Most of the research results presented here have been obtained by 

relying on the prime factorization of ,x  if we investigate n
x  

( )., 2≥∈ Nxn  The availability of the prime factorization is fundamental, 

e.g., because it allows one to easily determine whether n x  is rational or 

irrational. Moreover, the value of n x  can also be calculated in a rather 

trivial manner based on basic properties of the prime factorization of .x  

Anyway, for numerous ,2≥∈ Nx  even without prime factorization of ,x  

extremely simple tests allow us to recognize that Q∉
n
x  (cf. Section 4). 

In this paper, we have primarily considered the n-th root of x  

( ).,for 2
+

≥ ∈∈ RN xn  Anyway, our results for roots with natural root 

index, i.e., for ,n
x  also cover the more general case of roots with 

(positive) rational root index r x  ( ).,\for,e.g. ++ ∈∈ RNQ xr  

Evidently, if ,r NQ \+
∈  this implies that ,p

q

p
rqp, N∈=∃ ,:  



BERND E. WOLFINGER 

 

14 

2≥∈ Nq .
q pqpr xxx ==⇒  If we set nq =  and ( ) ,pxy =  we obtain 

nq p yx =  ( ).and 2≥∈ Nn  Moreover, if ,22 ≥≥ ∈⇒∈ NN yx  and, if 

,++
∈⇒∈ QQ yx  and, if .++

∈⇒∈ RR yx  So, it becomes evident 

that our solutions presented do not only cover the roots of type n x  

( )+
≥ ∈∈ RN xn ,for 2  but also the more general roots r x  

( ).,for ++ ∈∈ RQ xr  
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