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Abstract 

It is shown that almost all theorems of the alternative for linear systems 

can be obtained from a unique general theorem of the alternative, which is 

in turn a formal modification of the well-known theorem of the alternative 

due to Farkas (Farkas’ theorem or Farkas-Minkowski’s theorem). 

Furthermore, we prove that all these theorems of the alternative are in fact 

equivalent statements. Other remarks on the various proofs of Farkas’ 

theorem are made. 

1. Introduction 

The literature on theorems of the alternative, both for linear and nonlinear 

systems, is indeed huge. Quite recently C. T. Perng [67] has given a list of 28 
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theorems which are all equivalent to the well-known Farkas’ theorem or Farkas’ 

lemma (or Farkas-Minkowski’s theorem). Some years ago De Giuli et al. [17] 

obtained a “mega-theorem” of the alternative for linear systems which generates 225 

(!) special cases, among which the said Farkas’ theorem. The aim of the present 

paper is to show “step by step” how to obtain from Farkas’ theorem all known 

theorems of the alternative for linear systems and to obtain, as a corollary, the so-

called Tucker’s theorem or key theorem, which in turn generates Farkas’ theorem. 

So, it is proved that all theorems of the alternative for linear systems have a “common 

father”: Farkas’ theorem; moreover, they are in fact all equivalent. However, it is 

possible to show that not only the first published result concerning a theorem of the 

alternative for linear systems, i.e., Gordan’s theorem [44], can be obtained from 

Farkas’ theorem, but that also the vice versa holds. Therefore, this first published 

result, due to Gordan, is perhaps indeed the true ancestor of all theorems of the 

alternative for linear systems. 

The paper is organized as follows. In the Introduction, we recall the basic 

structure of a theorem of the alternative and recall Farkas’ theorem. In Section 2, we 

obtain, by algebraic manipulations of Farkas’ theorem, two theorems which in turn 

generate a long list of theorems of the alternative for linear systems. In the same 

section, we show that all these theorems are in fact equivalent. Section 3 will be 

concerned with some approaches in proving Farkas’ theorem. 

We shall use the following notations: 

• ;BA =>  ;BA ≥  ,BA >  where A  and B  are (real) matrices of the same 

order ( ) ,, nm  mean, respectively, ,ijij ba =>  ;, ji∀  ,BA =>  but ;BA ≠  ,ijij ba >  

., ji∀  Similarly for the notations ,BA =<  ,BA ≤  .BA <  

• [ ];0=>A  [ ],0≥A  [ ],0>A  where [ ]0  is the ( )nm,  matrix with all zero 

elements, will denote, respectively, a nonnegative matrix, a semipositive matrix, a 

positive matrix. 

• The same convention is used to compare two vectors x  and y  of .n
R  If 

[ ],0=>x  being [ ]0  the vector of n
R  with all zero elements, we speak of 

nonnegative vectors; if [ ],0≥x  we speak of semipositive vectors; if [ ],0>x  we 
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speak of positive vectors. The notations [ ],0<x  [ ],0≤x  [ ]0=<x  are obvious. 

• ⊤A  and ⊤x  denote, respectively, the transpose of A  and .x  The identity 

matrix is denoted by I  and the vector [ ]1...,,1,1=⊤u  denotes the summation 

vector of .n
R  

We recall that in general a theorem of the alternative is a result having the 

following structure: between two given propositions (usually systems of linear or also 

nonlinear relations), say a “primal” system S  and a “dual” system ,∗
S  one and only 

one admits solutions, i.e., S  admits solutions if and only if ∗S  does not admit 

solutions (equivalently: ∗S  admits solutions if and only if S  does not admit 

solutions). 

Perhaps Farkas’ theorem or Farkas’ lemma (or Farkas-Minkowski’s theorem) is 

the most well-known and quoted theorem of the alternative concerning linear 

systems. 

Theorem 1 (Farkas’ Theorem). Let be given a matrix A  of order ( )nm,  and a 

vector .mb R∈  Then the system 

[ ]{ }0;1 =>=≡ xbAxS  

admits solutions nx R∈  if and only if the system 

{ [ ] }0;01 <=>≡∗ byAyS ⊤⊤  

does not admit solutions .my R∈  

In the next section, we shall derive from this result, by simple algebraic 

manipulations, almost all theorems of the alternative for linear systems quoted in the 

literature and many other new ones. We shall postpone to Section 3, the question of 

the proof of Farkas’ theorem. 

Remark 1. Obviously, sistem ∗
1S  in Theorem 1 can be equivalently written in 

the form 
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{ [ ] }.0;01 >=<≡∗ byAyS ⊤⊤  

Moreover, 1S  and ∗
1S  of Theorem 1 can be equivalently written as 

{ [ ]},0;1 =>=≡ xbAxS ⊤⊤⊤  

{ [ ] }.0;01 <=>≡∗ ybyAS ⊤⊤  

Another equivalent formulation of Farkas’ theorem (not in an “alternative form”) is 

the following one: 

• A necessary and sufficient condition for 1S  to have solutions nx R∈  is the 

validity of the implication 

[ ] [ ].00 =>⇒=> byAy ⊤⊤  

Finally, note that for [ ],0=b  Farkas’ theorem becomes trivial. 

2. Farkas’ Theorem as a Father of Several 

Theorems of the Alternative 

The following result is a simple formal variant of Farkas’ theorem and generates 

a first list of theorems of the alternative for linear systems. 

Theorem 2. Let be given the positive integers ,1m  ,2m  ,3m  ,1n  ;2n  the 

matrices ijA  of order ( ) ,, ji nm  ;3,2,1=i  ;2,1=j  the vectors ,mi
b R∈  

.3,2,1=i  The system 

 

[ ]












=>∈∈

=>+

=+

=<+

,0,,

,

,

,

121

32
32

1
31

22
22

1
21

12
12

1
11

21 xxx

bxAxA

bxAxA

bxAxA

nn
RR

 (1) 

admits solutions ( )21, xx  if and only if the system 
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( ) ( ) ( ) [ ]

( ) ( ) ( ) [ ]

( ) ( ) ( )

[ ] [ ]












=<=>∈∈∈

<++

=++

=>++

,0,0,,,

,0

,0

,0

313221

332211

32
3

22
2

12
1

31
3

21
2

11
1

31 yyyyy

bybyby

AyAyAy

AyAyAy

mmm
RRR

⊤⊤⊤

⊤⊤⊤

⊤⊤⊤

 (2) 

does not admit solutions ( ).,, 321 yyy  

Proof. The above result comes out at once from Farkas’ theorem: we put 

,212
vvx −=  with [ ],01

=>v  [ ]02
=>v  and then we transform inequalities into 

equalities by means of the “slack vectors” [ ],01
=>s  [ ].02

=>s  System (1) can be 

therefore rewritten in the form 

 

[ ]

[ ] [ ]

[ ] 

















=













































−−

−

−

3

2

1

2

1

2

1

1

323231

222221

121211

0

00

0

b

b

b

s

s

v

v

x

IAAA

AAA

IAAA

 (3) 

with [ ],01
=>x  [ ],01

=>v  [ ],02
=>v  [ ],01

=>s  [ ].02
=>s  Applying to (3) Farkas’ 

theorem we obtain the thesis. 

From Theorem 2 it is possible to obtain easily a first list of theorems of the 

alternative. In the following list we use the short convention 

{ };...≡kS  

{ },...≡∗
kS  

in order to specify that the “primal” system kS  admits solutions if and only if the 

“dual” system ∗
kS  does not admit solutions. 

(1) 

{ };2 bAxS =≡  
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{ [ ] }.0,02 ≠=≡∗ byAyS ⊤⊤  

Note that this result gives necessary and sufficient conditions for the existence of 

solutions of a non-homogeneous system of linear equations: system 2S  admits 

solutions if and only if it holds 0=by⊤  for any vector y  such that [ ].0=Ay⊤  

This result is sometimes called the Fredholm theorem of the alternative. 

(2) 

{ };3 bAxS =<≡  

{ [ ] [ ] }.0,0,03 <=>=≡∗ byyAyS ⊤⊤  

(3) 

{ [ ]};0,4 =>=<≡ xbAxS  

{ [ ] [ ] }.0,0,04 <=>=>≡∗ byyAyS ⊤⊤  

This result has been used by Gale [30] and by Los [55] to prove the existence of 

equilibrium solutions in the classical von Neumann balanced growth model. 

(4) (Theorem of the alternative of Ky Fan; see Fan [19], Giannessi [32]). 

{ };, 21
5 bBxbAxS ==<≡  

{( ) ( ) [ ] [ ] ( ) ( ) }.0,0,0 2211121
5 <+=>=+≡∗ bybyyByAyS

⊤⊤⊤⊤  

(5) 

{ [ ]};0,, 21
6 =>==<≡ xbBxbAxS  

{( ) ( ) [ ] [ ] ( ) ( ) }.0,0,0 2211121
6 <+=>=>+≡∗ bybyyByAyS

⊤⊤⊤⊤  

(6) 

{ [ ]};0,7 =>=+≡ xbBzAxS  

{ [ ] [ ] }.0,0,07 <==>≡∗ byByAyS ⊤⊤⊤  
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(7) 

{ [ ]};0,8 =>=<+≡ xbBzAxS  

{ [ ] [ ] [ ]}.0,0,0,08 =><==>≡∗ ybyByAyS ⊤⊤⊤  

(8) 

{ };9 cCxS =>≡  

{ [ ] [ ] }.0,0,09 >=>=≡∗ cyyCyS ⊤⊤  

(9) 

{ [ ]};0,10 =>=>≡ xcCxS  

{ [ ] [ ] }.0,0,010 >=>=<≡∗ cyyCyS ⊤⊤  

(10) 

{ [ ]};0,,11 =>==>≡ xbBxcCxS  

{( ) ( ) [ ] [ ] ( ) ( ) }.0,0,0 21121
11 >+=>=<+≡∗ bycyyByCyS

⊤⊤⊤⊤  

(11) 

{ };0,12 =>=>+≡ xcDzCxS  

{ [ ] [ ] [ ] }.0,0,0,012 >=>==<≡∗ cyyDyCyS ⊤⊤⊤  

(12) 

{ [ ] };0,013 <=>≡ xbAxS ⊤  

{ [ ]}.0,13 =>=≡∗ ybAyS ⊤  

This result is nothing but Farkas’ theorem, where the “primal” and the “dual” 

problems have been interchanged. 
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(13) 

{ [ ] [ ] };0,0,014 <=>=>≡ xbxAxS ⊤  

{ [ ]}.0,14 =>=<≡∗ ybAyS ⊤  

(14) 

{ [ ] [ ] };0,0,015 <==<≡ xcDxCxS ⊤  

{ [ ] [ ]}.0,015 =>=++≡∗ ycDvCyS ⊤⊤⊤  

(15) 

{ [ ] [ ]};0,0,016 =>>+=+≡ zzbxaDzCxS ⊤⊤  

{ [ ] [ ]}.0,016 =<+=+≡∗ ⊤⊤⊤⊤ bDyaCyS  

It is easy to reformulate Theorem 2 by allowing in (1) also nonpositive vectors. 

For example, it is possible to obtain the following systems “in alternative”: 

[ ] [ ]












=<=>

=<++

=++

=>++

,0,arbitrary,0

,

,

,

321

33
33

2
32

1
31

23
23

2
22

1
21

13
13

2
12

1
11

xxx

bxAxAxA

bxAxAxA

bxAxAxA

 

and 

( ) ( ) ( ) [ ]

( ) ( ) ( ) [ ]

( ) ( ) ( ) [ ]

( ) ( ) ( )

[ ] [ ]















=<=>

>++

=>++

=++

=<++

.0arbitrary,,0

,0

,0

,0

,0

321

332211

33
3

23
2

13
1

32
3

22
2

12
1

31
3

21
2

11
1

yyy

bybyby

AyAyAy

AyAyAy

AyAyAy

⊤⊤⊤

⊤⊤⊤

⊤⊤⊤

⊤⊤⊤

 

In order to obtain a theorem which generates a second list of theorems of the 
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alternative for linear systems, we need three preliminary results, which are in turn 

simple formal variants of Farkas’ theorem. We continue to use the convention to 

denote by kS  and ∗
kS  the “primal” and the “dual” propositions in alternative. As 

usual, the order and the conformability of the various matrices and vectors have to be 

respected. 

Lemma 1. 

{ [ ] [ ] [ ]};0,0,017 >=>=++≡ zvCzBvAxS  

{ [ ] [ ] [ ]}.0,0,017 ≥=>=≡∗ CyByAyS ⊤⊤⊤  

Proof. If ∗
17S  does not admit solution, also the following system 

{ [ ] [ ] [ ] }0,0,0,017 >≥=>=≡∗ CuyCyByAyS ⊤⊤⊤⊤  

does not admit solution and vice versa. But if ∗
17S  does not admit solution, by the 

result sub (6), the system 

{ [ ] [ ]}0,0,
~
17 =>=>−=++≡ zvCuzCBvAxS  

will admit solutions. 

Therefore, system 17S  admits solutions: put ( ) [ ].0>+= uzz  It is then easy to 

perform the inverse reasoning: if ∗
17S  admits solutions, then 17S  does not admit 

solutions. 

Lemma 2. 

[ ]∑
=

=+++




≡

q

j

j
j xAxAxAxAS

4

3
3

2
2

1
118 ,0  

[ ] [ ] [ ] ;...,,4,0,0,0 32





=≥>=> qjxxx
j  

( iA  denotes here the thi-  matrix, not the thi-  row of ).A  
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[ ] [ ] [ ]

[ ]
.

4,0

0;...,,2,0,0 31
18













=<=<>

≥==>=
≡∗

qjjindexanleastatforAyor

AyandqjAyAy
S

j

j

⊤

⊤⊤⊤

 

Proof. We note first that [ ]0≥j
x  is equivalent to { [ ] ( ) jjj xux

⊤,0=>  

},0,0 >=− jj ww  where R∈jw  and ( ) ( ).1...,,1,1=⊤ju   Here ju  is of the 

same order of ,j
x  for ....,,4 qj =  Then system 18S  can be rewritten in the 

equivalent form 

[ ]

[ ]

[ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ]

[ ]
[ ],0

0

0

000

000

000

0

0

0
3

3
5

4

2

5

4

542

1

1

=


























−
+





















































+



























w

x

I

A

x

x

x

x

u

u

u

AAAA

x

A

qq

q

M

L

MLMMM

L

L

L

M

 

( ) [ ] ( ) [ ].0,;0...,,,, 3542 >=>
⊤⊤

wxxxxx q  

If this system does not admit solutions, by Lemma 1 it will exist vectors y  and 

( ) ,jvv =  ,...,,4 qj =  such that 

(a) [ ];01 =Ay⊤  

(b) [ ];02 =>Ay⊤  

(c) ( ) [ ] ;...,,4,0 qjvuAy j
j

j ==>+ ⊤⊤  

(d) [ ] [ ].0;3 ≥− vAy⊤  

From (d), we get [ ]03 =>Ay⊤  and [ ];0=<v  from (c), we get =>jAy
⊤  

( ) [ ].0=>− j
j

vu
⊤  Moreover: if [ ],0=v  then [ ],03 ≥Ay⊤  but if there exists an 

index 0j  such that ,0
0

<jv  then .0
0

0
0

>−=> j
j

j vuAy
⊤  Again by Lemma 1, we 

can affirm that if 18S  admits solutions, then ∗
18S  does not admit solutions. 
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Lemma 3. 

∑
=

=+++




≡

q

j

j
j bxAxAxAxAS

4

3
3

2
2

1
119 ,  

[ ] [ ] [ ] ;...,,4,0,0,0 32





=≥>=> qjxxx
j  

( kA  is the thk -  matrix). 

[ ] [ ]

[ ] [ ] .

4,

000

0;...,,2,0,0

3

1

19

























=<=<

>≥<

=<==>=

≡∗

qjjindexanleastatfor

AyorAyorbyand

byqjAyAy

S j

j

⊤⊤⊤

⊤⊤⊤

 

Proof. 19S  can be rewritten in the form 

( ) [ ]∑
=

=+











−++





q

j

j
j xA

x
bAxAxA

4

3

3
2

2
1

1 ;0
1

 

[ ] ( ) [ ] [ ] ....,,4,0,01;,0 32





=≥>=> qjxxx
j⊤  

By means of Lemma 2, we obtain the desired result. 

The following theorem generates easily a second series of theorems of the 

alternative for linear systems, among which some “classical” theorems of the 

alternative. 

Theorem 3. Let be given the folllowing two partitions of integers 

( )U
p

i
ii mMpiM

1
;...,,2,1;...,,2,1,

=
==  

( )U
q

j
jj nNqjN

1
....,,2,1;...,,2,1,

=
==  

Let be given the matrices 
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( ) ,,, jikrij NrMkaA ∈∈=  

and the vectors 

( ) ( ) ( ) .,;,;, ik
i

jr
j

ik
i

MkyyNrxxMkbb ∈=∈=∈=  

Then the system 

 

( )

[ ] [ ] [ ]
















=≥>=>

=≤+++

<+++

=<+++

=+++

∑
∑
∑
∑

=

=

=

=

,...,,4,0,0,0,

,...,,4,

,

,

,

321
4

3
3

2
2

1
1

4

3
3

3
33

2
32

1
31

4

2
2

3
23

2
22

1
21

4

1
1

3
13

2
12

1
11

qjxxxarbitraryx

pibxAxAxAxA

bxAxAxAxA

bxAxAxAxA

bxAxAxAxA

j

q

j

ij
ijiii

q

j

j
j

q

j

j
j

q

j

j
j

 (4) 

admits solutions ( )qjxxxx j ...,,4,,,, 321 =  if and only if the system 

 

( ) ( ) [ ]

( ) ( ) [ ]

( ) ( )

[ ]













==>

=<+≡

==>+≡

=+

∑
∑

∑

=

=

=

,...,,2,0,

,0

,...,,2,0

,0

1
2

11

21
1

1
111

1

piyarbitraryy

bybyby

qjAyAyE

AyAy

i

p

i

ii

p

i
ij

i
j

j

p

i
i

i

⊤⊤⊤

⊤⊤

⊤⊤

 (5) 

does not admit solutions y  such that 

,0<by⊤  

or 

[ ],03 ≥y  

or 

[ ] [ ],0...,...,04 >> pyory  

or 



ALL LINEAR THEOREMS OF THE ALTERNATIVE … 

 

55 

[ ],03 ≥E  

or 

[ ] [ ].0...,...,04 >> qEorE  

Proof. Let us introduce in the inequalities of system (4) the following “slack 

vectors”: [ ],02
=>w  [ ],03 >w  [ ],0≥iw  ....,,4 pi =  Then (4) can be rewritten 

in the form: 

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]









































+








































+



























3

3

3

33

23

13

2

2

2

32

22

12

1

1

31

21

11

0

0

0

0

0

0

w

x

A

IA

A

A

w

x

A

A

IA

A

x

A

A

A

A
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[ ]
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,

0

0

0
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3

2

1
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I

x

A

A

A

A

p

i

i
q

j

j

pj

j

j

j

=































+



























+ ∑∑
==

M

M

M

 

with 1x  arbitrary, ( ) [ ],0, 22
=>

⊤
wx  ( ) [ ],0, 33 >⊤

wx  [ ],0≥jx  ,...,,4 qj =  

[ ],0≥iw  ....,,4 pi =  

Then, by application of Lemma 3, we get that (4) admits solutions if and only if 

(5) does not admit solutions. 

By simple considerations and algebraic manipulations it is easily possible to 

obtain from Theorem 3 a quite long second list of theorems of the alternative. We 

give only some relevant examples of this second list, always under the notations and 

conventions previously adopted. 
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1.2 (Gordan’s Theorem). 

{ [ ] [ ]};0,020 ≥=≡ xAxS  

{ [ ]}.020 >≡∗ AyS ⊤  

The above result is perhaps the first published theorem of the alternative for linear 

algebraic systems, being established as early as 1873 by Gordan [44]. It can be 

obtained directly form Farkas’ theorem, but also the vice versa holds (see further in 

Section 3). Gordan’s theorem has also a “geometrical” version (see, e.g., Murata 

[60]): let L  be the linear subspace generated by the rows of ,A  ( ):...,,1 mAA  

{ }myAyzzL R∈== ,: ⊤⊤  

and let 

{ }.,0, LzxzxL n ∈∀=∈=⊥ ⊤
R  

Then, exactly one of the following alternatives holds: either L  contains a positive 

vector, or ⊥L  contains a semipositive vector. 

2.2 (Stiemke’s Theorem). 

{ [ ] [ ]};0,021 >=≡ xAxS  

{ [ ]}.021 ≥≡∗ AyS ⊤  

Stiemke’s theorem is equivalent to Gordan’s theorem, in the sense that it is another 

algebraic form of Gordan’s theorem. This fact was recognized by Antosiewicz [2], 

with reference to a more general theorem, and by Giorgi [36]. See also Giorgi [35, 

38, 39), Nikaido [62]. 

Let us denote by ( )AR  the column space of the matrix A  and by ( )AN  the null 

space of A  (i.e., the set of vectors x  such that [ ]).0=Ax  Recall then that the 

subspaces ( ) ,AR  ( ) ,AN  ( )⊤AR  and ( )⊤AN  satisfy the relations 

( ) ( );⊤ANAR =⊥    ( ) ( );ANAR =⊥⊤  
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( ) ( ) ;⊥= ⊤ANAR    ( ) ( ) .⊥= ANAR ⊤  

From Gordan’s theorem it follows that exactly one of the following statements 

must be true (Stiemke’s theorem): 

I. ( )AN  has a positive vector; 

II. ( ) ( )⊤ARAN =⊥  has a semipositive vector. 

3.2 (Ville’s Theorem). 

{ [ ] [ ]};0,022 ≥=<≡ xAxS  

{ [ ] [ ]}.0,022 =>>≡∗ yAyS ⊤  

Ville’s theorem of the alternative is essentially the same theorem proved by von 

Neumann and Morgenstern [61] and by Gale [27]. See also the result sub (6.2). Also 

Ville’s theorem can be obtained directly from Farkas’ theorem. It must be remarked 

that system ∗
22S  in Ville’s theorem can be equivalently rewritten in the form 

{ [ ] [ ]}0,022 ≥>≡∗∗ yAyS ⊤  

or also in the form 

{ [ ] [ ]}.0,022 >>≡∗∗∗ yAyS ⊤  

Following a current terminology in matrix theory (see, e.g., Fiedler and Ptàk 

[22]), we say that a matrix A  of order ( )nm,  is an -S matrix or belongs to the 

-S class if and only if the system 

[ ]

[ ]





≥

>

0

,0

x

Ax
 

admits solutions. The matrix A  belongs to the -0S class or is an -0S matrix if and 

only if the system 

[ ]

[ ]





≥

=>

0

,0

x

Ax
 



GIORGIO GIORGI 

 

58 

admits solutions. 

Therefore, Ville’s theorem can be restated as follows: 

• Let A  be of order ( )., nm  Then SA ∈  if and only if .0SA ∉− ⊤  

Ville’s theorem is important in the analysis of certain linear economic models 

(see, e.g., Giorgi and Meriggi [41, 42], De Giuli et al. [18], Giorgi [40]). 

(4.2) 

{ [ ] [ ]};0,023 >=<≡ xAxS  

{ [ ] [ ]}.0,023 =>≥≡∗ yAyS ⊤  

This theorem of the alternative is attributed by Marlow [57] to Tucker [79]. 

(5.2) (Second form of Gordan’s theorem). 

[ ]{ };024 <≡ BxS  

{ [ ] [ ]}.0,024 ≥=≡∗ yByS ⊤  

(6.2) (First theorem of the alternative of Gale [29]). 

{ [ ] [ ]};0,025 =><≡ xBxS  

{ [ ] [ ]}.0,025 ≥=>≡∗ yByS ⊤  

This result is a restatement of Ville’s theorem sub 3.2), with ( )⊤BA −≡  and where 

the roles of 22S  and ∗
22S  have been interchanged. 

(7.2) 

{ [ ] [ ]};0,026 ><≡ xAxS  

{ [ ] [ ] [ ] [ ]}.0,0or0,026 =>≥≥=>≡∗ yAyyAyS ⊤⊤  

This result may be considered as a variant of Ville’s theorem. 
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(8.2) 

[ ]{ };027 ≤≡ BxS  

{ [ ] [ ]}.0,027 >=≡∗ yByS ⊤  

This result is only a formal variant of Stiemke’s theorem. 

(9.2) 

{ [ ] [ ]};0,028 =>≤≡ xBxS  

{ [ ] [ ]}.0,028 >=>≡∗ yByS ⊤  

This result is only a formal variant of the one sub 4.2). 

(10.2) 

{ };29 bAxS <≡  

{ [ ]};029 =≡∗ AyS ⊤    [ ] [ ].0; ≥−bIy⊤  

This result is attributed to Carver [14]. Note that ∗
29S  may be rewritten as 

{ [ ],0=Ay⊤ [ ]}.0,0 ≥=< yby⊤  

(11.2) 

{ [ ]};0,30 >=<≡ xbAxS  

{ [ ] [ ] [ ]}.0,0;30 =>≥−≡∗ ybAyS ⊤  

(12.2) 

{ [ ]};0,31 >== xbAxS  

{ [ ] [ ]}.0;31 ≥−≡∗ bAyS ⊤  

The above result may be considered a non-homogeneous version of Stiemke’s 

theorem. 
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(13.2) 

[ ] [ ] [ ]{ };0,0,032 =>>=>≡ xBxAxS  

{ [ ] [ ] [ ]}.0,0,032 ≥=>=<+≡∗ vyBvAyS ⊤⊤  

(14.2) (Motzkin’s theorem of the alternative or Motzkin’s transposition 

theorem). 

[ ] [ ] [ ]{ };0,0,033 >=>=≡ DxBxAxS  

{ [ ] [ ] [ ]}.0,0,033 ≥=>=++≡∗ wvDwBvAyS ⊤⊤⊤  

(A  and B  may be missing. It seems that this result has been anticipated by J. B. J. 

Fourier [24]). 

(15.2) (Tucker’s theorem of the alternative). 

{ [ ] [ ] [ ]};0,0,034 ≥=>=≡ CxBxAxS  

{ [ ] [ ] [ ]}.0,0,034 >=>=++≡∗ wvCwBvAyS ⊤⊤⊤  

(A  and B  may be missing). 

(16.2) (Slater’s theorem of the alternative). 

{ [ ] [ ] [ ] [ ]};0,0,0,035 >≥=>=≡ DxCxBxAxS  

{ ( ) ( ) [ ] [ ] [ ]

[ ]} { ( ) ( ) [ ]

[ ] [ ] [ ]}

.

0,0,0

,0or0

,0,0,0

21

212

121

35

























=>>=>

=+++≥

=>=>=+++

≡∗

wwv

DwCwBvAyw

wvDwCwBvAy

S
⊤⊤⊤⊤

⊤⊤⊤⊤

 

(A  and B  may be missing). 

(17.2) (First Mangasarian’s theorem of the alternative). 

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]
;

0,0,0,0or

0,0,0,0
36









==>>=>

==>=>≥
≡

DxCxBxAx

DxCxBxAx
S  



ALL LINEAR THEOREMS OF THE ALTERNATIVE … 

 

61 

{( ) ( ) ( ) ( ) [ ]

[ ] [ ] [ ]}











=>≥>

=+++
≡∗ .

0,0,0

,0

321

4321

36
yyy

DyCyByAy
S

⊤⊤⊤⊤

 

(18.2) 

[ ] [ ]{ };0,037 >≤≡ xAxS  

{{ [ ] [ ]} { [ ] [ ]}}.0,0or0,037 >=>=>≥≡∗ yAyyAyS ⊤⊤  

(19.2) (Second Mangasarian’s theorem of the alternative). 

{ };38 bAxS ≤≡  

{ [ ] [ ] }

{ [ ] [ ] [ ]}
.

0,0,0or

1,0,0
38













=<>=

−==>=
≡∗

ybyAy

ybyAy
S

⊤⊤

⊤⊤

 

(20.2) (Second Gale’s theorem of the alternative). 

[ ]{ };0,39 =>=<≡ xbAxS  

{ [ ] [ ] }.0,0,039 <=>=>≡∗ byyAyS ⊤⊤  

(21.2) 

{ [ ] [ ] [ ]};0,0,040 >>=>≡ xBxAxS  

{{ [ ] [ ] [ ]}0,0,040 ≥=>=<+≡∗ vyBvAyS ⊤⊤  

{ [ ] [ ] [ ]}}.0,0,0or =>=>≤+ vyBvAy ⊤⊤  

(22.2) (First Fenchel’s theorem of the alternative). 

[ ] [ ] [ ]{ };0,0,041 ≥=>=+≡ zxBzAxS  

{ [ ] [ ]}.0,041 >=>≡∗ ByAyS ⊤⊤  

(23.2) (Second Fenchel’s theorem of the alternative). 

[ ] [ ] [ ]{ };0,0,042 >=>=+≡ zxBzxAS  
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{ [ ] [ ]}.0,042 ≥=>≡∗ ByAyS ⊤⊤  

(24.2) 

[ ] [ ] [ ]{ };0,0,043 ≥≥=+≡ zxBzAxS  

{{ [ ] [ ]} { [ ] [ ]}}.0,0or0,043 >=>=>>≡∗ ByAyByAyS ⊤⊤⊤⊤  

(25.2) 

[ ] [ ] [ ]{ };0,0,044 =>>+=+≡ zDzCxBzAxS  

{ [ ] [ ] [ ]}.0,0,044 ≥=<+=+≡∗ vDvByCvAyS ⊤⊤⊤⊤  

The list could be made longer, but we think that the reader has realized the 

techniques to get from Theorem 3 the theorems of the alternative needed for his 

purposes. 

Remark 2. From Theorem 3 it is also possible to obtain various non-

homogeneous versions of theorems of the alternative for linear systems. We report 

only the non-homogeneous Farkas’ theorem or Duffin’s theorem of the alternative 

(see, e.g., Mangasarian [56]). 

{ }.,45 γ>=<≡ xcbAxS ⊤  

{{ [ ] [ ]}00,045 =><=≡∗ yByAyS ⊤⊤  

{ [ ]}}.0,,or =>γ=<= yBycAy ⊤⊤⊤  

This result can be obtained at once from Motzkin’s theorem. For a general treatment 

of non-homogeneous theorems of the alternative for linear systems, the reader is 

referred to Szilagyi [74]. 

From the previous results it is also possible to obtain in a simple way two 

theorems due to A. W. Tucker [79]. 

Theorem 4 (Key Theorem). Let be given the matrix A  of order ( )., nm  Then, 

the two systems 
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[ ]{ };0=>Ax           { [ ] [ ]}0,0 =>= yAy⊤  

admit, respectively, solutions 0x  and 0y  such that 

[ ].000 >+ yAx  

Proof. In order to prove that the following system 

[ ]

[ ]

[ ]

[ ]












=>

<−−

=<−

=

0

,0

,0

,0

y

IyAx

Ax

yA⊤

 

admits solutions, it is necessary and sufficient to show, on the grounds of Theorem 3, 

that its “dual system” 

( ) ( ) [ ]

( ) ( ) [ ]

[ ] [ ]











≥=>∈

=>−

=+

,0,0,

,0

,0

321

31

32

zzz

zAz

AzAz

n
R

⊤⊤⊤

⊤⊤

 

does not admit solutions. Let us suppose, on the contrary, that this dual system admits 

solutions: we should get the following contradiction 

( ) ( ) ( ) .00 33332132 >=>+=>+= zzzzzAzzz
⊤⊤⊤  

Theorem 4, called sometimes also “key theorem”, generates in its own turn 

several “classical” theorems of the alternative, among which Farkas’ theorem. Hence, 

we have, so to speak, closed the “loop”: all theorems of the alternative for linear 

systems not only have a common father but they are in fact all equivalent. Moreover, 

it is true that Gordan’s theorem can be obtained by Farkas’ theorem, as previously 

seen, but also the vice versa holds (see, e.g., Giorgi [35, 36, 39], Güler [45], Borwein 

and Lewis [11], Perng [66, 67]). We can therefore affirm that Gordan’s theorem, 

published in 1873, is perhaps the true “common father” of all other theorems of the 

alternative for linear systems. However, it must not be forgotten the contributions of 
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J. B. J. Fourier. Theorem 4 has been proved by induction by Tucker himself (Tucker 

[79]), by Mangasarian [56], by Kemp and Kimura [52], etc. Other proofs, in the 

author’s opinion not less elementary, are due to Nikaido [62], Broyden [12], Singh 

and Patron [69]. A short and interesting proof, inspired by Morishima [58], is given 

by Fujmoto [24]. 

The following corollary to Theorem 4, also due to Tucker [79], has been used by 

Howe [49] and by Nikaido [62] in proving the existence of equilibrium solutions for 

the celebrated von Neumann growth model. 

Corollary 1. The system 

{ [ ] [ ] [ ] [ ]}0,0,0,0 =>=>=<=> yxAyAx ⊤  

admits solutions x  and y  such that 

[ ] [ ].0;0 >−>+ AyxAxy ⊤⊤  

Proof. It is sufficient to apply Theorem 4 to the dual systems 

[ ];0=>











x

A

I
          ( ) [ ],0, =













A

I
yw
⊤  

with ( ) [ ].0, =>yw  

Theorem 5 (Tucker [79]). Let be given the square skew-symmetric matrix L  of 

order n  ( ).,.. LLei −=⊤  Then the system 

[ ] [ ]{ }0,0 =>=> xLx  

admits a solution 0x  such that 

[ ].000 >+ xLx  

Proof. In order to prove that the following system 

[ ] ( ) [ ] [ ]{ }0,0,0 =>>+=> xxILLx  

admits solutions, it is necessary and sufficient, on the grounds of Theorem 3, to show 
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that the dual system 

{ ( ) [ ] [ ] [ ]}0,0,0 ≥=>=<++ vyILvLy ⊤⊤  

does not admit solutions. Absurdly suppose that this dual system admits a solution. 

Being L  skew-symmetric, it will hold ,,0 nxLxx R∈∀=⊤  and, moreover, 

( ( )) [ ] ( [ ]) ⇔=<+−−⇔=<++ 00 ⊤⊤⊤⊤⊤⊤⊤ vLvLyILvLy  

( ) ( ).vyLLvyv +=+⇔ ⊤⊤⊤  

Therefore, we obtain from the said dual system, the contradiction 

( ) ( ) ( ) .00 =++=<+=<< vyLvyvyvvv
⊤⊤⊤  

As it is well-known, Theorem 5 is important in proving duality results in linear 

programming problems. 

3. The Question of the Proof of Farkas’ Theorem 

Farkas’ theorem is one of the most quoted and used theorems of the alternative 

for linear systems and has received attention also for what concerns its proof. Several 

papers have appeared, quite recently, with titles promising “short and elementary” 

proofs of Farkas’ theorem (see the Bibliographical References at the end of the 

present paper). However, in most cases the proofs are not short, nor elementary. For 

a (not exhaustive) review of the proposed proofs of Farkas’ theorem the reader may 

consult Giorgi [35, 38, 39] and Jacimovic [51]. 

Perhaps the most popular proof is the one based on a separation theorem 

between convex sets. In this type of proofs it is essential to demonstrate that a finitely 

generated cone is a closed set. Several authors skip this step and give for granted the 

above closedness. This is misleading, as Borwein [10] has proved that the closedness 

of a finitely generated cone is in fact equivalent to Farkas’ theorem itself! Moreover, 

the question is not a trivial one, as the finitely generated cone C  

{ [ ]},0,: =>=∈= xAxzzC m
R  
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with A  matrix of order ( ) ,, nm  is the direct image (not the inverse image!) of a 

closed set. We give here a proof, quite elementary and not too long, of the closedness 

of .C  

Theorem 6. Let A  be a matrix of order ( )., nm  Then the set 

{ [ ]}0,: =>=∈= xAxzzC m
R  

(finitely generated cone or finite cone) is a closed convex cone of .m
R  

Proof. First we remark that every hyperplane of m
R  is a closed set and that 

every linear subspace of m
R  is a closed set, being the intersection of hyperplanes 

passing through the origin (the intersection of an arbitrary number of closed sets is 

closed). For a direct proof that every linear subspace of m
R  is closed one can see 

Bazaraa and Shetty [6]. The facts that C  is a cone with vertex at the origin and that it 

is convex are obvious. Let us rewrite C  as a (nonnegative) linear combination of the 

columns jA  of the matrix :A  

[ ] .0,:

1 













=>µµ=∈= ∑
=

j

n

j

j
j

m
AzzC R  

We will show that the cone C  is closed by an induction argument based on the 

number of the column vectors ,j
A  .....,,1 kJ =  

When ,1=k  C  is either the origin [ ]0  or a half-line and is therefore closed. 

Now suppose that for 1>k  the cone generated by the vectors 11 ...,, −kAA  is 

closed: 

[ ]














=>µµ=∈= ∑
−

=

− 0,:
1

1

1 j

k

j

j
j

m
k AzzC R  

is closed. We have to show that the cone 

[ ]














=>µµ=∈= ∑
=

0,:

1

j

k

j

j
j

m
k AzzC R  
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is closed too. There are two cases. 

(1) First, suppose that kC  contains the vectors ....,,, 21 kAAA −−−  Then kC  

is a linear sub-space of dimension not exceeding ,k  so it is closed. 

(2) Assume that at least one of the vectors kAAA −−− ...,,, 21  does not belong 

to ,kC  say k
k CA ∉−  (renumber if necessary). Then, every kCy ∈  can be 

represented as ,kAyy α+=  ,0=>α  where .1−∈ kCy  To show that kC  is closed, 

suppose that z  is a limit point. Then, there exists a sequence { } kn
n Cz ⊂∞

=1  such 

that zzn →  as ,∞→n  where nz  has the form 

.0, =>αα+= n
k

n
nn Ayz  

If the sequence { }nα  is bounded, we can assume, without loss of generality, that 

the sequence converges to a limit ,α  and consequently ,1−∈α− k
kn CAz  where 

this last set is closed. Therefore 

( ) ,limlim 1−
∞→∞→

∈≡=α−=α− k
n

n

k
n

n

n

k CyyAzAz  

since 1−kC  is closed. 

We can conclude that 

.k
k CAyz ∈α+=  

Thus, if the sequence { }nα  is bounded, the set kC  is closed. 

We now assume that ∞→αn  for .∞→n  Then, since nz  converges, it is a 

bounded sequence. Hence { } [ ]01 →α − n
n z  as .∞→n  It follows that 

{ } [ ]01 →+α − kn
n Ay  as .∞→n  Therefore { } .lim 1 kn

n
n

Ay −=α −

∞→
 But, since 

1−kC  is closed, this means that ,1−∈− k
k CA  which is a contradiction. 
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Shorter proofs of Theorem 6, but less elementary, are given, e.g., by Achmanov 

[1], Craven [15], Hestenes [46, 47]. 

Now we make some remarks and considerations on some other proofs of Farkas’ 

theorem appeared in the literature. 

(A) The proof by induction of Gale [28, 29] is indeed simple, not too long and 

does not require special algebraic or topological requirements. Perhaps this proof 

may be improved only with respect to the notations. See, e.g., Kurz and Salvadori 

[54], Giorgi [35], Bartl [4, 5]. In spite of its simplicity this proof is quite infrequent 

in the literature and it appears sometimes in mathematical economics textbooks. 

(B) Proofs of Farkas’ theorem by means of Gordan’s theorem. The proof of 

Gordan’s theorem by means of a separation argument does not require the closedness 

of a finitely generated cone and is therefore simpler than the direct proof of Farkas’ 

theorem. The equivalence between Gordan’s theorem and Stiemke’s theorem has 

been proved by Antosiewicz [2], Giorgi [36], Perng [67]. In the paper of Giorgi [36] 

Theorem 4 (Tucker’s theorem or key theorem) is then simply obtained from 

Stiemke’s theorem. It is well-known that the key theorem generates, in its own turn, a 

sequence of theorems of the alternative for linear systems, among which Farkas’ 

theorem. An interesting and new proposal to prove Gordan’s theorem via variational 

principles is offered by Borwein and Lewis [11] and by Güler [45]. Borwein and 

Lewis prove in a straightforward way the following result. 

Theorem 7. Define the function 

( ) ( )













= ∑

=

xi
a

m

i

exf
⊤

1

ln  

where maaa ...,,, 21  are vectors of .n
R  Then the following statements are 

equivalent. 

(a) ( )xf  is bounded from below. 

(b) There exists [ ],0, ≥λ∈λ m
R  such that 

[ ]∑
=

=λ

m

i

i
ia

1

.0  
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(c) There is no nx R∈  such that ....,,1,0 mixai =<  

Note that the equivalence (b) ⇔  (c) is just Gordan’s theorem. 

From Theorem 7 Borwein and Lewis [11] obtain then Farkas’ theorem. It seems 

that the idea of this approach is due to Hiriart-Urruty [48]. For other considerations 

on Gordan’s theorem see Perng [66]. 

(C) A new proof of Farkas’ theorem is contained in the paper of Fujimoto et al. 

[26], proof based on a previous approach of Fujimoto [24], who in turn owes his idea 

to Morishima [58]. In the Metroeconomica paper various other approaches in 

proving Farkas’ theorem are examined. See also the working paper N. 129 [26] of the 

same authors on www.economiaweb.it 

(D) Some authors, e.g., Kuhn [53], Stoer and Witzgall [72], Webster [77], use 

the so-called “Fourier-Motzkin method for elimination of variables” in linear 

inequalities. Indeed, it seems that J. B. J. Fourier [24] has been the first to recognize 

that a mechanical system has a stable equilibrium state if and only if some 

homogeneous system of inequalities has no solution. A compact treatment of this 

method is contained in the book of Webster [77]. See also the interesting paper of 

Szilagyi [75]. 

(E) A new proof of Farkas’ theorem by means of an appropriate separation 

theorem which, however, does not require the closedness of a finitely generated cone, 

is presented by Cambini and Martein [13]. Farkas’ theorem is obtained as a corollary 

(Corollary 4.2.1 in Cambini and Martein [13]) of the following general result 

(Theorem 4.2.1 in Cambini and Martein [13]), we report for the reader’s 

convenience. 

Theorem 8. Let V  be a linear subspace of s
R  such that .∅=−

sintV RI  

Then the following conditions hold: 

(i) sV −
∗
RI  is a face ( )













=>γ−γ== ∑
∈

0,j
j

Ji

ezF  of ,s
−R  where J  is a 

proper subset of the set of indices { },...,,1 s  sVV +
∗ += R  is the so-called conic 
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extension of ,V  which is a closed and convex cone, and je  is the unit vector having 

the thj-  component equal to one and all others equal to zero. It is used the 

convention that [ ]{ }0=F  when .∅=J  

(ii) If ,∅≠J  for each hyperplane of equation ,0=α z
⊤  [ ],0≥α  which 

separates V  and ,s
−R  we have ,0=α j  .Jj ∈∀  Furthermore, there exists a 

separating hyperplane such that ,0>αi  .Ji ∉∀  

(iii) If ,∅=J  i.e., [ ]{ },0=−
sV RI  there exists a separating hyperplane such 

that ,0>αi  ....,,1 si =∀  

The reader will note that the above statement is not quite elementary, and of 

course it is not quite elementary also its proof. 

(F) Many theorems of the alternative for nonlinear systems are available in the 

mathematical literature. These theorems usually hold under various generalized 

convexity assumptions on the functions involved and some of them are formulated in 

an infinite-dimensional topological setting. Obviously, their proofs are in general not 

elementary; moreover, some of these theorems do not recover in a direct way the 

corresponding simpler theorems of the alternative for linear systems, such as Farkas’ 

theorem. 

A useful nonlinear theorem of the alternative is presented by Berge and Ghouila-

Houri [8]. These authors prove their result by means of a generalization of Helly’s 

theorem; their proof is elegant but, obviously, not quite elementary. Giorgi [38, 39] 

and Giorgi and Zuccotti [43] have presented a simple and self-contained proof of 

Berge and Ghouila-Houri’s result, proof which requires only a classical separation 

theorem between convex sets. See also Fujimoto et al. [25]. 

Theorem 9. Let be given the convex functions ( ) ( ) ( ) ( ),...,,,, 210 xfxfxfxf p  

defined on n
R  and the linear affine functions ( ) ( ) ( ),...,,, 21 xhxhxh m  where 

( ) ( ) ,iii bxAxh −=  ,n
iA R∈  mi ...,,1=  ( iA  is the thi-  row of matrix A  of 

order ( ))., nm  If the system 
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( )

( )










==<

==<

<

,...,,1,

,...,,1,0

,00

mibxA

pkxf

xf

ii

k  

admits no solution, but there exists nx R∈0  such that it holds (“Slater constraint 

qualification”) 

( )







==<

=<

,...,,1,

,...,,1,0

0

0

mibxA

pkxf

ii

k
 

then there exist multipliers 

0...,,0,0...,,0 11 =>=>=>=> mp uuyy  

such that 

( ) ( ) ( ) .,0

11

0
n

iii

m

i

p

k

kk xbxAuxfyxf R∈∀=>−++ ∑∑
==

 

Farkas’ theorem is easily obtained from Theorem 9. It is immediate to see that 

systems 

( ) [ ]0,:1 =>= xbAxS  

and 

( ) [ ] 0,0:2 <=> ubuAS ⊤⊤  

cannot admit both solutions. It remains to prove that if ( )2S  does not admit solution, 

then ( )1S  admits solution. Let us rewrite ( )2S  putting ( ) ,00 <≡ ubuf ⊤  and 

[ ].0=<− uA⊤  From Theorem 9 it will exist nx +∈ R   such that uAxub ⊤⊤⊤ −  

( ) ,0=>−= Axbu⊤  for every ,m
u R∈  and therefore we have [ ],0=− Axb  i.e., 

( )1S  admits solution. 

We point out another general approach to build nonlinear theorems of the 
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alternative, approach due to Giannessi [31-34]. The following result is a particular 

case of a more general theorem, proved by the said author. 

Theorem 10. Let RR →ϕ n:  and .: mng RR →  Assume that ϕ  and g  be 

linear affine. Then the following system 

( )
( )

( )





=>

>ϕ

0

,0
:3

xg

x
S  

is impossible if and only if there exist R∈θ  and m
R∈λ  such that 

( ) ( )

[ ] ( ) [ ]





≠λθ=>λ=>θ

∈∀=<λ+θϕ∗

,0,,0,0

,,0
:3

n
x xxg

S
R

⊤

 

where the first inequality of ( )∗
3S  must be verified in strict sense if .0=θ  

Let us rewrite Farkas’ theorem in the form 

( ) [ ] 0,01 <=>≡ xaAxS ⊤  

and 

[ ].0,1 =>=≡∗ zaAzS ⊤  

Set ( ) xax ⊤−=ϕ  and ( ) .Axxg =  Theorem 10 can be applied. At ,0=θ  ( )∗
3S  

becomes [ ],0=>λ  ,0<λ Ax
⊤  ,n

x R∈∀  which is obviously impossible. At ,1=θ  

( )∗
3S  becomes [ ],0=>λ  ,0=<λ+− Axxa ⊤⊤  nx R∈∀  which holds if and only if 

[ ],0=>λ  [ ],0=λ+− Aa ⊤  which is equivalent to ( ).1
∗S  

(G) Finally, we point out the proof of Farkas’ theorem given by Bonnans and 

Shapiro ([9], Lemma 5.43). These authors present a short and seemingly new proof 

of Farkas’ theorem, based on properties of the solution of an appropriate 

optimization problem. In a previous result (Proposition 2.41) the same authors give 

an elegant proof that a finitely generated cone is closed. 
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