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Abstract 

An analytical treatment of rotations in the Euclidean plane and three- 

dimensional Euclidean space, using differential equations, is presented. 

Fundamental geometric results, such as the linear transformation for 

rotations, the invariance of the Euclidean norm, a proof of the 

Pythagorean theorem, and the existence of a period of rotations, are 

derived from a set of fundamental equations. Basic Euclidean geometry 

is also constructed from these equations. The theory developed is 

further applied to prove some fundamental results in Euclidean 

geometry. 

1. Introduction 

Rotations of Cartesian coordinate systems in Euclidean space are 

usually studied in terms of linear transformations. For instance, in the 

Euclidean plane, the transformation [1] to obtain a new coordinate 

system ( )yx ,  from an old one ( ),, yx  by rotating the latter by an angle θ  
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is 

,sincos θ+θ= yxx  (1a) 

.sincos θ−θ= xyy  (1b) 

The fact that the distance of any point from the origin (the Euclidean 

norm) is preserved under a rotation is instated by the relation 

 .2222 yxyx +=+  (2) 

In three-dimensional Euclidean space, the transformation [2] to obtain a 

new coordinate system ( )zyx ,,  from an old one ( ),,, zyx  by rotating the 

latter by an angle θ  about an axis pointing along the unit vector 

( )321 ,, uuu  is 
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 (3) 

and the preservation of the Euclidean norm is expressed by stating that 

 .222222 zyxzyx ++=++  (4) 

However, in arriving at these equations, one usually employs 

geometric techniques. The same results (and more) may be derived in an 

analytical manner by using differential equations, which is the focus of 

this work. To this extent, the coordinates ,x  y  and z  of a point are taken 

to be (analytic) functions of the angle .θ  A coordinate system (in three-

dimensional space) is then given by ( ) ( ) ( )( ).,, θθθ zyx  The choice of θ  for 

the initial coordinate system is arbitrary, since only the amount of 



AN ANALYTICAL TREATMENT OF ROTATIONS IN … 

 

41 

rotation matters. Furthermore, since distinct values of θ  result in 

distinctly rotated coordinate systems, θ  may be said to “label” a 

coordinate system. Hence, ( ) ( ) ( )( )θθθ zyx ,,  may simply be referred to as 

the ”“θ  coordinate system. 

2. Rotations in the Euclidean Plane 

2.1. The fundamental equations 

Consider the system of equations (with primes denoting 

differentiation with respect to )θ  

,yx =′  (5a) 

.xy −=′  (5b) 

Successive differentiation yields 

,xx −=′′  (6a) 

.yy −=′′  (6b) 

A Taylor series solution [3] for x  is 

 ( )
( ) ( )( ).
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Since successive differentiation of (6a) implies ( ) ( ),2 nn xx −=+  the 

solution simplifies to 
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The solution for y  is similar. Defining 
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and noting that ( ) ( )00 θ=θ′ yx  and ( ) ( ),00 θ−=θ′ xy  we get 

( ) ( ) ( ) ( ) ( ),020010 θ−θθ+θ−θθ=θ fyfxx  (10a) 

( ) ( ) ( ) ( ) ( ).020010 θ−θθ−θ−θθ=θ fxfyy  (10b) 

One may have already recognized 1f  and 2f  as the trigonometric cosine 

and sine functions, respectively. However, we shall continue to use the 

developed notation to derive their properties independently of geometric 

techniques. Equations (10) are strikingly similar to (1), and describe a 

rotation by an angle ,0θ−θ  starting from a coordinate system .0θ  

We also get from (5) 

 ,0=′+′ yyxx  (11) 

which on integrating gives 

 ( ) ( ) ( ).constant 222
ryx ==θ+θ  (12) 

This proves the invariance of the (squared) Euclidean norm under 

rotations. 

From (12), we have 

 ( ) ( ) ( ) ( ) .00
2222

yxyx +=θ+θ  (13) 

Setting ( ) 00 =y  (as we are free to do so), we arrive at 

 ( ) ( ) ( ) .0
222

xyx =θ+θ  (14) 
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In this case, we have from (10) ( )0with 0 =θ  

( ) ( ) ( ),0 1 θ=θ fxx  (15a) 

( ) ( ) ( ),0 2 θ−=θ fxy  (15b) 

so that (14) results in 

 ( ) ( ) .1
2

2
2

1 =θ+θ ff  (16) 

We thus observe that 1f  and 2f  are both restricted to the interval [ ]1,1−  

and are complementary in nature. 

Now, additionally, let ( ) 00 =θx  for some .0θ  We then have from (10) 

( ) ( ) ( ),020 θ−θθ=θ fyx  (17a) 

( ) ( ) ( ).010 θ−θθ=θ fyy  (17b) 

From (14), we obtain ( ) ( ) .0
22

0 xy =θ  The case ( ) ( )00 xy −=θ  produces 

from (15) and (17) 

( ) ( ),021 θ−θ−=θ ff  (18a) 

( ) ( ).012 θ−θ=θ ff  (18b) 

Replacing θ  by ,0θ+θ  we get 

( ) ( ),201 θ−=θ+θ ff  (19a) 

( ) ( ).102 θ=θ+θ ff  (19b) 
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Figure 1. Two coordinate systems, one of whose axes are rotated by an 

angle .θ  

Successive application of (19) yields 

( ) ( ),2 101 θ−=θ+θ ff           ( ) ( ),2 202 θ−=θ+θ ff  (20a) 

( ) ( ),3 201 θ=θ+θ ff             ( ) ( ),3 102 θ−=θ+θ ff  (20b) 

( ) ( ),4 101 θ=θ+θ ff            ( ) ( ).4 202 θ=θ+θ ff  (20c) 

Equations (20c) show that 1f  and 2f  both repeat after intervals of 

(integral multiples of) .4 0θ  The smallest of these intervals is the period, 

say, .Θ  Consequently, from (10), we find that x  and y  are also periodic 

with the same period .Θ  

Now, consider Figure 1, which describes a rotation between two 

coordinate systems by an angle .θ  Equation (14) shows that 

 ,OABAOB 222
=+  (21) 

which proves the Pythagorean theorem. The same equation also describes 

the locus of all points whose distance from the origin is ( ) .0xr =  

Consequently, it represents a circle of radius ,r  centred at the origin. For 

( ) ,00 ≥x  we then obtain from (15) 
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( ) ( ),1 θ=θ rfx  (22a) 

( ) ( ).2 θ−=θ rfy  (22b) 

Now, eliminating ( )0x  from (15) and defining 12 ffm =  results in 

 ( ) ( ) ( ).θθ−=θ xmy  (23) 

The initial values of 1f  and 2f  (determined from (15)) are ( ) 101 =f  and 

( ) .002 =f  Hence, for ,0=θ  (23) produces the straight line ( ) .00 =y  For 

any arbitrary value of ,θ  it represents the same straight line in a rotated 

coordinate system, as is evident from Figure 1. Here, m−  represents the 

slope of the line. 

2.2. More on the functions 1f  and 2f  

The equations governing 1f  and 2f  (obtained by substituting (15) in 

(5)) are 

,21 ff −=′  (24a) 

.12 ff =′  (24b) 

From (24), we get 

,11 ff −=′′  (25a) 

.22 ff −=′′  (25b) 

The characteristic equation [4] for both these equations is .12 −=λ  

Defining a quantity ,1−=i  we get .i±=λ  The general solution to (25) 

is 

( ) ,211
θ−θ +=θ ii eAeAf  (26a) 

( ) ,212
θ−θ +=θ ii eBeBf  (26b) 
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where 

( ) ,10121 ==+ fAA  (27a) 

( ) ( ) ( ) ,000 2121 =−=′=− ffAAi  (27b) 

( ) ,00221 ==+ fBB  (27c) 

( ) ( ) ( ) .100 1221 ==′=− ffBBi  (27d) 

Therefore, 

( ) ( ),
2

1
1

θ−θ +=θ ii eef  (28a) 

( ) ( ).
2

1
2

θ−θ −=θ ii ee
i

f  (28b) 

We observe that 1f  is an even function of θ  and 2f  is an odd function of 

.θ  Equivalently expressing θie  in terms of ( )θ1f  and ( ),2 θf  we arrive at 

 ( ) ( ).21 θ+θ=θ iffei  (29) 

It is to be noted that an equality of the form ,2211 ibaiba +=+  

where ,1a  ,1b  2a  and 2b  are real numbers, implies ( ).1221 bbiaa −=−  

The left-hand side expresses a real number, whereas the right-hand side 

does not, unless 21 aa =  and .21 bb =  

Supposing 21 θ+θ=θ  and substituting in (29), we obtain after some 

simplification 

( ) ( ) ( ) ( ) ( ),22122111211 θθ−θθ=θ+θ fffff  (30a) 

( ) ( ) ( ) ( ) ( ).21122211212 θθ+θθ=θ+θ fffff  (30b) 

Further results may be derived by similar application of these 

equations. Henceforth, we resume with the common notation for the 
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trigonometric functions. 

2.3. Applications 

2.3.1. Euclidean distance and the law of cosines 

 

Figure 2. Two points in the Euclidean plane. 

Consider the points 1P  and 2P  in Figure 2. Defining 1212 xxx −=  

and ,1212 yyy −=  we get from (10) (by virtue of the linear nature of the 

transformation) 

( ) ( ) ( ) ( ) ( ),020120101212 θ−θθ+θ−θθ=θ fyfxx  (31a) 

( ) ( ) ( ) ( ) ( ),020120101212 θ−θθ−θ−θθ=θ fxfyy  (31b) 

and hence from (12), 

 ( ) ( ) ( ).constant 2
12

2
12

2
12 ryx ==θ+θ  (32) 

Here, 12r  is the (invariant) Euclidean distance between 1P  and .P2  From 

(32), we obtain 

 ( ) ( ) ( ) ( )( ).2 2121
2
2

2
1

2
12 θθ+θθ−+= yyxxrrr  (33) 

The term in parentheses is invariant under rotations. Now, there exist 

angles 1θ  and 2θ  such that ( ) ( ) ,02211 =θ=θ yy  and we have 
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( ) ( ),1111 θ−θ=θ frx  (34a) 

( ) ( ),2122 θ−θ=θ frx  (34b) 

( ) ( ),1211 θ−θ−=θ fry  (34c) 

( ) ( ).2222 θ−θ−=θ fry  (34d) 

Substituting in (33), we get 

 ( ).2 12121
2
2

2
1

2
12 θ−θ−+= frrrrr  (35) 

Thus, from the figure, we read 

 ( ),OPPOPOP2OPOPPP 21121
2

2
2

1
2

21 ∠−+= f  (36) 

which proves the law of cosines. 

2.3.2. Supplementary and vertically opposite angles 

It is clear that for any arbitrary 1θ  and ,2θ  the angle between the 

straight lines ( ) 01 =θy  and ( ) 02 =θy  is ,12 θ−θ  since the 2θ  

coordinate system is obtained from the 1θ  coordinate system by rotating 

the latter by an angle .12 θ−θ  Indeed, setting 10 θ=θ  and 2θ=θ  in 

(10b) and then setting ( ) 02 =θy  results in 

 ( ) ( ) ( ).1121 θθ−θ=θ xmy  (37) 

Since ( )θm  represents an inclination of ,θ  the line ( ) 02 =θy  is described 

by (37) in the 1θ  coordinate system, with an inclination of .12 θ−θ  

Moreover, from (10b) and (20a), we get 

 ( ).
2

θ−=





 Θ

+θ yy  (38) 
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Figure 3. Angles formed by rotating coordinate systems. 

With these results, consider Figure 3. From (38), ( ) 0=θy  implies 

( ) .02 =Θ+θy  Thus, ( ) 0=θy  and ( ) 02 =Θ+θy  represent the same 

straight line. However, the angle between these lines is 

( ) .22 Θ=θ−Θ+θ  Hence, we conclude that the angle around a straight 

line (a straight angle) is .2Θ  

Now, the straight lines ( ) 00 =y  and ( ) 0=θy  intersect at the origin. 

The angle between these lines is ,0 θ=−θ  while that between the lines 

( ) 0=θy  and ( ) 02 =Θy  is .2 θ−Θ  Since ( ) 00 =y  and ( ) 02 =Θy  

result in the same straight line, we conclude that the angle 

supplementary to θ  is .2 θ−Θ  

Similarly, the angle between the lines ( ) 02 =Θy  and ( ) 02 =Θ+θy  

is ( ) .22 θ=Θ−Θ+θ  Since ( ) 00 =y  and ( ) 02 =Θy  produce the same 

straight line, and so do ( ) 0=θy  and ( ) ,02 =Θ+θy  we conclude that the 

angle vertically opposite to θ  is θ  itself. 

2.4. A geometric deduction of (5) 

For a geometric deduction of (5), consider Figure 4. θ  refers to an  
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Figure 4. Two coordinate systems, one of whose axes are rotated by an 

angle .θ∆  

arbitrarily oriented coordinate system with origin O.  The axes are 

rotated by an angle θ∆  to form a new coordinate system .θ∆+θ  Let P  be 

a point referred to both the coordinate systems. From the figure, 

 QR,OQOR +=  (39) 

or, 

 ( ) ( ) ( ) .tansec θ∆θ∆+θ+θ∆θ=θ∆+θ yxx  (40) 

In the infinitesimal limit of ,θ∆  we get 

 ( ) ( ) ( ) ,θθ+θ=θ+θ dyxdx  (41) 

thus resulting in (5a). Similarly, 

 QP,SQSP +=  (42) 

or, 

 ( ) ( ) ( ) ,sectan θ∆θ∆+θ+θ∆θ=θ yxy  (43) 

whose infinitesimal limit yields (5b). 

One may gain a better understanding by referring to Figure 5, which 

depicts the rotation between two coordinate systems in the infinitesimal 
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limit. It is readily seen that θ= dydx  and .θ=− dxdy  

 

Figure 5. Two coordinate systems infinitesimally rotated with respect to 

each other. 

3. Rotations in three-dimensional Euclidean Space 

Let ,1u  2u  and 3u  be real numbers such that .12
3

2
2

2
1 =++ uuu  

Consider now the system of equations 

,23 zuyux −=′  (44a) 

,31 xuzuy −=′  (44b) 

.12 yuxuz −=′  (44c) 

Successive differentiation yields 

 ,xx ′−=′′′       ,yy ′−=′′′       .zz ′−=′′′  (45) 

The solution for x  is 

 ( ) ,sincos 321 CCCx +θ+θ=θ  (46) 

where 

( ),031 xCC =+  (47a) 
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( ) ( ) ( ),000 232 zuyuxC −=′=  (47b) 

( ) ( ) ( ) ( ) ( ).00010 3121
2
11 zuuyuuxuxC −−−=′′−=  (47c) 

The solutions for y  and z  may be obtained similarly. The solution to (44) 

is 
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 (48) 

Equation (48) describes a rotation by an angle θ  about an axis 

pointing along the unit vector ( )321 ,, uuu  (note the similarity with (3)). 

It may be checked that (44) reduces to (5) for ( ) ( ).1,0,0,, 321 =uuu  

Eliminating ,1u  2u  and 3u  from (44) results in 

 ,0=′+′+′ zzyyxx  (49) 

which on integrating gives 

 ( ) ( ) ( ) constant.
222

=θ+θ+θ zyx  (50) 

This proves the invariance of the (squared) Euclidean norm under 

rotations. 
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