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Abstract 

We make the direct derivation of the SB (Stefan-Boltzmann) 4T  

radiation law by a series of successive approximations, based on 

classical models of radiation emission and scattering from thermally 

agitated electrons, perturbed slightly by collective effects, with the 

constraint of electric charge quantization, then also modified by an 

effective ensemble emissivity, due to quantum suppression of radiation 

rates. This results in the expression the SB radiation law that includes 

1−α  explicitly ( ( )( ) ( ) ) 43434803 ThcckFSB απ=  and agrees with 

correct results to within ppm.1  This agreement requires the highly 

accurate Wyler Formula to be operative: ( )( ) 4351 1532310 ππ=α−  

.0361.137=  In addition, this analysis strongly suggests the 

quantization of action, the founding concept of quantum mechanics, is 

actually emergent, being born from the principle of minimum action, 

many particle dynamics and the quantization of electric charge, in the 

Hadron Era of the Big Bang. 
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1. Introduction 

We attempt here to derive the Stefan-Boltzmann 4T  radiative power 

law based on classical models of ensemble systems at a condensed matter- 

vacuum interface, perturbed by thermal collective effects and a semi-

classical effective emissivity representing quantum suppression of 

radiation rates by the ensemble. 

It is expected, intuitively, that aside from the phenomena of quantum 

radiation suppression, that the other parts of the model will be basically 

classical versions of terms that differ only by factors due to collective 

effects that are close to one. That is, we expect that we can recover the SB 

radiation law from slightly perturbed isolated particle dynamics models, 

assuming a thermal distribution with quantum effects entering primarily 

as an effective emissivity factor applied to the whole ensemble. 

We will approach this direct derivation of the SB radiation law by a 

series of successive approximations. 

The calculation of alpha was first proposed by Wyler [1] who obtained 

the highly accurate formula: 

 0361.137
15

32

3

10
43

..51 =





 π

π
=α−  (1) 

which matches experimental measurements: 03599.1371 =α−  to within 

ppm.6.0  

However, attempts to derive this formula from physical models have 

not been previously found. However, the author has noted that the 

51532 π  portion of the Wyler formula is very similar to the dimensionless 

portion of the SB (Stefan-Boltzmann) constant, suggesting that semi-

classical physical derivation might exist. Such a path of derivation by 

physical models may have been found, and is here reported. 
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The author realizes that calculation of the inverse of α  using Black 

Body physics should require complex mathematic models involving 

distributions over frequency and many particle interactions in a partially 

ionized condensed matter environment. Yet, in its limiting ideal case, of a 

perfect Black body, the resulting radiated power per unit area of a 

vacuum interface is independent of the density and detailed composition 

of the condensed matter. This law also requires no relativistic effects to be 

in action since it is part of everyday life. This suggests that a simple 

physical modeling path can exist where errors in one part of the model 

cancel errors in other parts, with the ideal radiation law emerging. 

Similarly, the existence of a compact expression for ,1−α  that is highly 

accurate, suggests that a modeling pathway exists where errors in 

various simple models cancel. It is such a path that we will attempt to 

find. 

We will approach this direct derivation of the SB radiation law by a 

series of successive approximations. We first begin with a simple 

conceptual model based on merely identifying classical and quantum-

collective factors, then advance to approximate estimates of such factors, 

then finally to best approximations models where hopefully, errors in one 

part of the model will cancel errors in other parts leading to highly 

accurate expressions. Such an approach, mirrors, in microcosm, the entire 

process of theoretical physics in human history. 

2. Conceptual Model Formula 

The derivation begins, with a physical model of photon-electron 

scattering, the Zitterbewegung where the Heisenberg uncertainty for an 

electron is modeled as a series of absorption and emission events 

occurring as it sits in a sea of ZPF radiation. An electron absorption time 

is considered to be ,creabs =τ  where 22 cmer ee =  is the electron 

classical radius. Following this absorption, the electron heads off on a 
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new trajectory, but then after a mean free path distance ,1
er

−α=D  a 

Compton radius, it emits a photon and again changes its trajectory. We 

can therefore, define a quantum emissivity of a condensed matter-

vacuum interface: α≅ε′  (see Appendix 1). 

Defining an emissivity as a ratio of photon emission rate per unit area 

divided by the absorption rate per area at a thermal equilibrium we can, 

based on the Zitterbewegung model, consider α  to be an effective 

emissivity for an electron. This is opposed to a classical emissivity of 

unity based on Thompson scattering where an electron simply emits 

radiation as soon as it absorbs it. We will term this effect the “quantum-

suppression” of radiation by electrons, as in the extreme case of the 

ground-state hydrogen atom. 

We would then expect the SB law for radiated power per unit area of 

a hot condensed matter material SBP  at an interface with a vacuum to be 

approximately, 

 
( )

( )
,

15

2
2

3

4
5

hc

kT
cnPF LSB π≅δ′′′ε′≅  (2) 

where the factor of two represents the inclusion of both polarizations, LP ′  

is Larmor classical radiated power per thermally agitated electron, 

perturbed by collective effects due the fact that the electrons are 

surrounded by other perturbed electrons, which also move when one 

electron moves. In the physical model we will adopt, the effective 

radiating density n′  represents the density of electrons free to move, 

absorb energy in electron-electron collective interactions and then radiate 

it, in classical manner, being an overlapping population of free and 

loosely bound electrons in the condensed matter. In contrast the effective 

skin thickness δ′  represents the layer thickness of the condensed matter 

where radiation from the interface with a vacuum occurs, due to a 

slightly different density of electrons, which we will call ,n ′′  which 
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participate in the radiation near the interface, by quantum electron-

photon events. We will consider the electron-electron radiation active 

density n′  to be approximately similar to the density quantum active 

density n ′′  of electrons in this model so that nn ′′≈′  even though their 

dynamics are different in this model. 

The electrons move more sluggishly in condensed matter than in 

isolation, leading to less radiated power per electron. This effect will be 

treated in our modeling by assigning an effective mass, eeff mm ≅  to the 

electrons in their dynamics. As will be seen, this effect can be included as 

a factor on the Larmor classical radiated power per electron, which scales 

as the acceleration of the electrons squared, which will be reduced by a 

factor 1>effC  due to a larger effective mass of the electrons .eeff mm >  

 .
eff

L
L C

P
P =′  (3) 

We also have n′  as the effective radiative free electron density and δ′  is 

the effective radiation power mean free path length. This emissivity must 

include effects of higher order scattering of photons. The factor of 

approximately 1361  ( )αnot  is then the effective emissivity, ,ε′  (see 

Appendix 1) indicating quantum-suppression of radiation rates, and 

quantum higher order scattering , whereby 

 
( )

( )
,

15

2
2

3

4
5

hc

kT
cnPF LSB π≅δ′′′ε′≅  (4) 

where we can write δ′  using our model assumption nn ′′≈′  

 ,
1

σ′′
≅δ′
n

 (5) 

where σ′  is the effective cross section of electron-photon scattering, which 

we would expect to be the Thompson cross section with a small 

modification factor due to collective effects. Leading to the desired 
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approximate expression, which is independent of density: 

 .
2

eff

L
SB C

P
F

σ′

ε′
≅  (6) 

Let us now, attempt to arrive at more exact formula based on simple 

physical and mathematical models consisting of single particle dynamics 

modified by both collective and quantum effects: 

Assumption 1. The radiation can be considered as due entirely due 

to electron-electron and photon-electron dynamics in a fixed positive 

background. That is, the electrons do the radiating, because they move 

and belong to two overlapping populations, one is involved in electron-

electron interactions and another, in primarily electron-photon 

scattering. The radiating electron population is both free and bound 

electrons. It must also be remembered that the electrons that are “most 

free” will do most of the radiating and scattering of radiation. 

Assumption 2. The next fundamental assumption guiding this model 

analysis is the assumption of quantization of dynamics, so that particles 

interact as discrete entities in groups based on the integers of charge Z  

unit cells of interaction scaling as .2Z  That is, quantization of charge, 

and quantization of electrodynamics are intimately connected. Thus 

factors of dynamic interaction will have the form effmZ2  where Z  

must be an integer, even if effm  is not a mass quantum. That is, Z  is a 

globally conserved quanta even if effective mass in not. 

Assumption 3. The infinite range of electric forces means that every 

electron effects and is affected by every other electron in a condensed 

matter environment, regardless of whether the electrons are “bound” or 

“free”, similarly quantum physics means also that particles are both 

discrete and yet simultaneously part of a continuous quantum field. That 

is, we make the assumption in our modeling that no clear boundary exists 
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between classical collective and quantum electrodynamics in condensed 

matter. 

With these fundamental assumptions in mind we will now proceed to 

derive the SB radiation law based on models of radiation and radiation 

scattering. As mentioned before we will approach this by successive 

approximations. The goal of the first approximations, is to giving 

approximate numbers, for ,ε′  σ′  and .effC  

We begin with the Larmor expression for radiated power for isolated 

electrons, which we assume are thermally agitated. 

 ,
3

2

3

2 2

4

2
2

3

2

ca
c

e
a

c

e
PL ==  (7) 

where we assume the acceleration a  is due to thermal collisions in a sea 

of other electrons. We have for isolated electrons 

 ,
2

2

therm

e
a =                   .

2

kT

e
rth =  (8) 

This model leads immediately to the 4T  dependence of the radiation rate: 

 
( )

.
2

4

.8

4
2

em

e

e

kT
a =  (9) 

We now consider the effect of nearby electrons, leading to effe mm →  

 
( )

.
2

4

.8

4
2

effm

e

e

kT
a =′  (10) 

We can write this in terms of an effective radiating cross section 

 
( ) ( )

,
2

.8

4
2

42

4
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4
4
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e

eff
C

r

e

kT
c

cm

e

e

kT
c =  (11) 
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where ( )2eeffeff mmC =  is the factor due to the heavier effective mass 

of the electrons due to collective effects. 

We then define for an effective radiating cross section 

 .
2

2

eff

e
eff C

r
r ≅  (12) 

We therefore have a model of effective radiated power per electron due to 

electron-electron interactions. 

We have then for our conceptual radiation power formula, where a 

density of thermally agitated electrons in a skin layer δ′  radiates to 

create the Stefan Boltzmann radiation law 

,2 δ′′ε′= nPF LSB  (13) 

,
1

nσ′
≅δ′  (14) 

,
1

σ′
≅δ′′n  (15) 

where we would expect that the effective cross section σ′  to have a value 

of approximately the Thompson cross section 

 .
3

8 2
er

π
≅σ′  (16) 

This then should reduce to an expression for the SB Law where we have 

density of Larmor radiating electrons, whose rate of radiation is reduced 

by collective effects. This gives the electrons a slightly higher effective 

mass, leading to factor 1>effC  and also an effective emissivity 1<ε′  

due to the quantum suppression of radiation rates. So we have a 

conceptual formula for the radiation rate per unit area at a vacuum 

interface. 
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 .
2

eff

L
SB C

P
F

σ′

ε′
=  (17) 

3. First Approximation Model 

We now will try to determine, to first approximation, values for the 

factors ε′  and .effC  We assume here that since the EM force has infinite 

range charged particles will interact as clusters in unit cells rather than 

directly as a density. 

Here we adopt the physical model of electrons moving in a fixed 

positive background, with electron interacting as pairs but with three 

body and four body interactions also contributing and adding to the 

effective mass of the moving electrons. Thermally agitated electron-

electron interactions with collective effects, independent of density, and 

since are assuming the electrons are interacting as pairs, we assume a 

reduced mass for electron-electron collisions .2- eee mm →  Using a 

planar wave collective electrostatic behavior of electrons in a plasma 

 
( ) ( ) ( )

.
22

4
.

2
2

2

2

2
e-

2

ee

e

e

pe

eff nm

ne

nm

e

π

π
=

π

ω
≅  (18) 

The effective mass for electron-electron thermal scattering model is thus 

approximately 

 
( ) ( )

.
2

22

4 2

2

2
2

eee

e

eff m

e

nm

ne

m

e

π
=

π

π
≅  (19) 

( ) ,2 eeff mm π=  takes into account collective behavior of the electrons 

and the ion background. This is the “many body problem” which has no 

known exact solutions, only model calculations. In the dynamics model we 

will use, it is the electrons that move, not the ions. This leads to an 

increase in the effective dynamic mass of the electrons, due to the motion 
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of the other electrons in concert with the original electron, and also pairs 

of other electrons and triples and so on. This leads to a reduction of the 

value of the scattering cross section of approximately ( ) ,2 222
eeff rr π≅  

therefore we assume an .2
effr  This leads to a value for ,effC  in the first 

approximation due to electron effective mass effects, 

 
( )

.
2

2

22
2

π
≅= e

eff

e
eff

r

C

r
r  (20) 

We have then also the effective emissivity ε′  (see Appendix 1) 

 .1361≅ε′  (21) 

So we have, in first approximation, again: 

 ,
2

eff

L
SB C

P
F

σ′

ε′
≅  (22) 

where, in this first approximation, we will have 1361≅ε′  and 

( )22π≅effC  and we assume for now that σ′  is approximately the 

Thompson cross section. Therefore, in this first approximation model, and 

with the exception of the factor due to quantum suppression of radiation 

rates, the SB law is a result of an ensemble of thermally agitated 

electrons in a positive background with dynamics only slightly perturbed 

by collective effects. 

4. A More Precise Model 

Stefan Boltzmann Law SBF  requires a radiation pressure at the 

radiating interface, with the constraint that it, like the SB radiation law 

itself, must be independent of density. We add the collective and quantum 

effects with a Guant factor qg ′  much less than one. It is here we shall add 

the effect of quantum suppression of radiation rates by means of a 



… QUANTUM FINE STRUCTURE CONSTANT VIA THE … 

 

65 

physical mechanism, knowing that it will appear explicitly in the final 

approximate expression. 

( ) ( )
,

3

2

3

2
42

4

6

4

2

4

8

4

4

2

q

e

q

e

L g
cm

e

e

kT
cg

m

e

e

kT

c

e
cP ′=′=′  (23) 

( )

( )
.

23

2
422

4

6

4

cm

e

e

kT
cP

e

L
π

=  (24) 

We now use the identity 

 
π

α
=

2
2 hc
e  (25) 

and obtain, a close approximation to the exactly known law 

 
( )

( )
.

15

2
3

4
5

hc

kT
cFSB π=  (26) 

Force balance, since it cannot depend on particle density at the level of 

radiation pressure, is interpreted to mean that radiation pressure equals 

an adiabatic thermodynamic pressure due to quantum uncertainty. This 

means this part of the equilibrium at the vacuum interface effect must be 

independent of density and temperature and so must depend on quantum 

effects affecting each photon-electron interactions. Therefore, in this 

model the effect of quantum mechanics enters explicitly, aside from 

charge quantization, in the requirement of an adiabatic pressure balance 

between the electron population and the radiation pressure due to 

emitted radiation at a vacuum-to matter interface. 

We have then an adiabatic quantum pressure equilibrium, where the 

35  exponent is consistent with an adiabatic pressure equilibrium with 

the radiation pressure: 35nP ∝  

 
( )

( )
.8

3

2
2

35
342

3

4
33

c

P

C
Kr

hc

kT

Ac

P SB
e =






 α

απ=
′ε′ −−  (27) 
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We therefore choose a Gaunt factor: 

 
35

34






 α

=′ −

C
Kgq  (28) 

which contains both quantum and collective electrodynamic effects, and 

two undetermined constants ,C  and .K  We have then our model, with 

the expanded terms 

 
( )

( )
.8

3

4 34

34

35

31

2

3

4
33 −− α

απ=′ K
CC

r

hc

kT
cP e

L  (29) 

For this physical model, where only electron-electron dynamics 

contributes to radiation, only electrons interacting in groups of three, can 

produce radiation, single electrons and electron-electron dynamics not 

producing dipole EM radiation. This gives us (see Appendix 2) in order to 

obtain the same approximate number effC  as before, we must have 

,162 == CZ  meaning 4=Z  in a unit cell of interaction in order to 

agree with our model first approximate estimate for effC  and so 

52.231 ≅C  which closely approximates ( ) 47.22
2

=π  but it is an 

algebraic number as required. Therefore, we have identified the value of 

C  for this model, based on its dependence of ,2Z  where Z  is the charge 

quantum for a unit interaction. We will assume that the mass of electrons 

for photon-electron scattering is just em  and thus .eeff rr =  We then 

identify, in our conceptual formula: 

 
3434

32
3

3

2

3

4

3

8
CKre 






 ππ

=
ε′

σ′
 (30) 

the effective scattering cross section for photon-electron scattering is the 

Thompson cross section times the density per unit area of the electrons 

32−
en  per unit cell. (See Appendix 3). 
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The effective electron-photon scattering cross section σ′  is due to a 

different effective density n ′′  than that causing dynamic radiating 

density .n′  The unit cell of each electron involved in electro-photon 

scattering is of volume 334 er′π  where ,323
ee rZr ′=′  a geometric mean of 

2
er  and erZ 2′  where Z ′  is an effective Z  value for the electrons in this 

electron-photon scattering environment (see Appendix 3). The effective 

Z ′  will assume in this model that Z ′  is integer, and enters as 2Z ′  as did 

,2Z  earlier. This electron-photon scattering model we are assuming in 

this model that the electrons always act like charge quantum states. 

We obtain then a parallel expression for the ratio 

 .
3

2

3

4

3

8

9

8

3

8 3434
32

323

4
3

2

CKrrZ ee 





 ππ

=′





 ππ

 (31) 

Requiring 

 .343434 ZCK ′=  (32) 

Accordingly, the quantum radiation pressure term appears as an effective 

integral charge quantum state in the unit cell of the electron density for 

photon-electron density. 

We have then for our best approximation of the SB radiation law 

under the assumptions of this model 

 

( )

( )
,

3

1
4

3

8

8
3

4

234
34

3

2

35

3

4
323

e
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rZ

hc

kT
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F

′





π

π

ααπ

=

−

 (33) 

where effeeff Crr 22 =  so we have for 342=effC  
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( )

( )
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3
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8
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2
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3

4
323

ZCr

hc

kT
cr

F
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e
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′





π

π

ααπ

=

−

 (34) 

We then identify 

 ,
3

1
4

3

8 2
34

3

2

σ′=





π

π
er  (35) 

where this quantity is approximately twice the Thompson Cross section 

thσ  

 .
3

8
2 2

er
π

≅σ′  (36) 

We then simplify the expression using 393 −− α=α  

 

( )
( )

( )
.

3

34

3

4
3434

ZC

hc

kT
c

F

eff

SB
′

πα

=

−

 (37) 

We thus have for 16=C  and the requirement that Z ′  is an integer, 

where it will be seen we are estimating the value of ( ) .401361
34

≅≅ε′  

Allows us to make the identification 

,1 34Z ′=ε′  (38) 

.343434 ZCK ′=  (39) 

We find the integer value of Z ′  that best yields our approximate value of 

.1 ε′  We have already determined the value of C  in this model as .16  So 

we have, in order to obtain approximate agreement with our provisional 

value of 1361 =ε′  we must have 

 .4016 =′= ZK  (40) 
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This determines the value of K  

 .
2

5
=K  (41) 

So that we recover 

 ( ) .798.13640
3434 ==′Z  (42) 

Thus, we have for our best approximation of ,SBF  following the form of 

Eq. 22, with the values 798.1361 34 =′=ε′ Z  and 52.22 34 ==effC  

( )259.1=  and finally ,98.1 thσ≅σ′  all of which is consistent with initial 

assumptions concerning the direct derivation of the SB 4T  radiation law. 

We have then the Stefan Boltzmann law of radiation flux from the 

surface of a hot body in our second approximation: 

 
( )

( )
.

80

3 4

3

434

T
hc

k
cFSB 





















α

π
=  (43) 

This can be written, defining the Stefan Boltzmann constant, ,SBσ  as 

4TF SBSB σ=  where 42KWm08-67037.5 −−=σ eSB  (CODATA). 

Our physical model calculation gives the value =σSB  

08-6703698.5 e .KWm 42 −−  So this is within PPM1  of the CODATA 

value. 

Therefore, based on a physical model of classical thermally agitated 

electron-electron radiative collisions, perturbed by collective effects with 

the constraint of quantized charge, and assuming quantum suppression 

of radiation from the classical ensemble in condensed matter we can 

obtain the SB radiation law to high precision. 

This highly accurate agreement between the model calculation and 

the CODATA value of SBσ  requires that the Wyler formula for alpha be 



J. E. BRANDENBURG 

 

70 

operative: 

,
15

2

80

3 5
34

π=







α

π
 (44) 

.
15

2

80

3
43

5
1







 π=

πα−

 (45) 

We have then, in this physically reasonable model the requirement: 

 .
15

32

3

10
43

51






 π

π
=α−  (46) 

5. Physics Interpretation 

The fact that we can derive a highly accurate expression for the 

Stefan-Boltzmann radiation law based on simple but physical models, 

which are themselves based on physically reasonable assumptions is 

profoundly meaningful. It suggests that quantum electrodynamics and 

collective classical electrodynamics, i.e., plasma physics, are intimately 

connected and cannot be separated. It also suggests that quantization of 

action is intimately connected with quantization of electric charge. 

Accordingly, since it is possible to write ( )21 2 ehc π=α−  

 
c

e
h

243
5

15

32

3

20






 π=  (47) 

suggesting that electric charge quantization and EM interactions may 

underlie quantization of action through spacetime geometry since the 

charge quantum can be detected independently of the quantum of action. 

Finally since in the GEM theory [4, 5] a central number is 

( ) 85.42
21

==σ ep mm  with 56π=ep mm  [1] we can write 

 .
45

6

3

80 243
5

c

e






 π

π
=h  (48) 
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We can achieve a complete of time variables from geometric factors and 

electric charge 

 .
453

10
8 2

432

ec 








 σ

π
=h  (49) 

This yields 

 
2

23

533

10
8 ec 







 σ

π
=h  (50) 

or slightly less accurately: 

 .8 243 ec σ≅h  (51) 

This suggests the interpretation that ch  is a geometric projection of 

charge quantization via the “unfolding” of a tesseract (4-cube) into 8 3-

cubes. This expression raises the interesting question of whether charge 

quantization, ,e±  a consequence of the compact nature of the 5th Kaluza-

Kline dimension in the GEM theory, [4, 5] is more fundamental than the 

quantization of action .h  In an early Big Bang universe, we would expect 

the principle of minimum action to be obeyed, with Maxwell’s Equations, 

leading to the selection the smaller “Electric Action” .2 ce  Quantum 

Mechanics could thus be considered an “emergent” phenomena stemming 

from the primordial quantization of charges, both electron and quarks, 

from a GEM-like Big Bang 5-D cosmology, and their subsequent  

collective dynamics. The latter phenomenon defining the local “arrow of 

time” via the Second Law of Thermodynamics [6]. The appearance of the 

proton-electron mass ratio, 56π  in the formula for ,α  can be considered 

as a signature of the emergence of the larger Action Quantum h  in the 

Hadron Era of the Big Bang, with the coincident appearance of the 

proton. Thus, the emergence of the larger Action Quantum mirrors the 

appearance of the larger stable mass quantum than the electron, which is 

the proton. 
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Appendix 1 

We are making the assumption that quantum effects cause an 

effective emissive factor ε′  to be applied to our semi-classical calculations 

of radiation rates. 

 ,
eff

L
SB C

P
F

σ′

ε′
≅  (A1.1) 

where we assume, for the purposes of this calculation that effC  is the 

effective mass coefficient due to electron-electron collective effects. Let us 

assume that the quantum suppression of radiation rate can be described 

by the QED-consistent series 

 ( ) ,...2
1 σ′
α+α≅

eff

L
SB C

P
aF  (A1.2) 

where we assume that second order process of absorption and emission 

contribute to the radiation rate from the surface. We can then write 

 ( )
σ′

α+α≅
eff

L
SB C

P
aF ...1 1  (A1.3) 

which we can approximate to first order, assuming second order 

absorption emission is weaker at the interface than first order so 11 ≅a  

( )
,

1 1 σ′α−

α
≅

eff

L
SB C

P

a
F  (A1.4) 

( )
.

1371137

1

1 σ′−
≅

eff

L
SB C

P

a
F  (A1.5) 

Therefore, to first order we expect, for 11 ≅a  

 
( )

.
137

1

1 σ′−
≅ L

SB
P

a
F  (A1.6) 
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So we would expect the quantum suppression factor ε′  to be 

approximately 

 .
136

1
≅ε′  (A1.7) 

Appendix 2 

We are making the physical assumption that electrons both free and 

loosely bound to atoms are radiating power as they are accelerated. The 

fact that neighboring electrons must participate in these dynamics can 

accounted for assigning the radiating electrons an effective mass greater 

than one due to the dynamics of neighboring electrons. We can model this 

in a similar way to a viral expansion in terms of contributions from single 

particle, particle pairs and particle triples at a constant density and 

temperature. 
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Higher order contributions may also be present but since we are modeling 

all accelerations as due to electron-electron interaction in a massive 

immovable ion background, we will consider that electron scattering 

clusters of more than three are very unlikely and make negligible 

contributions. Further we can consider that we can write thus model this 

as a third order polynomial: single electrons cannot radiate, so we set 

.01 =A  Also pairs of interacting electrons cannot radiate except as 

quadrupole or higher at much reduced rates compared to dipole radiation 

so we also set .02 =A  This leaves then the effective mass of the 

radiating electrons to only be due to three body effects, so for model 

,13 =A  where we consider ,3−= ln  l  is an inter-electron distance for 

radiating particles where this means 93 −= ln  
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,1
3

0
3 








=

n

n
A  (A2.2) 

.3 eeff mAm =  (A2.3) 

Based on quantization of charge Z  in this model we assume this 

coefficient 3A  should be integer Z  to the 32  power, so we have 

 .2342
eeff mZm =  (A2.4) 

And thus 

 .34ZCeff =  (A2.5) 

The value of integer Z  that gives a number closest to the first 

approximation value for 46.2≅effC  is .2=Z  Therefore, 

 
2342

2 eeff mm =  (A2.6) 

leading to 

 .52.2 22
eeff mm ≅  (A2.7) 

Appendix 3 

We model the cross section for electron-photon scattering as the 

Thompson scattering cross section times the mean scattering electron 

separation distance el ′′  squared, where we define this as an inverse 

scattering electron density to the 32  power. 

 .
3

8 32−′′
π

=σ′ en  (A3.1) 

Using the Wigner-Sietz Model [2], where density is defined as the inverse 

of the volume of unit spherical cells, with the expression for the most 
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probable radius due to Chandrasekar [3] ( ) eCh rr
31

32=  and the 

ionization factor 2Z ′  for each unit cell we obtain. Charge state Z  being 

independent of direction must appear along the two lines of rotational 

symmetry as a quadratic. That is, a spherical unit cell must have a cross 

section proportional to 2Z ′  where we mandate that Z ′  must be an 

integer to satisfy the quantization of charge. Z ′  can have two physical 

meanings in this model: as an ionization state of the positive background 

atoms or simply a number of free electrons per unit cell of volume. We 

have then 

 .
3

2

3

4 321
ee rZn ′

π
=′′ −

 (A3.2) 

This leads to the expression 
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And therefore our scattering cross section in this model differs only 

slightly from the Thompson cross section for isolated electrons. 
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That is, in agreement with our assumption that, aside from quantum 

suppression of radiation rates, the SB law can be derived by mild 

perturbations of classical, isolated particle dynamics by collective effects, 

we have, in this model: 

 .
3

8
98.1 2

er
π

≅σ′  (A3.5) 
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