AN ALMOST CONTRACTION MAPPING THEOREM IN METRIC SPACES WITH UNIQUE FIXED POINT

CLEMENT BOATENG AMPADU

31 Carrolton Road Boston, MA 02132-6303 USA e-mail: drampadu@hotmail.com

Abstract

Recall from Berinde $[1]$ that if (X, d) is a metric space, a map *T* : *X* \mapsto *X* is called an almost contraction if there exists $\delta \in [0, 1]$ and $L \geq 0$ such that

 $d(Tx, Ty) \leq \delta d(x, y) + Ld(y, Tx)$

for all $x, y \in X$. Observe that if $L = 0$, then *T* is a Banach contraction, and by the Banach contraction mapping theorem, *T* has a unique fixed point. In the present paper, we show that for some fixed $L > 0$ and $\delta \in (0, 1)$, we can guarantee uniqueness of the fixed point. An example is given to illustrate the main result.

1. Introduction

In Berinde [1], the following was obtained:

Keywords and phrases: almost contraction, (δ, *L*) -weak contraction, metric space, fixed point theorem.

2010 Mathematics Subject Classification: 47H10, 54H25.

Received September 10, 2017; Accepted February 11, 2018

© 2019 Fundamental Research and Development International

Theorem 1.1. Let (X, d) be a complete metric space and $T : X \mapsto X$ be an *almost contraction, that is, a mapping for which there exists a constant* $\delta \in [0, 1]$ *and some L* ≥ 0 *such that* $d(Tx, Ty) \leq \delta d(x, y) + Ld$ (*y, Tx) for all x, y* ∈ *X*. *Then*

 $(a) Fix(T) = \{x \in X : Tx = x\} \neq \emptyset.$

(*b*) *For any* $x_0 \in X$, the Picard sequence $\{x_n\}_{n=0}^{\infty}$ given by $x_{n+1} = Tx_n$, $n = 0, 1, 2, \cdots$ *converges to some* $x^* \in Fix(T)$.

(*c*) *The following estimates hold*

$$
d(x_{n+i-1}, x^*) \le \frac{\delta^i}{1-\delta} d(x_n, x_{n-1})
$$

for $n = 0, 1, 2, \cdots$; $i = 1, 2, \cdots$.

Observe that the above is an existence, but not a uniqueness theorem about the fixed point. In this paper, we show for some fixed $L > 0$ and $\delta \in (0, 1)$, we can guarantee uniqueness of the (δ, L) -weak contraction if the underlying space is complete. This paper is organized as follows. Section 2 contains the main result, and we give an example to illustrate it.

2. Main Results

Definition 2.1. Let (X, d) be a metric space. A map $T: X \mapsto X$ will be called a $(\delta, 1 - \delta)$ -weak contraction mapping if it is not the identity mapping and there exists $\delta \in (0, 1)$ such that for all $x, y \in X$, the following holds

$$
d(Tx, Ty) \leq \delta d(x, y) + (1 - \delta)d(y, Tx).
$$

Theorem 2.2. Let (X, d) be a metric space, and $T : X \mapsto X$ be a $(\delta, 1 - \delta)$. *weak contraction mapping*. *T has a unique fixed point*, *provided* (*X* , *d*) *is complete*.

Proof. Let $\{x_n\}$ be a sequence defined by $x_n = Tx_{n-1}$ for all $n = 1, 2, \cdots$. Observe that

$$
d(x_{n+1}, x_{n+2}) = d(Tx_n, Tx_{n+1})
$$

$$
\leq \delta d(x_n + x_{n+1}) + (1 - \delta) d(x_{n+1}, Tx_n)
$$

= $\delta d(x_n + x_{n+1}) + (1 - \delta) d(x_{n+1}, x_{n+1})$
= $\delta d(x_n + x_{n+1}).$

From the above, by induction, we obtain $d(x_{n+1}, x_{n+2}) \le \delta^n d(x_1, x_2)$ for all $n = 1, 2, \dots$. Since $\delta \in (0, 1)$, consequently $\{x_n\}$ is Cauchy. By completeness of *X*, $\lim_{n\to\infty} x_n = x^*$ for some $x^* \in X$. We show x^* is a fixed point of *T*. Observe

$$
d(x^*, Tx^*) \le d(x^*, x_{n+1}) + d(x_{n+1}, Tx^*)
$$

= $d(x^*, x_{n+1}) + d(Tx_n, Tx^*)$
 $\le d(x^*, x_{n+1}) + \delta d(x_n, x^*) + (1 - \delta) d(x^*, x_{n+1}).$

Taking limits in the above as $n \to \infty$, we deduce $d(x^*, Tx^*) = 0$, that is, $x^* = Tx^*$. For uniqueness, suppose $y^* = Ty^*$ but $y^* \neq x^*$, then observe

$$
d(x^*, y^*) = d(Tx^*, Ty^*)
$$

\n
$$
\leq \delta d(x^*, y^*) + (1 - \delta) d(y^*, Tx^*)
$$

\n
$$
= \delta d(x^*, y^*) + (1 - \delta) d(y^*, x^*)
$$

\n
$$
= d(x^*, y^*)
$$

which is impossible. So $x^* = y^*$ and uniqueness follows.

Example 2.3. Let $X = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and define $d : X \times X \mapsto \mathbb{R}^+$ by $d(x, y) =$ $x - y$ for all $x, y \in X$. Let $T : X \mapsto X$ be defined by $Tx = \frac{x+3}{4}$ for all $x \in X$, then all the conditions of the previous theorem are satisfied and $x = 1$ is the unique fixed point. Moreover with $\delta = \frac{1}{2}$, $\delta = \frac{1}{2}$, we get the following:

Figure 1. The graph of $\frac{1}{4}|x-y| \le \frac{1}{2}|x-y| + \frac{1}{2}|y - \frac{x+3}{4}|$ 2 1 2 1 4 $\frac{1}{4}|x-y| \leq \frac{1}{2}|x-y| + \frac{1}{2}|y - \frac{x+3}{4}|$ for all $x, y \in X$

with left hand side being in "Coffee Tones (bottom)" and right hand side being in "Lake Colors (top)".

References

 [1] V. Berinde, Approximation fixed points of weak contractions using the Picard iteration, Nonlinear Analysis Forum 9(1) (2004), 43-53.