CONDITIONS FOR *n***-th ROOTS OF REAL NUMBERS BEING RATIONAL NUMBERS**

BERND E. WOLFINGER

Department of Computer Science University of Hamburg Hamburg Germany e-mail: bernd.wolfinger@uni-hamburg.de

Abstract

This paper provides a survey on the recent results of us which completely answer the challenging question "Given a real number *x* : for which value of a natural number $n (n \geq 2)$ the *n*-th root of *x* is still rational and, if so, what is the precise value of $\sqrt[n]{x}$?". We show, in particular, that it is sufficient to answer the question for the special case that x is a natural number, because - as we prove - this also covers the more general case of *x* being a real number. Finally, we also offer extremely simple tests which allow one to determine with a high probability, for an arbitrary natural number *x*, that: $\sqrt[n]{x} \notin \mathbf{Q}$ $\forall n \in \mathbf{N}$, $n \geq 2$.

Received April 28, 2024; Accepted May 16, 2024

© 2024 Fundamental Research and Development International

Keywords and phrases: number theory, *n*-th roots of real numbers, *n*-th roots being rational or irrational: simple tests.

²⁰²⁰ Mathematics Subject Classification: 11Axx.

1. Introduction

Since ancient times the problem "Is the value \sqrt{x} (for $x \in \mathbb{N}$) rational or irrational?" has been investigated. As an example of those activities, more than 2000 years ago, Euclid has proven that $\sqrt{2} \notin \mathbf{Q}$ [1].

Meanwhile, the mathematical research related to the square roots of natural numbers has led to numerous further results, cf. [2]. Moreover, also investigating the properties of *n*-th roots of natural numbers has become an important research topic, cf. [3, 4]. To the best of our knowledge, until the very recent past, the mathematical research related to the general question "Given a real number x: for which value of a natural number $n (n \geq 2)$ the *n*-th root of x is still rational and, if so, what is the precise value of $\sqrt[n]{x}$?" was still in its infancy. This status led to the motivation for us to search for a solution of this question - a solution which should be both, as complete and at the same time as simple as possible. Fortunately, we succeeded in our efforts to significantly advance the state-of-the-art in the domain of *n*-th roots of real numbers. In particular, during the last year, we discovered and published quite a few innovative results, cf. [5, 6, 7]. As our results related to $\sqrt[n]{x}$ should be of quite strong interest to numerous mathematicians (and non-mathematicians), we decided to publish this survey paper. It summarizes in a compact manner the most fundamental results and insights gained regarding the rationality resp. irrationality of *n*-th roots of real numbers as well as the (pleasingly simple) algorithm to calculate the value of $\sqrt[n]{x}$ (if $\sqrt[n]{x} \in \mathbf{Q}$).

Let us now introduce several abbreviations (denoting specific sets) which will allow us to simplify our argumentation and the notation throughout this paper:

• $N_{\geq 2} := \{x \in \mathbb{N} \mid x \geq 2\}.$

- $X_{\text{rat_roots}} := \{ x \in \mathbb{R} \mid \exists n \in \mathbb{N}_{\geq 2}, \sqrt[n]{x} \in \mathbb{Q} \}.$
- $X_{\text{irrat_roots}}$:= { $x \in \mathbb{R} \mid \sqrt[n]{x} \notin \mathbb{Q}, \forall n \in \mathbb{N}_{\geq 2}$ }.
- $\bf{Q}^- = \{x \in \bf{Q} \mid x < 0\}; \bf{Q}^+ = \{x \in \bf{Q} \mid x > 0\};$ analogous definitions for: \mathbf{R}^- and \mathbf{R}^+ .

We want to demonstrate now, that for various sets of numbers (S_N) , we obtain: $\sqrt[n]{x} \notin \mathbf{Q} \ \forall x \in S_N, \ n \in \mathbf{N}_{\geq 2}$.

In particular, in [5] we have proven that:

- \cdot **R** \setminus **Q** \subset *X*_{irrat_roots}. Example: $\sqrt[n]{\pi} \notin$ **Q** $\forall n \in$ **N**_{≥2}.
- For $x \in \mathbb{R}^-$:
	- \cdot if *n* is even then $\sqrt[n]{x}$ ∈ **C** (**C** denoting the set of complex numbers),
	- if *n* is odd then $\sqrt[n]{x}$ is considered to be undefined (\rightarrow view V_1) by some mathematicians or others argue $\sqrt[n]{x} = -\sqrt[n]{|x|}$ (for *n* odd, and $x \in \mathbb{R}^-$), (\rightarrow view V_2 , which represents the more conventional view).

So, to summarize, we get two different results for both views:

 \forall view V_1 : $x \in \mathbb{R}^-,$ then: $x \notin X_{rat_roots}$.

w view V_2 : $x \in \mathbb{R}^+$ and *n* odd, then: $\sqrt[n]{x} \in \mathbb{Q} \Leftrightarrow \sqrt[n]{|x|} \in \mathbb{Q}$

which means $x \in X_{rat\ roots} \Leftrightarrow |x| \in X_{rat\ roots}$.

Example. $x = -8$, then according to view V_2 , $\sqrt[3]{-8} = -2 \in Q$ and

therefore $-8 \in X_{\text{rat_roots}}$.

• For
$$
x \in \mathbf{Q}^+
$$
:

x can be represented by $x = p/q$, where $p, q \in \mathbb{N} \setminus \{0\}$, p and q being coprime.

Then,
$$
x \in X_{\text{rat_roots}} \Leftrightarrow \exists n \in \mathbb{N}_{\geq 2}, \sqrt[n]{p} \in \mathbb{Q}
$$
 and $\sqrt[n]{q} \in \mathbb{Q}$.

Example. $\frac{0}{27} \in X_{\text{rat_roots}}$, $\frac{8}{27} \in X_{\text{rat_roots}}$, because for $n = 3$, we get $\sqrt[3]{\frac{8}{27}} = \frac{3}{3}$ $\sqrt[3]{\frac{8}{2}}$ = $\frac{3}{2}$ 27 8 27 $\frac{8}{27}$ = $\frac{2}{3} \in \mathbf{Q},$ $=\frac{2}{3} \in \mathbf{Q}$, but $\frac{8}{9} \notin X_{\text{rat_roots}}$, $\frac{8}{9} \notin X_{\text{rat_roots}}$, though $\sqrt[3]{8} \in \mathbf{Q}$ and $\sqrt[2]{9} \in \mathbf{Q}$ (because: 3 and 2 are coprime).

So, in summary, we have proven that the question $\sqrt[n]{x} \in \mathbf{Q}$ (for $x \in \mathbf{R}$)?" can be simplified by investigating the question " $\sqrt[n]{x}$ ∈ **Q** (for $x \in \mathbb{N}_{\geq 2}$)?". We will make use of this fact in the rest of this paper.

The paper is structured as follows: In Section 2, we tackle the challenging problem to find out whether a natural number $n \in \mathbb{N}_{\geq 2}$ exists such that $\sqrt[n]{x} \in \mathbf{Q}$ (for $x \in \mathbf{N}_{\geq 2}$) and - if so - to precisely determine the value of $\sqrt[n]{x}$. Section 3 introduces various elementary tests which allow one to determine whether $\sqrt[n]{x}$ (for $x \in \mathbb{N}_{\geq 2}$) is rational or irrational by only looking at the prime factorization of *x*. In Section 4, we no longer assume the availability of the prime factorization of *x*. Anyway *f* or a large percentage of all $x \in \mathbb{N}_{\geq 2}$ \cdot we still are able to apply a set of (rather trivial) tests to decide with certainty that $\sqrt[n]{x}$ is an irrational number. Section 5 shortly concludes this survey paper.

2. Criteria for the *n***-th Root of a Natural Number** *x* **being Rational and an Algorithm to Determine the Corresponding Value of** *ⁿ x*

In this section, we want to answer the rather general and challenging question of $\sqrt[n]{x}$ being rational or irrational (for *n*, $x \in \mathbb{N}_{\geq 2}$). The answer to this question becomes astonishingly simple if we make use of the (unique) prime factorization of *x*, cf. [8], as it has been suggested in [5].

So, let us assume that the prime factorization of $x, x \in \mathbb{N}_{\geq 2}$, is given by:

$$
x = p_1^{k-1} \bullet p_2^{k-2} \bullet \bullet \bullet p_i^{k-i} \bullet \bullet \bullet p_m^{k-m}, \qquad (1)
$$

where p_i are prime numbers $\forall i \in \{1, 2, ..., m\}$ and $p_i \neq p_j \ \forall i \neq j$, $m \geq 1, \ k_i \in \mathbb{N} \ \forall i \in \{1, 2, ..., m\}.$

Note. k_i i to be read as k_i .

The result derived in [5] was:

For any $n, x \in \mathbb{N}, n, x \geq 2$:

$$
\sqrt[n]{x} \in \mathbf{Q} \Leftrightarrow n \in \text{CD}(\{k_1, k_2, ..., k_m\}),\tag{2}
$$

where $CD(M)$, for M being a subset of N, denotes the set of common divisors $c, c \geq 2$, of all elements of the set M.

Therefore, if $m \geq 2$:

 $CD({k_1, k_2, ..., k_m}) := {c \in \mathbb{N}, c \geq 2 | \forall k_i \exists v_i = v_i(k_i) \in \mathbb{N} : c \cdot v_i = k_i},$

and, if $m = 1$:

$$
CD({k1}) := {c \in \mathbf{N}, c \ge 2 | \exists v \in \mathbf{N} : c \bullet v = k1 }.
$$

It should be noted that for answering our question " $\sqrt[n]{x} \in \mathbb{Q}$?" by applying eq. (2) the values of the p_i appearing in eq. (1) are not of interest but only the values of the exponents k_i (resp. k_i in eq. (1)) are relevant.

In [5] it has been proven that (for $n, x \in \mathbb{N}_{\geq 2}$): $\sqrt[n]{x} \in \mathbb{Q} \Rightarrow$ $\sqrt[n]{x} \in \mathbf{N}_{\geq 2}$.

Examples 2.1.

 $x = p_1^{12} \cdot p_2^{36} \cdot p_3^{6}$, p_i arbitrary (different) prime numbers, $i \in \{1, 2, 3\}$

 \Rightarrow of interest: CD({12, 36, 6}) = {2, 3, 6}

and therefore $\sqrt[2]{x} \in \mathbb{N}$, $\sqrt[3]{x} \in \mathbb{N}$ and $\sqrt[6]{x} \in \mathbb{N}$.

•
$$
x = p_1^9 \Rightarrow
$$
 of interest: $CD({9}) = {3, 9}$

and therefore $\sqrt[3]{x} \in \mathbb{N}$, $\sqrt[9]{x} \in \mathbb{N}$.

$$
\boldsymbol{\cdot} \ \boldsymbol{x} = p_1^{12} \bullet p_2^{36} \bullet p_3^{5} \Rightarrow \text{ of interest: } CD(\{12, 36, 5\}) = \varnothing
$$

and therefore $\sqrt[n]{x} \notin \mathbf{Q}, \ \forall n \in \mathbf{N}_{\geq 2}$.

What remains is the task to calculate the exact value of $\sqrt[n]{x}$, if $\sqrt[n]{x} \in \mathbf{Q}$ (resp. $\sqrt[n]{x} \in \mathbf{N}$) for $n, x \in \mathbf{N}_{\geq 2}$.

So, we can give the complete algorithm (coarse specification using pseudo-code) to determine whether $\sqrt[n]{x}$ is rational or irrational and, in the former case, to calculate the value of $\sqrt[n]{x}$:

Algorithm. $\sqrt[n]{x}$ being rational or not? Value of $\sqrt[n]{x}$? (if $\sqrt[n]{x}$ is rational)

Given: $n, x \in \mathbb{N}_{\geq 2}$.

Step 1: Determine prime factorization of *x* (cf. eq. (1)).

Step 2: Consider the exponents $k_1, k_2, ..., k_m$ of the prime factorization of *x*.

Step 3: Evaluate $CD({k_1, k_2, ..., k_m}) \Rightarrow$ resulting set denoted by N_x : $N_x = \{n_1, n_2, ..., n_r\}$, where $r \ge 1$ or $r = 0$ (i.e., $N_x = \emptyset$).

Step 4: If $N_x = \emptyset$, then $\sqrt[n]{x} \notin \mathbf{Q}$, $\forall n \in \mathbf{N}_{\geq 2}$ and STOP else go to Step 5.

Step 5: For all $n_j \in N_x$, we know that $n - \sqrt{jx} \in \mathbb{N}$ and $h^{-1/2}x = p_1^{k-1/n} - j \cdot p_2^{k-2/n} - j \cdot \cdot p_m^{k-m/n} - j$ $-\sqrt{j_x} = p_1^{k-1/n} - j \cdot p_2^{k-2/n} - j \cdot p_m^{k-m/n} - j$ is the exact value of $n - j/\overline{x}$. \overline{x} .

Examples 2.2.

 $\mathbf{u} \cdot x = p_1^{12} \cdot p_2^{36} \cdot p_3^{6} \Rightarrow \sqrt[2]{x} \in \mathbb{N}, \sqrt[3]{x} \in \mathbb{N} \text{ and } \sqrt[6]{x} \in \mathbb{N} \text{ yield to the }$ $\text{corresponding} \quad \text{values} \quad \text{of} \quad \sqrt[n]{x} \quad \text{(for } n_j \in \{2, 3, 6\} \text{):} \quad \sqrt[2]{x} =$ $p_1^6 \bullet p_2^{18} \bullet p_3^3$; $\sqrt[3]{x} = p_1^4 \bullet p_2^{12} \bullet p_3^2$; $\sqrt[6]{x} = p_1^2 \bullet p_2^6 \bullet p_3$; $\cdot x = p_1^9 \Rightarrow \sqrt[3]{x} \in \mathbb{N}$ and $\sqrt[9]{x} \in N$ yield to the corresponding values of ${}^{n} - \sqrt[n]{x}$ (for $n_j \in \{3, 9\}$): $\sqrt[3]{x} = p_1^3$; $\sqrt[3]{x} = p_1$.

3. Is $\sqrt[n]{x}$ Rational or Irrational? \cdot Elementary Tests if the **Prime Factorization of** *x* **is Available**

The aim of this section is to provide simple test methods to decide

whether $\sqrt[n]{x}$ is rational or irrational $(n, x \in \mathbb{N}_{\geq 2})$. We assume that the notation introduced in the previous section continues to hold and also that the prime factorization of x is known and still given by eq. (1).

Thus:
$$
x = p_1^{k-1} \cdot p_2^{k-2} \cdot \cdot \cdot p_i^{k-i} \cdot \cdot \cdot p_m^{k-m}
$$
.

Furthermore, we denote the set of exponents k_i (resp. k_i) appearing in the prime factorization by $E_x = \{k_1, k_2, ..., k_m\}$ and the set of common divisors of E_x is denoted again by $CD(E_x)$.

Now, $CD(E_x)$ can be used (cf. Section 2 and [5]) to determine in a simple manner whether $x \in X_{\text{rat_roots}}$ or $x \in X_{\text{irrat_roots}}$.

In particular,

$$
\cdot \text{ CD}(E_x) \neq \emptyset \Leftrightarrow x \in X_{\text{rat_roots}},\tag{3}
$$

$$
\cdot \text{ CD}(E_x) = \emptyset \Leftrightarrow x \in X_{\text{irrat_roots}}.\tag{4}
$$

It is evident that a sufficient condition for $CD(E_x) \neq \emptyset$ is that at least one value of *n* exists such that $\sqrt[n]{x} \in \mathbf{Q}$ (also implying $\sqrt[n]{x} \in \mathbf{N}$).

And it is also evident that a sufficient condition for $CD(E_x) = \emptyset$ is that at least for a subset of E_x , denoted by E_x^* , we get $CD(E_x^*) = \emptyset$. This holds because: $CD(E_x) \subseteq CD(E_x^*)$ if $E_x^* \subseteq E_x$.

We now consider the special case that - in the prime factorization of *x* - there exists at least one *i* that the value of exponent k_i (resp. k_i) of p_i is $k_i = 1$. Then it is sufficient to choose the subset E_x^* as $E_x^* = \{k_i\}$ which implies $CD(E_x^*) = CD(\{1\}) = \emptyset$ and thus $CD(E_x)$ $= \emptyset$, implying $x \in X_{\text{irrat_roots}}$.

To summarize, we have presented rather simple tests which allow us to recognize whether $\sqrt[n]{x}$ is rational or irrational (for $n, x \in \mathbb{N}_{\geq 2}$) if the prime factorization of *x* is available.

Examples 3.1. $\sqrt[n]{x}$ being rational

- $\mathbf{r} \cdot \mathbf{x} = p_1^{k-1} \bullet p_2^{k-2} \bullet \bullet \bullet p_m^{k-m}$ and all $k \cdot i$ are even numbers \Rightarrow CD(E_x) \supseteq {2} \Rightarrow CD(E_x) $\neq \emptyset \Rightarrow$ $x \in X_{\text{rat roots}}$.
- $x = p_1^{k-1}$ and the prime factorization of *x* does not include other primes than p_1 , i.e., $m = 1$, and furthermore we assume $k_1 \geq 2 \Rightarrow CD(E_x)$ is equal to the set of all divisors of k_1 and as $k_1 \geq 2$: $CD(E_x) \supseteq \{k_1\} \Rightarrow CD(E_x) \neq \emptyset \Rightarrow x \in X_{\text{rat roots}}$.

Examples 3.2. $\sqrt[n]{x}$ being irrational

$$
\bullet \; x = p_1 \bullet p_2^{k-2} \bullet \bullet \bullet p_m^{k-m} \Rightarrow \mathrm{CD}(E_x) = \varnothing \Rightarrow x \in X_{\mathrm{irrat_roots}}.
$$

 \cdot $x = p$; *p* being a prime number. This is a special case of the precedent example and it implies that, for all prime numbers, we recognize that $p \in X_{\text{irrat_roots}}$ (besides, this can also be considered as a rather simple proof of Euclid's theorem, i.e., $\sqrt{2} \notin \mathbf{Q}$).

4. Elementary Tests to Determine the Value of $\sqrt[n]{x}$ **if** $\sqrt[n]{x}$ **is Irrational without given Prime Factorization**

In Sections 2 and 3, the question "whether $\sqrt[n]{x} \in \mathbf{Q}$ or $\sqrt[n]{x} \notin \mathbf{Q}$?" has been answered completely (i.e., for any $n, x \in \mathbb{N}_{\geq 2}$). Nevertheless, we were not fully satisfied with our results, in particular, for cases when the value of *x* is extremely large. It is well-known that in cases of very large numbers *x* even very powerful supercomputers are reaching practical

limits when they try to determine the corresponding prime factorization of *x*. So, we looked for solutions (or at least for partial solutions) to answer the question "Is $\sqrt[n]{x}$ irrational for all $n \in \mathbb{N}_{\geq 2}$?" assuming now that the prime factorization of x is not available.

Indeed, we succeeded - at least for a high percentage of all natural numbers - to determine with certainty whether $\sqrt[n]{x} \notin \mathbf{Q}$ $\forall n \in \mathbf{N}_{\geq 2}$, even for the case that the prime factorization of x is unavailable. These results have been published in [7] and they are summarized in this section.

We discovered that for a lot of $x \in N_{\geq 2}$, it can be proven in an extremely simple manner that: $\sqrt[n]{x} \notin \mathbf{Q} \ \forall n \in \mathbf{N}_{\geq 2}$.

To come up with this result, we made use of the fact that if *x* is an integer multiple of a prime number p but no integer multiple of p^2 , then $\sqrt[n]{x}$ ∉ **Q** $\forall n \in \mathbb{N}_{\geq 2}$, i.e., $x \in X_{\text{irrat_roots}}$. Though we do not have to know the exact structure of the prime factorization of *x*, we see that, here, it exists $z \in \mathbb{N}$ such that: $x = p \cdot z$, *p* and *z* being coprime. So, eq. (4) can be applied and yield: $x \in X_{\text{irrat_roots}}$.

Therefore - for an arbitrary $x \in N_{\geq 2}$ given - to determine whether $x \in X_{\text{irrat_roots}}$, we just can apply the following:

 \cdot Test T_p . We choose a prime number p. Then we can conclude:

if *x* is an integer multiple of *p* and no integer multiple of p^2 , then $x \in X_{\text{irrat_roots}}$.

Evidently, it is possible to repeat test T_p by means of using the following:

Algorithm. Test, whether $x \in X_{\text{irrat_roots}}$.

Given: $x \in \mathbb{N}_{\geq 2}$; p denotes a prime number.

Step 1: $p := 2$.

Step 2: if $p \neq 2$, then replace p by the next higher prime number.

Step 3: Apply Test T_p to *x* based on the prime number *p* currently considered. If the test yields $x \in X_{\text{irrat_roots}}$ then STOP.

Step 4: If test for an additional prime number is desirable, then go to Step 2 else STOP.

Remarks regarding this algorithm:

- The coarse specification should be sufficiently elementary to be understandable even to non-Computer Scientists;

- Test T_p is applied choosing $p = 2; 3; 5; 7; 11; 13; ...$ in this sequence and the algorithm can be terminated in Step 4, e.g., because of the steadily increasing expenditure (in particular, executing Steps 2 and 3) or because we are satisfied with the result obtained up to this point;

- Tests T_2 , T_3 and T_5 can be even executed by hand (even for large numbers of x), cf. Examples 4.1.

Examples 4.1.

Test T_2 . $p = 2$: here, the following two conditions have to be tested:

- is *x* an integer multiple of $2? \rightarrow$ i.e., is *x* an even number?

- is *x* NOT an integer multiple of $2^2 = 4$? \rightarrow i.e., are the last two digits of x NOT an integer multiple of 4 ?

Result of Test T_2 : sufficient condition for $x \in X_{\text{irrat_roots}}$: the last two digits of *x* are 02, 06, 10, 14, 18, 22, ..., 90, 94, 98 \rightarrow corresponds to 25% of all natural numbers.

Test T_3 . $p = 3$: here, the following two conditions have to be tested:

> - is *x* an integer multiple of $3? \rightarrow$ i.e., is the sum of all digits of x an integer multiple of 3?

> - is *x* NOT an integer multiple of $3^2 = 9$? \rightarrow i.e., is the sum of all digits of x NOT an integer multiple of 9?

Result of Test T_3 : sufficient condition for $x \in X_{\text{irrat_roots}}$: $x \in \{3, 6, 12, 15, 21, 24, 30, 33, 39, 42, 48, ...\} \rightarrow$ corresponds to about 22% of all natural numbers.

Test T_5 **.** $p = 5$ **:** here, the following two conditions have to be tested:

> - is *x* an integer multiple of 5 ? \rightarrow i.e., is the last digit of *x* "0" or "5"?

> - is *x* NOT an integer multiple of $5^2 = 25$? \rightarrow i.e., are the last two digits of x different from "00", "25", "50", "75"?

Result of Test T_5 : sufficient condition for $x \in X_{\text{irrat_roots}}$: the last two digits of *x* are 05, 10, 15, 20, 30, 35, 40, 45, 55, 60, 65, 70, 80, 85, 90, 95 \rightarrow corresponds to 16% of all natural numbers.

Remarks. The tests T_2 and T_5 are indeed trivial to be carried out and even for numbers of *x* possessing millions of digits their application is just a matter of seconds. Nevertheless, they cover a pleasingly high percentage of natural numbers *x* given ($x \in \mathbb{N}_{\geq 2}$) for which the question

 $x \in X_{\text{irrat_roots}}$?" can be answered with complete certainty. For example, in [7] it has been shown that even the simple tests introduced in this section allow one to prove that $x \in X_{\text{irrat_roots}}$ for about 85% of all $x \in \mathbb{N}, x \leq 100.$

5. Conclusions

This paper summarizes the major results published most recently which represent a significant progress in the mathematical state-of-theart regarding the understanding of *n*-th roots of real numbers. In particular, it is possible now to determine in a straightforward manner whether $\sqrt[n]{x} \in \mathbf{Q}$ or $\sqrt[n]{x} \notin \mathbf{Q}$ (for $n \in \mathbf{N}_{\geq 2}$, $x \in \mathbf{R}$). We showed how understanding the properties of $\sqrt[n]{x}$ (for *n*, $x \in \mathbb{N}_{\geq 2}$) helps to understand the more general case "*n*-th root of a real number *x* ".

Most of the research results presented here have been obtained by relying on the prime factorization of *x*, if we investigate $\sqrt[n]{x}$ $(n, x \in N_{\geq 2})$. The availability of the prime factorization is fundamental, e.g., because it allows one to easily determine whether $\sqrt[n]{x}$ is rational or irrational. Moreover, the value of $\sqrt[n]{x}$ can also be calculated in a rather trivial manner based on basic properties of the prime factorization of *x*. Anyway, for numerous $x \in \mathbf{N}_{\geq 2}$, even without prime factorization of *x*, extremely simple tests allow us to recognize that $\sqrt[n]{x} \notin \mathbf{Q}$ (cf. Section 4).

In this paper, we have primarily considered the *n*-th root of *x* (for $n \in \mathbb{N}_{\geq 2}$, $x \in \mathbb{R}^+$). Anyway, our results for roots with natural root index, i.e., for $\sqrt[n]{x}$, also cover the more general case of roots with (positive) rational root index $\sqrt[n]{x}$ (e.g., for $r \in \mathbf{Q}^+ \setminus \mathbf{N}, x \in \mathbf{R}^+$). Evidently, if $r \in \mathbf{Q}^+ \setminus \mathbf{N}$, this implies that $\exists p, q : r = \frac{p}{q}, p \in \mathbf{N}$, $\exists p, q : r = \frac{p}{q}, p \in \mathbb{N}$

 $q \in \mathbb{N}_{\geq 2} \Rightarrow \sqrt[r]{x} = \sqrt[p]{q/x} = \sqrt[q]{x^p}$. If we set $q = n$ and $y = (x)^p$, we obtain $\sqrt[q]{x^p} = \sqrt[n]{y}$ (and $n \in \mathbb{N}_{\ge 2}$). Moreover, if $x \in \mathbb{N}_{\ge 2} \Rightarrow y \in \mathbb{N}_{\ge 2}$, and, if $x \in \mathbf{Q}^+ \implies y \in \mathbf{Q}^+$, and, if $x \in \mathbf{R}^+ \implies y \in \mathbf{R}^+$. So, it becomes evident that our solutions presented do not only cover the roots of type $\sqrt[n]{x}$ (for $n \in \mathbb{N}_{\geq 2}$, $x \in \mathbb{R}^+$) but also the more general roots ζ $\sqrt[x]{x}$ $(\text{for } r \in \mathbf{Q}^+, x \in \mathbf{R}^+).$

References

- [1] B. Wardhaug, Encounters with Euclid. How an Ancient Greek Geometry Text Shaped the World, Princeton University Press, 2021.
- [2] A. Y. Özban, New methods for approximating square roots, Appl. Math. Comput. 175 (2006), 532-540.
- [3] W. M. Priestly, From square roots to *n*-th roots: Newton's method in disguise, The College Mathematics Journal, Mathematical Assoc. of America, Nov. 1999.
- [4] N. Murugesan and A. M. S. Ramasamy, A numerical algorithm for *n-*th root, Mal. J. Fund. Appl. Sci. 7(1) (2011), 35-40.
- [5] B. E. Wolfinger, Simple criteria for $\sqrt[n]{x}$ ($n \in \mathbb{N}$, $n \ge 2$, $x \in \mathbb{R}$) being a rational or an irrational number, J. Advances in Mathematics and Computer Science 38(9) (2023), 23-30.
	- [6] B. E. Wolfinger, Simple tests for *n*-th roots of natural numbers being natural numbers and elementary methods to determine their values, J. Advances in Mathematics and Computer Science 39(1) (2024), 29-35.
	- [7] B. E. Wolfinger, Simple criteria for all *n*-th roots of a natural number being irrational, J. Math. Sci.: Adv. Appl. 75 (2024), 23-31.
	- [8] D. M. Bressoud, Factorization and Primality Testing, Springer-Verlag, 1989.