THE *m*Θ **COMPLETION OF FRACTION FIELD OF** *m*Θ *p*-**ADIC INTEGERS**

PEMHA BINYAM GABRIEL CEDRIC* **, UM LAURENCE EMILIE and YVES JONATHAN NDJE**

Department of Mathematics and Computer Sciences Faculty of Sciences University of Douala P.O. Box 24157, Douala Cameroon e-mail: gpemha@yahoo.fr laurence.um@gmail.com nyjo.yves@gmail.com

Abstract

The notion of modal Θ -valent set (*m*Θ*s*) noted ($\mathbb{F}_{p\mathbb{Z}}$, F_{α}), *p* prime, is defined by F. Ayissi Eteme in [3]. In this note, the purpose is to construct the *m*Θ completion of Fraction Field of *p* - adic numbers on $\mathbb{F}_{p\mathbb{Z}}$; which respects the structure of *m*Θ*s*. We think that this approach will bring something of interest to the notion of set of p - adic numbers \mathbb{Z}_p as presented by Alain M. Robert in 2000 [2].

Keywords and phrases: modal $Θ$ - valent converges $(mΘcv)$, modal $Θ$ - valent sets $(mΘs)$, modal $Θ$ - valent fields (*m*Θ*f*).

2020 Mathematics Subject Classification: 94B60, 94B75.

*Corresponding author

Received April 17, 2024; Accepted May 28, 2024

© 2024 Fundamental Research and Development International

0.1. Introduction

A *m*Θ approach of the notion of set [1] has allowed to bring out the new classes of sets: *m*Θ sets. The *m*Θ sets present an enrichment from the logical view-point compared with the classical sets. Indeed, with the notion of *m*Θ sets, we can mathematically speak of *m*Θ*s* of *m*Θ *p*-adic integers $\mathbb{Z}_{p\mathbb{Z}}$ such that the subset of the *m*Θ invariants of $\mathbb{Z}_{p\mathbb{Z}}$ is \mathbb{Z}_p the classical *p*-adic set,

$$
C(\mathbb{Z}_{p\mathbb{Z}},\,F'_{\alpha})=\mathbb{Z}_p.
$$

A *m*Θ approach of *m*Θ ring Z*p*Z would consist in enriching the alphabet \mathbb{F}_p by taking instead of this one, a richer alphabet as the prime *m*Θ field $\mathbb{F}_{p\mathbb{Z}}$ with p^2 elements [3].

The purpose of this paper is to define on the $m\Theta$ set $(\mathbb{F}_{p\mathbb{Z}}, F_{\alpha})$ a notion of completion of Fraction Field of *p*-adic Integers which respects its structure of *m*Θ set in the same manner completion of Fraction Field of *p*-adic Integers is defined on a finite classical field.

Section 2 recalls the essential notions of *m*Θ set for our purpose. Section 3 presents first and briefly \mathbb{Z}_p , the classical set of *p*-adic integers as in [2] and then defines a study of $m\Theta$ Ring $\mathbb{Z}_{p\mathbb{Z}}$. Section 4 is devoted to establish the $m\Theta$ fraction field of \mathbb{Z}_p . Section 5 presents the *m*Θ completion of $\mathbb{Q}_{p\mathbb{Z}}$.

0.2. The Modal Θ- **valent Set Structure and the Algebra of** $(\mathbb{F}_{p\mathbb{Z}}, F_{\alpha})$

0.2.1. The modal Θ- **valent set structure**

*m*Θ sets are considered to be non-classical sets which are compatible

with a non-classical logic called the chrysippian *m*Θ logic.

Definition 0.1. Let *E* be a non-empty set, *I* be a chain whose first and last elements are 0 and 1, respectively, $(F_{\alpha})_{\alpha \in I^*}$ where $I_* =$ $I \setminus \{0\}$ be a family of applications form *E* to *E*.

A *m* Θ set is the pair $(E, (F_{\alpha})_{\alpha \in I_*})$ simply denoted by (E, F_{α}) satisfying the following four axioms:

> $\cdot \bigcap F_{\alpha}(E) = \bigcap \{ F_{\alpha}(x) : x \in \{E\} \neq \emptyset;$ * $= \int \{F_{\alpha}(x) : x \in \{E\} \neq \emptyset\}$ ∈α α α $F_{\alpha}(E) = \int \int \{F_{\alpha}(x) : x \in \{E\}$ *I* $\bigcap F_{\alpha}(E) = \bigcap$ $\cdot \forall \alpha, \beta \in I_*,$ if $\alpha \neq \beta$, then $F_{\alpha} \neq F_{\beta};$ $\cdot \ \forall \alpha, \beta \in I_*, \ F_{\alpha} \circ F_{\beta} = F_{\beta};$ $\forall x, y \in E$, if $\forall \alpha \in I^*, F_\alpha(x) = F_\alpha(y)$, then $x = y$.

Theorem 0.1. (The theorem of *m*Θ determination)

Let (E, F_{α}) *be a* $m\Theta$ *set*.

$$
\forall x, y \in E, x =_{\Theta} y \text{ if and only if } \forall \alpha \in I_*, F_{\alpha}(x) = F_{\alpha}(y).
$$

Proof 0.1. [3].

Definition 0.2. Let $C(E, F_{\alpha}) = \int_{\alpha}^{\alpha} | F_{\alpha}(E) |$. * $C(E, F_{\alpha}) = \int E_{\alpha}(E)$ *I* \bigcap ∈α C_{α}) = \int $F_{\alpha}(E)$. We call $C(E, F_{\alpha})$ the set

of $m\Theta$ invariant elements of the $m\Theta$ set (E, F_{α}) .

Proposition 0.1. *Let* (E, F_{α}) *be a m* Θ *set. The following properties are equivalent*:

1.
$$
x \in \bigcap_{\alpha \in I_*} F_{\alpha}(E);
$$

2. $\forall \alpha \in I_*, F_{\alpha}(x) = x;$

3.
$$
\forall \alpha, \beta \in I_*, F_{\alpha}(x) = F_{\beta}(x);
$$

4. $\exists \mu \in I_*, x = F_{\mu}(x).$

Proof 0.2. [3].

Definition 0.3. Let (E, F_α) and (E', F'_α) be two $m\Theta$ sets. Let *X* be a nonempty set. We shall call

1. (E', F'_α) a modal Θ -valent subset of (E, F_α) if the structure of *m*Θ set (E', F'_{α}) is the restriction to E' of the structure of the *m*Θ set (E, F_{α}) , this means:

$$
\cdot E' \subseteq E;
$$

$$
\cdot \ \forall \alpha : \alpha \in I_*, \ F'_\alpha = F_{\alpha \mid E'}.
$$

2. *X* a modal Θ -valent subset of (E, F_{α}) if:

 \cdot *X* \subseteq *E*;

 \cdot (*X*, $F_{\alpha|X}$) is a *m*Θ*s* which is a modal Θ-valent subset of (E, F_{α}) .

In all what follows we shall write $F_{\alpha}x$ for $F_{\alpha}(x)$, $F_{\alpha}E$ for $F_{\alpha}(E)$, etc.

Example 0.1. For $n \in N^*$, we define the closed chain

$$
I = \begin{cases} \{0, 1, 2\} & \text{if } n = 2; \\ \mathbb{N}_{n-1} = \{0, 1, ..., n-1\} & \text{if } n \ge 3. \end{cases}
$$

The $m\Theta$ set $(\mathbb{Z}_{n\mathbb{Z}}, \mathbb{Z}, F_{\alpha})$.

Let us set $x_{n\mathbb{Z}} = (p + \alpha r)_{\alpha \in I_*}$ where $x \in \mathbb{Z} \setminus n\mathbb{Z}$ $(x = pn + r; p, r)$

 $\in \mathbb{Z}$; $1 \leq r \leq n-1$).

$$
x_{n\mathbb{Z}} \in \begin{cases} \mathbb{Z}^2 & \text{if } n = 2; \\ \mathbb{Z}^{n-1} & \text{if } n \ge 3. \end{cases}
$$

Let us set

$$
\mathbb{Z}_{n\mathbb{Z}} = \mathbb{Z} \cup \{x_{n\mathbb{Z}} : \neg (x \equiv 0 \pmod{n}\}
$$

We define for all $\alpha \in I_*$;

$$
F_{\alpha}: \mathbb{Z}_{n\mathbb{Z}} \to \mathbb{Z}_{n\mathbb{Z}}
$$
\n
$$
a \mapsto \begin{cases} F_{\alpha}a = a & \text{if } a \in \mathbb{Z}, \\ F_{\alpha}a = b_1 + \alpha b_2 & \text{if } a = b_{n\mathbb{Z}}, b \in \mathbb{Z} \setminus n\mathbb{Z} \\ (b = b_1 n + b_2 : b_2, b_1 \in \mathbb{Z}; 1 \le b_2 \le n - 1). \end{cases}
$$

 $(\mathbb{Z}_{n\mathbb{Z}}, F_{\alpha})$ is a $m\Theta$ set such that $C(\mathbb{Z}_{n\mathbb{Z}}, F_{\alpha}) = \mathbb{Z}$.

Consider ($\mathbb{Z}_{2\mathbb{Z}}$, F_{α})

 ${\mathbb Z}_{2\mathbb Z}={\mathbb Z}\cup\{1_{2\mathbb Z},\,3_{2\mathbb Z},\,5_{2\mathbb Z},\,7_{2\mathbb Z},\,...\};$ $1_{2\mathbb{Z}} = (0 + \alpha \cdot 1)_{\alpha \in \{1,2\}} = \{1, 2\} \in \mathbb{Z}^2;$ $3_{2\mathbb{Z}} = (1 + \alpha \cdot 1)_{\alpha \in \{1,2\}} = \{2, 3\} \in \mathbb{Z}^2;$ $5_{2\mathbb{Z}} = (2 + \alpha \cdot 1)_{\alpha \in \{1,2\}} = \{3, 4\} \in \mathbb{Z}^2;$ $7_{2\mathbb{Z}} = (3 + \alpha \cdot 1)_{\alpha \in \{1,2\}} = \{4, 5\} \in \mathbb{Z}^2;$ \vdots $F_1\mathbb{Z} = F_2\mathbb{Z} = \mathbb{Z};$ $F_1 1_{2\mathbb{Z}} = 0 + 1 \cdot 1 = 1$; $F_2 1_{2\mathbb{Z}} = 0 + 2 \cdot 1 = 2$; $F_13_{2\mathbb{Z}} = 2$; $F_23_{2\mathbb{Z}} = 3$.

0.2.2. The Algebra of $(\mathbb{F}_{p\mathbb{Z}}, F_{\alpha})$

Let $p \in \mathbb{N}$, a prime number. Let us recall that if $a \in \mathbb{F}_{p\mathbb{Z}}$, then

$$
\mathbb{F}_{p\mathbb{Z}}\,=\,\mathbb{F}_{p}\,\cup\,\{x_{p\mathbb{Z}}\,:\,\neg\,\,(x\,\equiv\,0\,\,(\text{mod}\,\,p))\};\ \, \mathbb{F}_{p}\,=\,\{0,\,1,\,2,\,...,\,\,p\,-1\}.
$$

We define the $m\Theta$ support of α denoted $s(\alpha)$ as follows:

$$
s(a) = \begin{cases} a & \text{if } a \in \mathbb{F}_p; \\ x & \text{if } a = x_{p\mathbb{Z}} \text{ with } |(x \equiv 0 \pmod{p}). \end{cases}
$$

Thus $s(a) \in \mathbb{F}_p$.

Definition 0.4. Let ⊥ be a binary operation on \mathbb{F}_p . So, $\forall a, b \in \mathbb{F}_p$, $a \perp b \in \mathbb{F}_p$. Let $x, y \in \mathbb{F}_{p\mathbb{Z}}$. We define a binary operation \perp^* on $\mathbb{F}_{p\mathbb{Z}}$ as follows:

$$
x \perp^* y = \begin{cases} s(x) \perp s(y) & \text{if } \begin{cases} x, y \in \mathbb{F}_p, \\ (s(x) \perp s(y))_{p\mathbb{Z}} & \text{otherwise.} \end{cases} \\ (s(x) \perp s(y))_{p\mathbb{Z}} & \text{otherwise.} \end{cases}
$$

⊥* as defined above on F*p*Z will be called a *m*Θ law on F*p*Z for $x, y \in \mathbb{F}_{p\mathbb{Z}}$. Thus we can define $x + y \in \mathbb{F}_{p\mathbb{Z}}$ and $x \times y \in \mathbb{F}_{p\mathbb{Z}}$ for every $x, y \in \mathbb{F}_{p\mathbb{Z}}$, where + and × are *m*Θ addition and *m*Θ multiplication, respectively.

Theorem 0.2. ($\mathbb{F}_{p\mathbb{Z}}$, F_α , +, \times) *is a m*Θ *ring of unity* 1 *and of m*Θ *unity* $\frac{1}{\sqrt{n}}$. *p*Z

Proof 0.3. [1].

Remark 0.1. Since *p* is prime, $(F_{p\mathbb{Z}}, F_{\alpha})$ is a *m*Θ field.

Definition 0.5. *x* is a divisor of zero in $(F_{p\mathbb{Z}}, F_{\alpha})$ if there exists

 $y \in \mathbb{F}_{p\mathbb{Z}}$ such that $x \times y = 0$.

Example 0.2. 1. $p = 2$, we have $\mathbb{F}_{2\mathbb{Z}} = \{0, 1, 1_{2\mathbb{Z}}, 3_{2\mathbb{Z}}\}.$

$\mathbb{F}_{2\mathbb{Z}}$	0	$1_{2\mathbb{Z}}$	$3_{2\mathbb{Z}}$	
F_1	0		0	
F_2	0	0		

The table of $m\Theta$ determination and tables laws of $\mathbb{F}_{2\mathbb{Z}}$

Observation.

F2Z has no divisor of zero, is a *m*Θ ring from four elements, that is a

*m*Θ field of four elements.

2. $p = 3$, we have $\mathbb{F}_{3\mathbb{Z}} = \{0, 1, 2, 1_{3\mathbb{Z}}, 2_{3\mathbb{Z}}, 4_{3\mathbb{Z}}, 5_{3\mathbb{Z}}, 7_{3\mathbb{Z}}, 8_{3\mathbb{Z}}\}.$

$\mathbb{F}_{3\mathbb{Z}}$		$\overline{2}$	$13\mathbb{Z}$	$2_{3\mathbb{Z}}$	$4_{3\mathbb{Z}}$	$5_{3\mathbb{Z}}$	$7_{3\mathbb{Z}}$	$8_{3\mathbb{Z}}$
r_1				റ	$\overline{2}$			
F_2		റ	Ω			2		

The table of $m\Theta$ determination and tables laws of $\mathbb{F}_{3\mathbb{Z}}$

$\mathbf{1}$	$\boldsymbol{0}$	$\mathbf 1$	$\,2$	$1_{3\mathbb{Z}}$	$2_{3\mathbb{Z}}$	$4_{3\mathbb{Z}}$	$5_{3\mathbb{Z}}$	$7_{3\mathbb{Z}}$	$8_{3\mathbb{Z}}$
$\overline{2}$	$\boldsymbol{0}$	$\overline{2}$	$\,1$	$2_{3\mathbb{Z}}$	$4_{3\mathbb{Z}}$	$8_{3\mathbb{Z}}$	$1_{3\mathbb{Z}}$	$5_{3\mathbb{Z}}$	$7_{3\mathbb{Z}}$
$1_{3\mathbb{Z}}$	$\boldsymbol{0}$	$1_{3\mathbb{Z}}$	$2_{3\mathbb{Z}}$	$1_{3\mathbb{Z}}$	$2_{3\mathbb{Z}}$	$4_{3\mathbb{Z}}$	$5_{3\mathbb{Z}}$	$7_{3\mathbb{Z}}$	$8_{3\mathbb{Z}}$
$2_{3\mathbb{Z}}$	$\boldsymbol{0}$	$2_{3\mathbb{Z}}$	$4_{3\mathbb{Z}}$	$2_{3\mathbb{Z}}$	$4_{3\mathbb{Z}}$	$8_{3\mathbb{Z}}$	$7_{3\mathbb{Z}}$	$5_{3\mathbb{Z}}$	$7_{3\mathbb{Z}}$
$4_{3\mathbb{Z}}$	$\boldsymbol{0}$	$4_{3\mathbb{Z}}$	$8_{3\mathbb{Z}}$	$4_{3\mathbb{Z}}$	$8_{3\mathbb{Z}}$	$7_{3\mathbb{Z}}$	$2_{3\mathbb{Z}}$	$1_{3\mathbb{Z}}$	$5_{3\mathbb{Z}}$
$5_{3\mathbb{Z}}$	$\boldsymbol{0}$	$5_{3\mathbb{Z}}$	$1_{3\mathbb{Z}}$	$5_{3\mathbb{Z}}$	$1_{3\mathbb{Z}}$	$2_{3\mathbb{Z}}$	$7_{3\mathbb{Z}}$	$8_{3\mathbb{Z}}$	$4_{3\mathbb{Z}}$
$7_{3\mathbb{Z}}$	$\boldsymbol{0}$	$7_{3\mathbb{Z}}$	$5_{3\mathbb{Z}}$	$7_{3\mathbb{Z}}$	$5_{3\mathbb{Z}}$	$1_{3\mathbb{Z}}$	$8_{3\mathbb{Z}}$	$4_{3\mathbb{Z}}$	$2_{3\mathbb{Z}}$
$8_{3\mathbb{Z}}$	$\boldsymbol{0}$	$8_{3\mathbb{Z}}$	$7_{3\mathbb{Z}}$	$8_{3\mathbb{Z}}$	$7_{3\mathbb{Z}}$	$5_{3\mathbb{Z}}$	$4_{3\mathbb{Z}}$	$2_{3\mathbb{Z}}$	$1_{3\mathbb{Z}}$

0.3. The $m\Theta$ Ring $\mathbb{Z}_{p\mathbb{Z}}$ of p -adic Integers

0.3.1. \mathbb{Z}_p the set of p -adic integers [2]

Definition 0.6. A *p*-adic integer is a formal series $\sum_{i\geq 0} a_i p^i$ with $integral coefficients a_i satisfying$

$$
0 \le a_i \le p-1.
$$

In particular, if $a = \sum_{i \geq 0} a_i p^i$, $a = \sum_{i \geq 0} a_i p^i, \; b = \sum_{i \geq 0} a_i$ $b = \sum_{i>0} b_i p^i$ (with $a_i, b_i \in \mathbb{F}_p$), we have

$$
a = b \Leftrightarrow a_i = b_i \quad \text{for all} \quad i \ge 0.
$$

Remark 0.2. From the definition, we immediately infer that the set of *p*-adic integers is not countable.

0.3.2. The $m\Theta$ ring $\mathbb{Z}_{p\mathbb{Z}}$

 $\mathbb{Z}_{p\mathbb{Z}}$ is *m*Θ*s* of *p*-adic integers which has $C(\mathbb{Z}_{p\mathbb{Z}}, F'_\alpha) = \mathbb{Z}_p$ as the

subset of modal Θ- valent invariants.

Definition 0.7. A *m* Θ *p*-adic integer is a formal series $\sum_{i\geq 0} a_i p^i$ with integral coefficients $a_i \in \mathbb{F}_{p\mathbb{Z}}$ satisfying

$$
F_{\alpha}(a_i) \in \mathbb{F}_p; \quad \forall \alpha \in I_*.
$$

With this definition, a *m* Θ *p*-adic integer $a = \sum_{i \geq 0}$ $a = \sum_{i>0} a_i p^i$ can be identified with the sequence $\left(a_i \right)_{i \geq 0}$ of its coefficients, and the set of $m \Theta$ *p*-adic integers coincides with the Cartesian product

$$
X_{p\mathbb{Z}}\,=\,\prod_{i\geq 0}\mathbb{F}_{p\mathbb{Z}}\,=\!\mathbb{F}_{p\mathbb{Z}}^{\mathbb{N}}.
$$

The usefulness of the series representation will be revealed when we introduce algebraic operations on these *m*Θ *p*-adic integers. Let us already observe that the expansions in base *p* of natural integers produce *m*Θ *p*-adic integers, and we obtain a canonical embedding of the set of natural integers $N = \{0, 1, 2, ...\}$ into $X_{p\mathbb{Z}}$.

1. Addition of *m*Θ *p*-**adic integers**

Let us define the sum of two *m*Θ *p*-adic integers *a* and *b* by the following procedure. The first component of the sum is $F_\alpha(a_0) + F_\alpha(b_0)$, $\forall \alpha \in I^*$ if this is less than or equal to $p-1$, or $F_\alpha(a_0) + F_\alpha(b_0) - p$ otherwise. In the second case, we add a carry to the *m*Θ component of *p* and proceed by addition of the next *m*Θ components. In this way, we obtain a series for the sum that has *m*Θ components in the desired range. More succinctly, we can say that addition is defined *m*Θ componentwise, using the system of carries to keep them in \mathbb{F}_p .

Example 0.3. Let $p = 3$ and

$$
\begin{array}{l} a = 1 \times 3^0 + 1_{3\mathbb{Z}} \times 3^1 + 8_{3\mathbb{Z}} \times 3^2 + 2_{3\mathbb{Z}} \times 3^3 + 0 \times 3^4 + \ldots \,, \\ \\ b = 5_{3\mathbb{Z}} \times 3^0 + 4_{3\mathbb{Z}} \times 3^1 + 2 \times 3^2 + 7_{3\mathbb{Z}} \times 3^3 + 0 \times 3^4 + \ldots \end{array}
$$

with an infinity of zero coefficients from $i = 4$.

To simplify the notation, we will simply note

$$
a = (1, 1_{3\mathbb{Z}}, 8_{3\mathbb{Z}}, 2_{3\mathbb{Z}}, 0, \ldots)
$$
 and $b = (5_{3\mathbb{Z}}, 4_{3\mathbb{Z}}, 2, 7_{3\mathbb{Z}}, 0, \ldots).$

We calculate the different *m*Θ values of *a* and *b*.

$$
F_1(a) = (1, 1, 1, 2, 0, ...)
$$
 and $F_2(a) = (1, 2, 0, 1, 0, ...),$

$$
F_1(b) = (0, 2, 2, 0, 0, ...)
$$
 and $F_2(b) = (2, 0, 2, 1, 0, ...).$

Thus

$$
a + b = (F_1(a) + F_1(b), F_2(a) + F_2(b))
$$

= ((1, 0, 1, 0, 1, 0, ...), (0, 0, 0, 0, 1, 0, ...))
= (8₃Z, 0, 8₃Z, 0, 1, 0, ...).

So

$$
a + b = (8_{3\mathbb{Z}}, 0, 8_{3\mathbb{Z}}, 0, 1, 0, ...).
$$

2. Product of two *m*Θ *p*-**adic integers**

Let us define the product of two *m*Θ *p*-adic integers by multiplying their expansions *m*Θ componentwise, using the system of carries to keep these $m\Theta$ components in the desired range \mathbb{F}_p .

This multiplication is defined in such a way that it extends the usual multiplication of elements of $\mathbb{F}_{p\mathbb{Z}}$, written in base p.

Example 0.4. Let $p = 3$ and

$$
a = (7_{3\mathbb{Z}}, 1, 2, 4_{3\mathbb{Z}}, 5_{3\mathbb{Z}}, 0, \ldots); \quad b = (1_{3\mathbb{Z}}, 0, 2, 8_{3\mathbb{Z}}, 2_{3\mathbb{Z}}, 0, \ldots)
$$

with an infinity of zero coefficients from $i = 6$. We calculate the different *m*Θ values of *a* and *b*.

$$
F_1(a) = (0, 1, 2, 2, 0, 0, ...)
$$
 and $F_2(a) = (1, 1, 1, 2, 0, 0, 0, ...),$
 $F_1(b) = (1, 0, 2, 1, 2, 0, ...)$ and $F_2(b) = (2, 0, 2, 0, 1, 0, ...).$

Thus

$$
a \times b = (F_1^2(a \times b), F_2^2(a \times b))
$$

= $(F_1(a) \times F_1(b), F_2(a) \times F_2(b))$
= $((0, 2, 1, 0, 2, 1, 1, 1, 0, ...), (1, 0, 1, 1, 0, 2, 1, 2, 0, ...))$
= $(7_{3\mathbb{Z}}, 4_{3\mathbb{Z}}, 1, 7_{3\mathbb{Z}}, 4_{3\mathbb{Z}}, 1_{3\mathbb{Z}}, 1, 1_{3\mathbb{Z}}, 0, ...).$

So

$$
a \times b = (7_{3\mathbb{Z}}, 4_{3\mathbb{Z}}, 1, 7_{3\mathbb{Z}}, 4_{3\mathbb{Z}}, 1_{3\mathbb{Z}}, 1, 1_{3\mathbb{Z}}, 0, ...).
$$

Definition 0.8. Let $a = \sum_{i \geq 0}$ $a = \sum_{i>0} a_i p^i$ be a *m*Θ *p*-adic integer. If $a \neq 0$, that is, $\forall \alpha \in I^*$, $F_\alpha(a) \neq 0$, there is a first index $v = v^\Theta(a) \geq 0$ such that $F_{\alpha}(a_v) \neq 0$. This index is the *p*-adic order $v = v^{\Theta}(a) = ord_{p\mathbb{Z}}(a)$, and we get a *m*Θ map

$$
v^{\Theta} = ord_{p\mathbb{Z}} : \mathbb{Z}_{p\mathbb{Z}} - \{0\} \to \mathbb{N}.
$$

Proposition 0.2. *The ring* $\mathbb{Z}_{p\mathbb{Z}}$ *of* $m\Theta$ *p*-*adic integers is an* $m\Theta$ *integral domain*.

Proof 0.4. The commutative $m\Theta$ ring $\mathbb{Z}_{p\mathbb{Z}}$ is not {0}, and we have to

show that it has no zero divisor. Let therefore $a = \sum_{i\geq 0} a_i p^i \neq 0$, $a = \sum_{i>0} a_i p^i$ $=\sum_{i\geq 0} b_i p^i \neq 0,$ $b = \sum_{i>0} b_i p^i \neq 0$, and define $v = v^{\Theta}(a)$, $w = v^{\Theta}(b)$. Then a_v is the first nonzero $m\Theta$ coefficient of a , $\forall \alpha \in I^*$, $0 < F_\alpha(a_v) < p$, and similarly *bw* is the first nonzero *m*Θ coefficient of *b*. In particular, *p* divides neither a_v nor b_w and consequently does not divide their product $a_v b_w$ either. By definition of multiplication, the first nonzero $m\Theta$ coefficient of the product ab is the $m\Theta$ coefficient c_{v+w} of p^{v+w} , and this *m*Θ coefficient is defined by

$$
\forall \alpha \in I^*, \quad 0 < F_\alpha(c_{v+w}) < p, \quad F_\alpha(c_{v+w}) \equiv F_\alpha^2(a_v b_w) \pmod{p}.
$$

0.4. The Fraction Field of $\mathbb{Z}_{p\mathbb{Z}}$

Let $(\mathbb{F}_{p\mathbb{Z}}, F_{\alpha})$ be the finite $m\Theta$ field with p^2 elements.

Definition 0.9. The *m*Θ mapping

$$
a = \sum_{i \ge 0} a_i p^i \mapsto a_0 \bmod p\mathbb{Z}
$$

defines a ring $m\Theta$ homomorphism $\epsilon^{\Theta} : \mathbb{Z}_{p\mathbb{Z}} \to \mathbb{F}_{p\mathbb{Z}}$ called reduction mod *p*Z.

This reduction *m*Θ homomorphism is obviously surjective, with kernel

$$
\{a\in\mathbb{Z}_{p\mathbb{Z}}:\forall\alpha\in I_*,\,F_{\alpha}(a_0)=0\}=\left\{\sum_{i\geq 1}a_ip^i=p\sum_{i\geq 0}a_{i+1}p^i\right\}=p\mathbb{Z}_{p\mathbb{Z}}.
$$

Since the quotient is a $m\Theta$ field, the kernel $p\mathbb{Z}_{p\mathbb{Z}}$ of ϵ^{Θ} is a maximal ideal of the $m\Theta$ ring $\mathbb{Z}_{p\mathbb{Z}}$.

Theorem 0.3. *The* $m\Theta$ *group* $\mathbb{Z}_{p\mathbb{Z}}^{\times}$ *of invertible elements in the* $m\Theta$ *ring* Z*p*^Z *consists of the m*Θ *p*-*adic integers of order zero*, *namely*

$$
\mathbb{Z}_{p\mathbb{Z}}^{\times} = \left\{ \sum_{i \geq 0} a_i p^i : a_0 \neq 0 \right\}.
$$

Proof 0.5. If a *m*Θ *p*-adic integer *a* is invertible, so must be its ${\mathfrak {red}}$ uction ${\mathfrak {k}}^\Theta(a)$ in ${\mathbb F}_{p{\mathbb Z}}.$ This proves the inclusion ${\mathbb Z}_{p{\mathbb Z}}^\times\subset$ $a_i p^i : a_0 \neq 0$. $\left\{\sum_{i\geq 0}a_ip^i\right.$ $:a_0 \neq$ $i p^i : a_0 \neq 0$. Conversely, we have to show that any $m\Theta$ *p*-adic integer *a* of order $v^{\Theta}(a) = 0$ is invertible. In this case the reduction $\epsilon^{\Theta}(a_0) \in \mathbb{F}_{p\mathbb{Z}}$ is not zero, and hence is invertible in this field. Choose $\forall \alpha \in I^*$, $0 < F_\alpha(b_0) < p$ with $a_0b_0 \equiv 1_{p\mathbb{Z}} \pmod{p\mathbb{Z}}$ and write $F_{\alpha}^{2}(a_{0}b_{0}) = 1 + k \times p$. Hence, if we write $F_{\alpha}(a) = a_{0} + p \times k'$, then

$$
F_{\alpha}^{2}(a \cdot b_{0}) = 1 + k \times p + pk'b_{0} = 1 + p \times k''
$$

for some *m*Θ *p*-adic integer *k*′′. It suffices to show that the classical *p*-adic integer $1 + k'' \times p$ is invertible, since we can then write

$$
F_{\alpha}^{2}(a \cdot b_{0}) (1 + k'' \times p)^{-1} = 1, \quad (F_{\alpha}(a))^{-1} = F_{\alpha}(b_{0}) (1 + k'' \times p)^{-1}.
$$

In other words, it is enough to treat the case $F_\alpha(a_0) = 1$, $F_{\alpha}(a) = 1 + k'' \times p$. Let us observe that we can take

$$
(1 + k'' \times p)^{-1} = 1 - k'' \times p + (k'' \times p)^{2} - \dots
$$

$$
= 1 + c_{1} \times p + c_{1} \times p^{2} + \dots,
$$

with integers $c_i \in \mathbb{F}_p$. This possibility is assured if we apply the rules for carries suitably.

Remark 0.3. The ring $\mathbb{Z}_{p\mathbb{Z}}$ of $m\Theta$ *p*-adic integers has a unique maximal ideal, namely

$$
p\mathbb{Z}_{p\mathbb{Z}} = \mathbb{Z}_{p\mathbb{Z}} - \mathbb{Z}_{p\mathbb{Z}}^{\times}.
$$

The statement of the preceding remark corresponds to a partition $\mathbb{Z}_{p\mathbb{Z}} = \mathbb{Z}_{p\mathbb{Z}}^{\times} \coprod p\mathbb{Z}_{p\mathbb{Z}}$ (a disjoint union). In fact, one has a partition

$$
\mathbb{Z}_{p\mathbb{Z}}-\{0\}=\coprod_{k\geq 0}p^k\mathbb{Z}_{p\mathbb{Z}}^{\times}.
$$

Definition 0.10. Every nonzero $m\Theta$ *p*-adic integer $a \in \mathbb{Z}_{p\mathbb{Z}}$ has a canonical representation $a = p^v u$, where $v = v^{\Theta}(a)$ is the *p*-adic order of *a* and $u \in \mathbb{Z}_{p\mathbb{Z}}^{\times}$ is a *m* Θ *p*-adic unit.

The principal $m\Theta$ ideals of the ring $\mathbb{Z}_{p\mathbb{Z}}$,

$$
(p^k) = p^k \mathbb{Z}_{p\mathbb{Z}} = \{ x \in \mathbb{Z}_{p\mathbb{Z}} : ord_{p\mathbb{Z}}(x) \geq k \},
$$

have an intersection equal to $\{0\}$:

$$
\mathbb{Z}_{p\mathbb{Z}} \supset p\mathbb{Z}_{p\mathbb{Z}} \supset \ldots \supset p^k \mathbb{Z}_{p\mathbb{Z}} \supset \ldots \supset \bigcap\nolimits_{k \geq 0} p^k \mathbb{Z}_{p\mathbb{Z}} = \{0\}.
$$

Indeed, any element $a \neq 0$ has an order $v^{\Theta}(a) = k$, hence $a \notin (p^{k+1})$. In fact, these principal *m*Θ ideals are the only nonzero ideals of the ring of *m*Θ *p*-adic integers.

Proposition 0.3. *The ring* $\mathbb{Z}_{p\mathbb{Z}}$ *is a principal* $m\Theta$ *ideal domain. More precisely, its ideals are the principal ideals* $\{0\}$ *and* $p^k\mathbb{Z}_{p\mathbb{Z}},\;k\in\mathbb{N}.$

Proof 0.6. Let $I \neq \{0\}$ be a nonzero $m\Theta$ ideal of $\mathbb{Z}_{p\mathbb{Z}}$ and $0 \neq a \in I$ an element of minimal order, say $k = v^{\Theta}(a) < \infty$. Write $a = p^k u$ with a

*m***e** p -adic unit *u*. Hence $p^k = u^{-1}a \in I$ and $(p^k) = p^k \mathbb{Z}_{p\mathbb{Z}} \subset I$. Conversely, for any $b \in I$, let $w = v^{\Theta}(b) \geq k$ and write

$$
b = p^w u' = p^k \times p^{w-k} u' \in p^k \mathbb{Z}_{p\mathbb{Z}}.
$$

The ring of *m*Θ *p*-adic integers is an *m*Θ integral domain (Proposition 0.2). Hence we can define the field of *m*Θ *p*-adic numbers as the fraction field of $\mathbb{Z}_{p\mathbb{Z}}$

$$
\mathbb{Q}_{p\mathbb{Z}} = Frac\left(\mathbb{Z}_{p\mathbb{Z}}\right).
$$

We have seen that any nonzero $m\Theta$ *p*-adic integer $x \in \mathbb{Z}_{p\mathbb{Z}}$ can be written in the form $x = p^m u$ with a $m\Theta$ unit u of $\mathbb{Z}_{p\mathbb{Z}}$ and $m \in \mathbb{N}$ the order of *x*. The inverse of *x* in the *m*Θ fraction field will thus be $\frac{1}{x} = p^{-m}u^{-1}$. This shows that this $m\Theta$ fraction field is generatedmultiplicatively, and a fortiori as a $m\Theta$ ring by $\mathbb{Z}_{p\mathbb{Z}}$ and the negative powers of *p*. We can write

$$
\mathbb{Q}_{p\mathbb{Z}} = \mathbb{Z}_{p\mathbb{Z}} \left[\frac{1}{p} \right].
$$

The representation $\frac{1}{x} = p^{-m}u^{-1}$ also shows that $\frac{1}{x} \in p^{-m}\mathbb{Z}_{p\mathbb{Z}}$ and

$$
\mathbb{Q}_{p\mathbb{Z}}=\coprod_{m\geq 0}p^{-m}\mathbb{Z}_{p\mathbb{Z}}
$$

is a union over the positive integers *m*. These considerations also show that a nonzero $m\Theta$ *p*-adic number $x \in \mathbb{Q}_{p\mathbb{Z}}$ can be uniquely written as $x = p^m u$ with $m \in \mathbb{Z}$ and a unit $u \in \mathbb{Z}_{p\mathbb{Z}}^{\times}$; hence

$$
\mathbb{Q}_{p\mathbb{Z}}^{\times}=\coprod_{m\geq 0}p^{-m}\mathbb{Z}_{p\mathbb{Z}}^{\times}
$$

is a disjoint union over the rational integers $m \in \mathbb{Z}$.

0.5. *m* Θ **Completion of** $\mathbb{Q}_{p\mathbb{Z}}$

0.5.1. The $m\Theta s$ of $\mathbb{Q}_{p\mathbb{Z}}$ - sequences

Definition 0.11. Intrinsic metric of Q*p*Z or *m*Θ metric space on $\mathbb{Q}_{p\mathbb{Z}}$ is any list defined as follows:

$$
(\mathbb{Q}_{p\mathbb{Z}}, F_{\alpha}, d_{p\mathbb{Z}}),
$$
 or simply $(\mathbb{Q}_{p\mathbb{Z}}, d_{p\mathbb{Z}})$

with $d_{p\mathbb{Z}}$ a $m\Theta$ *p*-adic metric such that:

$$
\forall x = (x_i)_{i \geq 0}, \quad y = (y_i)_{i \geq 0} \in \mathbb{Q}_{p\mathbb{Z}}; \quad d_{p\mathbb{Z}}(x, y) = \sup_{i \geq 0} \frac{\delta(x_i, y_i)}{p^i} = \frac{1}{p^{v^{\Theta}(x-y)}},
$$

where $\delta(x_i, y_i) = \begin{cases}$ \int = ≠ $\delta(x_i, y_i) =$ $i = y_i$ $i \neq y_i$ i, y_i) = $\begin{cases} 0 & \text{if } x_i = y_i \end{cases}$ $x_i \neq y$ x_i, y 0 if 1 if , y_i = \langle is the discrete topology.

Definition 0.12. (a_m) is a $m\Theta$ Cauchy sequence of $\mathbb{Q}_{p\mathbb{Z}}$, $a_m =$ $\sum_{i\geq 0} a_m$, $i p^i$, if and only if (a_m) verifies the following statement:

$$
\forall \epsilon \in \mathbb{Q}_+^*, \quad \exists m_0 \in \mathbb{N}^* : m',\, m'' \geq m_0 \Rightarrow d_{p\mathbb{Z}}(a_{m'},\, a_{m''}) \leq \epsilon.
$$

 $\mathfrak{V} = \mathfrak{V}(\mathbb{Q}_p)$ is the set of sequences of elements of \mathbb{Q}_p noted $(a_m): \forall m;\ a_m \in \mathbb{Q}_p.$

 $\Omega = \Omega(\mathbb Q_p)$ is the set of Cauchy sequences of $\mathbb Q_p.$

Let $\mathfrak{V}_{p\mathbb{Z}}$ be the set of sequences of elements of $\mathbb{Q}_{p\mathbb{Z}} : \forall (a_m)$; $\forall \alpha \in I_*, \ F_{\alpha}(a_m) = (F_{\alpha}a_m) \in \mho(\mathbb{Q}_p).$

Remark 0.4. 1. ($\mathcal{O}_{p\mathbb{Z}}$, F_α) is a *m*Θ*s* whose the subset of *m*Θ invariants, $C(\mathfrak{O}_{p\mathbb{Z}})$ is $\mathfrak{O}(\mathbb{Q}_p)$; so

$$
C(\mathfrak{V}_{p\mathbb{Z}},\,F_{\alpha})=\mathfrak{V}(\mathbb{Q}_p\,).
$$

2. $(\Omega_{p\mathbb{Z}}, F_{\alpha})$ is a *m*Θ*s* whose the subset of *m*Θ invariants, $C(\Omega_{p\mathbb{Z}})$ is $Ω$ (\mathbb{Q}_p); so

$$
C(\Omega_{p\mathbb{Z}},\,F_{\alpha})=\Omega(\mathbb{Q}_p).
$$

Definition 0.13. Let $\Omega_{p\mathbb{Z}} = \Omega_{m\Theta}(\mathbb{Q}_{p\mathbb{Z}})$ be the set of $m\Theta$ Cauchy sequences of $(\mathbb{Q}_{p\mathbb{Z}})$.

 $0.5.2$ *. m* Θ construction of $\widehat{\mathbb{Q}_{p\mathbb{Z}}}$

Definition 0.14. We define $\mathcal{R}_{p\mathbb{Z}}$ in $\Omega_{p\mathbb{Z}}$ as follows:

$$
\forall (a_m), (b_m) \in \Omega_{p\mathbb{Z}}, (a_m) \mathcal{R}_{p\mathbb{Z}}(b_m)
$$

$$
\Leftrightarrow (\forall \epsilon \in \mathbb{Q}_+^*, \exists m_0 \in \mathbb{N}^* : m \ge m_0 \Rightarrow d_{p\mathbb{Z}}(a_m, b_m) \le \epsilon).
$$

Consequence 0.1. 1. Let $\mathcal{R} = \mathcal{R}_{p\mathbb{Z}}/\Omega$. By definition,

 $\forall (a_m), (b_m) \in \Omega, (a_m) \mathcal{R}(b_m)$

$$
\Leftrightarrow (\forall \epsilon \in \mathbb{Q}_+^*, \exists m_0 \in \mathbb{N}^* : m \ge m_0 \Rightarrow d(a_m, b_m) \le \epsilon),
$$

where $d(a_m, b_m) = \frac{1}{p^{v(a_m - b_m)}}$. *ad b* − =

2. $\exists (a_m), (b_m); (a_m), (b_m) \in \Omega_{p\mathbb{Z}}$ such that $(a_m) \in \Omega_{p\mathbb{Z}} - \Omega, b_m \in \Omega$ $Ω$ but (a_m) $R_{pZ}(b_m)$.

Therefore $(a_m) \mathcal{R}_{p\mathbb{Z}}(b_m)$; either (a_m) , $(b_m) \in \Omega_{p\mathbb{Z}} - \Omega$ or (a_m) , (b_m) ∈ Ω.

Observation 0.1. 1. Since $\mathcal{R}_{p\mathbb{Z}}$ is respectful with the $m\Theta$ structure of $\Omega_{p\mathbb{Z}}$

 $(a_m) \mathcal{R}(b_m) \Rightarrow \forall \alpha \in I^*, \quad F_\alpha(a_m) \mathcal{R} F_\alpha(b_m).$

Therefore let $\widehat{\Omega_{p\mathbb{Z}}} = \frac{\Omega_{p\mathbb{Z}}}{\mathcal{R}_{p\mathbb{Z}}}$ Z *p p* \mathcal{R} $=\frac{\Omega_{p\mathbb{Z}}}{\mathcal{R}}$ be the *m*Θ quotient *m*Θ*s* modulo $\mathcal{R}_{p\mathbb{Z}}$ of

 $\Omega_{p\mathbb{Z}}$.

2. Let N be defined as follows:

$$
\mathcal{N} = \{ (a_m); (a_m) \in \Omega : (a_m) \mathcal{R}(0) \}.
$$

It is known that N is a maximal ideal of $Ω$. $N_{p\mathbb{Z}}$ defined as follows:

$$
\mathcal{N}_{p\mathbb{Z}} = \{ (a_m); (a_m) \in \Omega_{p\mathbb{Z}} : \forall \alpha \in I^*, F_{\alpha}(a_m) \in \mathcal{N} \}
$$

respects all the *m*Θ structures of $\Omega_{p\mathbb{Z}}$ and even is a *m*Θ maximal ideal of $\Omega_{p\mathbb{Z}}$ for all its *m*Θ algebraic structures. Obviously, $\frac{p\mathbb{Z}}{\mathcal{N}_{p\mathbb{Z}}} = \frac{p\mathbb{Z}}{\mathcal{R}_{p\mathbb{Z}}}$. Z Z Z *p p p p* ${\cal N} \hspace{0.1em}_{n {\mathbb Z}} \hspace{0.3em} {\cal R}$ Ω = Ω Let $\widehat{\mathbb{Q}_{p\mathbb{Z}}} = \frac{\Omega_{p\mathbb{Z}}}{\mathcal{N}_{p\mathbb{Z}}}.$ Z *p p* \mathcal{N} Ω =

The following remark results from the preceding observation.

Remark 0.5. $\widehat{\mathbb{Q}_{p\mathbb{Z}}}$ is a $m\Theta$ quasifield whose the subfield of the $m\Theta$ $\text{invariants, } C(\widehat{\mathbb{Q}_{p\mathbb{Z}}}) \text{ is } \widehat{\mathbb{Q}_p}: C(\widehat{\mathbb{Q}_{p\mathbb{Z}}}) = \widehat{\mathbb{Q}_p}.$

Consider the following commutative diagram:

$$
\mathbb{Q}_{p\mathbb{Z}} \xrightarrow{j_{p\mathbb{Z}}} \Omega_{p\mathbb{Z}} \downarrow^{\varphi_{\mathcal{R}}}_{\varphi_{\mathcal{R}}}
$$

With the following definitions $\forall a \in \mathbb{Q}_{p\mathbb{Z}} : j_{p\mathbb{Z}} : a \mapsto j_{p\mathbb{Z}}(a) = (a_m)$.

$$
\varphi_{\mathcal{R}_{p\mathbb{Z}}}:(a_{m})\mapsto \varphi_{\mathcal{R}_{p\mathbb{Z}}}((a_{m}))=\frac{(a_{m})}{\mathcal{R}_{p\mathbb{Z}}};\quad \widehat{j_{p\mathbb{Z}}}:x\mapsto \widehat{j_{p\mathbb{Z}}}(a)=\frac{(a_{m})}{\mathcal{R}_{p\mathbb{Z}}}.
$$

1. By construction, $\widehat{j_{p\mathbb{Z}}} = \varphi_{\mathcal{R}_{p\mathbb{Z}}} \circ j_{p\mathbb{Z}}$ is a $m\Theta$ isomorphism of $m\Theta$ $\hat{f}(\mathbb{Q}_{p\mathbb{Z}}) \text{ of } \widehat{\mathbb{Q}_{p\mathbb{Z}}}$ over the sub $m\Theta \hat{f} \hat{j}(\mathbb{Q}_{p\mathbb{Z}}) \text{ of } \widehat{\mathbb{Q}_{p\mathbb{Z}}}.$

2. $\hat{j} = \widehat{j_{p\mathbb{Z}}} \big|_{\mathbb{Q}_p}$ is a field isomorphism of \mathbb{Q}_p over the subfield $\hat{j}(\mathbb{Q}_p)$ of $\widehat{\mathbb{Q}_p}$.

Definition 0.15. 1. Let $a_0 \in \mathbb{Q}_{p\mathbb{Z}}$, (a_m) a sequence of elements of $\mathbb{Q}_{p\mathbb{Z}}$; (a_m) *m* Θ converges (*m* Θ *cv*) to a_0 ; notation (a_m) *m* Θ *cv* $\rightarrow a_0$ if and only if:

$$
\forall \epsilon \in \mathbb{Q}_+^*, \ \exists m_0 \in \mathbb{N}^* : m \ge m_0 \to d_{p\mathbb{Z}}(a_m, a_0) \le \epsilon.
$$

2. (a_m) *m* Θ converges to *a* in $\mathbb{Q}_{p\mathbb{Z}}$ is equivalent to the following statement:

 $\forall \alpha \in I^*, F_{\alpha}(a_m)$ converges to $F_{\alpha}(a)$ in \mathbb{Q}_p .

Proposition 0.4. $\forall a \in \mathbb{Q}_{p\mathbb{Z}}, \quad \forall J : \emptyset \neq J \subset I_*, \quad \forall (a_m) \in \mathbb{G}_{p\mathbb{Z}}.$ If $\forall \alpha \in J$, $F_{\alpha}(a_m)$ converges to $F_{\alpha}(a) \in \mathbb{Q}_p$, then (a_m) J -converges to $a \in \mathbb{Q}_{p\mathbb{Z}}$.

Proof 0.7. Since $\forall \alpha, \alpha \in J$, $\exists m_{0\alpha} \in \mathbb{N}$ such that $m \ge m_{0\alpha} \rightarrow$ $(F_{\alpha}a_m, F_{\alpha}a) \leq \frac{\epsilon}{Card \cdot I} \forall \epsilon \in \mathbb{Q}_+^*,$ $d(F_{\alpha}a_m, F_{\alpha}a) \leq \frac{\epsilon}{Card J} \forall \epsilon \in \mathbb{Q}_+^{\times}, \ \forall \alpha \in J.$

Let $m_0 = \max\{m_{0\alpha}\};$ then $m \ge m_0 \to d(F_\alpha a_m, F_\alpha a) \le \frac{\epsilon}{Card \, J}$ $\forall \epsilon \in \mathbb{Q}_+^*$, $\forall \alpha \in J$. Therefore $\sum_{\alpha \in J} d(F_\alpha(a_m), F_\alpha(a)) \leq \epsilon$ what is $d_J(a_m, a) \leq \epsilon \text{ and } (a_m) J \text{- converges to } a \text{ in } \mathbb{Q}_{p\mathbb{Z}}.$

Lemma 0.1. *If* $\varrho \in \widehat{\mathbb{Q}_{p\mathbb{Z}}}$, then

 $\forall (a_m) \in \varrho; \ \hat{j}(a_m) \text{ and converges to } \varrho \text{ in } \widehat{\mathbb{Q}_{p\mathbb{Z}}}.$

Proof 0.8. It is obvious that in $\widehat{\mathbb{Q}_{p\mathbb{Z}}}$ as well as in $\mathbb{Q}_{p\mathbb{Z}}$ the following statements are equivalent:

1. (a_m) *m* Θ converges to ϱ in $\mathbb{Q}_{p\mathbb{Z}}$ and

2.
$$
\forall \alpha \in I_*, F_\alpha \circ \widehat{j_{p\mathbb{Z}}}(a_m)
$$
 converges to $F_\alpha \varrho$ in $\widehat{\mathbb{Q}_p}$.

So that it then remains the same to state that $\forall \alpha \in I^*, \quad \hat{j}(F_{\alpha}a_m)$ converges to $F_{\alpha} \varrho$ in $\widehat{\mathbb{Q}_p}$. That is

$$
\forall \alpha \in I_*, \forall \epsilon \in \mathbb{Q}_+^*, \exists m_{0\alpha} \in \mathbb{N}^* : m \ge m_{0\alpha}
$$

$$
\Rightarrow d(j(F_{\alpha}a_m), F_{\alpha}\varrho) \leq \frac{\epsilon}{Card I_*}.
$$

Let $m_0 = \max_{\alpha \in I^*} \{m_{0\alpha}\}, \quad \text{if} \quad \forall m \ge m_0, \quad \text{then}$ $\forall \alpha \in I_*$, $d(j(F_\alpha a_m), F_\alpha \varrho) \leq \frac{\epsilon}{Card I_*}.$ $\leq \frac{\epsilon}{Card L}$. Therefore $d(j(F_{\alpha}a_m), F_{\alpha}\varrho) \leq \epsilon$.

This means that $\forall \epsilon \in \mathbb{Q}_+^*$, $m \geq m_0 \Rightarrow d_{p\mathbb{Z}}$ $(\widehat{j_{p\mathbb{Z}}}(a_m), \varrho) \leq \epsilon$. So that $\hat{j}(a_m)$ *m* Θ converges to ϱ in $\widehat{\mathbb{Q}_p\mathbb{Z}}$.

Remark 0.6. It is obvious that $\forall J : \emptyset \neq J \subset I_*$ if $\varrho \in \widehat{\mathbb{Q}_{p\mathbb{Z}}}$, $\forall (a_m) \in \varrho \cap \Omega_J(\mathbb{Q}_{p\mathbb{Z}}), \text{ then } (a_m) J \text{ or to } \varrho \text{ in } \mathbb{Q}_{p\mathbb{Z}}.$ One would then say that $\mathbb{Q}_{p\mathbb{Z}}$ is J -dense in $\widehat{\mathbb{Q}_{p\mathbb{Z}}}$.

 $\mathbb{Q}_{p\mathbb{Z}}$ is $m\Theta$ dense in $\widehat{\mathbb{Q}_{p\mathbb{Z}}}.$

Theorem 0.4. *Let* $(\mathbb{K}_{p\mathbb{Z}}, F'_{\alpha})$ *be a m*Θ*f such as* $\mathbb{Q}_{p\mathbb{Z}}$ *is m*Θ *dense in* $\mathbb{K}_{p\mathbb{Z}}$ and any m Θ Cauchy sequence of $\mathbb{K}_{p\mathbb{Z}}$ m Θ cv in $\mathbb{K}_{p\mathbb{Z}}$, then $\exists \widehat{f_{pZ}}:\widehat{\mathbb{Q}_{pZ}} \to \mathbb{K}_{p\mathbb{Z}}$ such that $\widehat{f_{pZ}}$ is a m Θ isomorphism of $\widehat{\mathbb{Q}_{pZ}}$ over $\mathbb{K}_{p\mathbb{Z}}$, $s(f_{p\mathbb{Z}})$ *is unique and* $\widehat{f_{p\mathbb{Z}}}_{\vert \mathbb{Q}_{p\mathbb{Z}}} = id_{\mathbb{Q}_{p\mathbb{Z}}}$.

Proof 0.9. Any $m\Theta$ Cauchy sequence of $\widehat{\mathbb{Q}_{pZ}}$ is a $m\Theta$ Cauchy sequence of $\mathbb{K}_{p\mathbb{Z}}$. Let then $\hat{a} \in \widehat{\mathbb{Q}_{p\mathbb{Z}}}$ and $(a_m) \in \Omega_{p\mathbb{Z}}$ such that $\hat{a} = \frac{(a_m)}{\sigma}$. *p*Z $\hat{a} = \frac{(a_m)}{\mathcal{R}_{p\mathbb{Z}}}$. It is known that (a_m) *m*Θ*cv* say to \hat{a} in $\widehat{\mathbb{Q}_{p\mathbb{Z}}}$.

As a Cauchy sequence of $\mathbb{K}_{p\mathbb{Z}}$, let *a'* be the *m* Θ limit of (a_m) in $\mathbb{K}_{p\mathbb{Z}}$. Define now f as follows:

$$
\widehat{f_{p\mathbb{Z}}}:\widehat{\mathbb{Q}_{p\mathbb{Z}}}\to\mathbb{K}_{p\mathbb{Z}}:\hat{a}\mapsto a'.
$$

By definition of $\widehat{f_{pZ}}$ and the respective laws of $\widehat{\mathbb{Q}_{pZ}}$ and \mathbb{K}_{pZ} , $\widehat{f_{p\mathbb{Z}}}_{|\mathbb{Q}_{p\mathbb{Z}}}=id_{\mathbb{Q}_{p\mathbb{Z}}}.$

0.6. Conclusion

This note shows that $\mathbb{Q}_{p\mathbb{Z}}$ is a $m\Theta$ Fraction Field of $\mathbb{Z}_{p\mathbb{Z}}$, the ring of *m*Θ *p*-adic integers compatible with the *m*Θ structure as presented in [4].

 $\mathbb{Q}_{p\mathbb{Z}}$ is $m\Theta$ dense in $\widehat{\mathbb{Q}_{p\mathbb{Z}}}$. $\widehat{\mathbb{Q}_{p\mathbb{Z}}}$ is the unique $m\Theta$ completion of $\mathbb{Q}_{p\mathbb{Z}}$ and

$$
C(\widehat{\mathbb{Q}_{p\mathbb{Z}}},F'_{\alpha})=\widehat{\mathbb{Q}_p}.
$$

The results obtained in this paper can be used in the construction of the compact topological *m*Θ ring Z*p*Z of *m*Θ *p*-adic integers and of its quotient *m*Θ field Q*p*Z the locally compact *m*Θ field of *p*-adic numbers.

References

- [1] F. Ayissi Eteme, *chrm*Θ Introducing Pure and Applied Mathematics, Lambert Academic Publishing Saarbruken, Germany, 2015.
- [2] Alain M. Robert, A Course in *p* adic Analysis, Springer-Verlag New York, 2000.
- [3] F. Ayissi Eteme, Logique et Algèbre de structure mathématiques modales Θ- valentes chrysippiennes, Edition Hermann, Paris, 2009.
- [4] F. Ayissi Eteme, Complétion chrysippienne d'une algèbre de Lukasiewicz Θ · valent CRAS Paris, 299, série 1(3), 1984, pp. 69-72.
- [5] Alain Escassut, Analytic Elements in *p* adic Analysis, World Scientific, 1995.
- [6] F. Ayissi Eteme, Anneau chrysippien $Θ$ valent, CRAS, Paris 298, série 1, 1984, pp. 1-4.