ADDITIONAL WEAKLY P1 PROPERTIES AND "NOT-(WEAKLY P1)" PROPERTIES

CHARLES DORSETT

Department of Mathematics Texas A&M University-Commerce Commerce, Texas 75429 USA e-mail: charles.dorsett@tamuc.edu

Abstract

Within this paper, weakly *P*1 properties continue to be examined and "not-(weakly *P*1)" properties are investigated.

1. Introduction and Preliminaries

In 1975 [6], T_0 -identification spaces, which were introduced in 1936 [7], were used to further characterize weakly Hausdorff spaces.

Definition 1.1. Let (X, T) be a space, let *R* be the equivalence relation on *X* defined by xRy iff $Cl({x}) = Cl({y})$, let X_0 be the set of *R* equivalence classes of *X*, let $N : X \to X_0$ be the natural map, and let Q(X, T) be the decomposition topology on X_0 determined by (X, T) and the map *N*. Then $(X_0, Q(X, T))$ is the T_0 -identification space of (X, T) [7].

Keywords and phrases: weakly P1 properties, T_0 -identification spaces, "not-(weakly P1)" properties.

2010 Mathematics Subject Classification: 54A05, 54B15, 54D10.

Received July 5, 2016; Accepted July 19, 2016

© 2016 Fundamental Research and Development International

Within the 1936 paper [7], T_0 -identification spaces were used to further characterize pseudometrizable spaces.

Theorem 1.1. A space (X, T) is pseudometrizable iff its T_0 -identification space $(X_0, Q(X, Q(X, T)))$ is metrizable [7].

Theorem 1.2. A space (X, T) is weakly Hausdorff iff its T_0 -identification space $(X_0, (Q(X, T)))$ is Hausdorff [6].

In the 1975 paper [6], it was proven that weakly Hausdorff is equivalent to the R_1 separation axiom, which was introduced in 1961 [1].

Definition 1.2. A space (X, T) is R_1 iff for x and y in X such that $Cl(\{x\}) \neq Cl(\{y\})$, there exist disjoint open sets U and V such that $x \in U$ and $y \in V$ [1].

Within the 1961 paper [1], A. Davis was interested in separation axioms R_i , which together with T_i are equivalent to T_{i+1} ; i = 0, 1, respectively, leading to the definition of R_1 and the rediscovery of the R_0 separation axiom.

Definition 1.3. A space (X, T) is R_0 iff for each $O \in T$ and each $x \in O$, $Cl(\{x\}) \subseteq O$ [1].

The separation axioms R_i ; i = 0, 1, satisfied Davis' expectations [1].

Within a 2015 paper [2], weakly Hausdorff was generalized to weakly Po properties.

Definition 1.4. Let *P* be a topological property for which $Po = (P \text{ and } T_0)$ exists. Then (X, T) is weakly *Po* iff $(X_0, Q(X, T))$ has property *P*. A topological property *Po* for which weakly *Po* exists is called a weakly *Po* property [2].

As a result of the role of T_0 in the weakly *P*o property process within the introductory paper [2], it was proven that for a topological property *P* for which weakly *P*o exists, a space is weakly *P*o iff its T_0 -identification space has

property Po.

Even though weakly *P*o properties were undefined at the time, since (pseudometrizable)o equals metrizable, metrizable was the first known weakly *P*o property and weakly (pseudometrizable)o = weakly (metrizable) = pseudometrizable. Within the paper [2], it was established that both T_2 and T_1 are weakly *P*o properties, with weakly (R_1) o = weakly $T_2 = R_1$ and weakly (R_0) o = weakly $T_1 = R_0$.

In the introductory weakly *P*o property paper [2], the search for a topological property which was not a weakly *P*o property led to a need and a use for the topological property "not- T_0 ", where "not- T_0 " is the negation of T_0 . In that paper [2], it was shown that both T_0 and "not- T_0 " are not weakly *P*o properties. Also, it was shown that a space is weakly *P*o iff its T_0 -identification space is weakly *P*o. The combination of this result with the fact that other topological properties are simultaneously shared by a space and its T_0 -identification space led to the introduction and investigation of T_0 -identification *P* properties [3].

Definition 1.5. Let S be a topological property. Then S is a T_0 -identification P property iff both a space and its T_0 -identification space simultaneously share property S [3].

Within the paper [3], it was proven that property Q is a T_0 -identification P property iff Q exists and Q = weakly Q o.

As in the case of weakly *P*o properties, both T_0 and "not- T_0 " fail to be T_0 identification *P* properties [3]. The knowledge and insights obtained from the investigations of weakly *P*o and T_0 -identification *P* properties was used to define and investigate weakly *P*1 and to further investigate weakly *P*o and T_0 identification *P* properties [4]. In this paper, the study of weakly *P*1 properties continues and "not-(weakly *P*1)" properties are investigated.

CHARLES DORSETT

2. Weakly P1

Definition 2.1. Let *P* be a topological property for which $P1 = (P \text{ and } T_1)$ exists. Then (X, T) is weakly *P*1 iff $(X_0, Q(X, T))$ is *P*1. A topological property *P*1 for which weakly *P*1 exists is called a weakly *P*1 property [4].

Within the paper [4], it was proven that for a weakly *P*1 property *Q*1, weakly $Q1 = ((\text{weakly } Q0) \text{ and } R_0)$. Since both weakly *Q*0 and *R*0 are topological properties and ((weakly *Q*0) and *R*0) = weakly *Q*1 exists, then weakly *Q*1 = ((weakly *Q*0) and *R*0) is a topological property.

A natural question to ask at this point is whether there are topological properties P for which T_0 -identification P, weakly P0, and weakly P1 are equal and, if so, is there a least topological property for which all three are equal?

Theorem 2.1. The least topological property for which T_0 -identification P = weakly Po = weakly P1 is R_0 .

Proof. Since R_0 = weakly (R_0) o and R_1 = weakly (R_1) o, then R_0 and R_1 are T_0 -identification properties. Since weakly (R_0) l = R_0 and weakly (R_1) l = R_1 [4], then for $P = R_0$ or $P = R_1$, each of the three properties are equal.

Let *Q* be a topological property for which T_0 -identification P = weakly Po = weakly P1. Since weakly $Q1 = ((weakly Qo) \text{ and } R_0)$, then Q = weakly $Q1 = ((weakly Qo) \text{ and } R_0) = (Q \text{ and } R_0)$, which implies R_0 . Thus, R_0 is the least topological property *P* for which each of T_0 -identification P = weakly Po = weakly P1.

As in the case of weakly *P*0 and T_0 -identification *P* properties, neither T_0 nor "not- T_0 " are weakly *P*1 properties [4]. Also, within the paper [4], it was proven that for a weakly *P*1 property, weakly *P*1 = (*P*1 or ((weakly *P*1) and "not- T_0 ")), where both *P*1 and ((weakly *P*1) and "not- T_0 ") exist and are distinct, and neither are weakly *P*1 properties. In the paper [2], it was proven that for a weakly *P*0 property *Q*o, weakly $Qo = (Qo \text{ or } ((\text{weakly } Qo) \text{ and "not-} T_0 "))$, where both Qo and $((\text{weakly } Qo) \text{ and "not-} T_0 ")$ exist, are distinct, and neither are weakly *Po* properties. Thus, the question of whether "not- T_0 " in the statement above for weakly *Q*1 could be replaced by "not- T_1 " arises.

The use of "not- T_0 " in the weakly *P*o paper [2] as an example of a topological property that is not a weakly *P*o property led to the investigation of "not-*P*" properties, where *P* is a topological property and "not-*P*" exists [5], which led to the discovery of $L = (T_0 \text{ or "not-} T_0 \text{ "})$; the least of all topological properties [5]. In [5], it was shown that *L* is not a weakly *P*o property and, thus, by the results above, *L* is not a weakly *P*1 property. Within that paper [5], it was proven that *L* is also equal to (*P* or "not-*P*"), where *P* is a topological property for which "not-*P*" exists, which is used below.

Theorem 2.2. Let Q be a topological property for which weakly Q1 exists and let (X, T) be a weakly Q1 space. Then (X, T) is "not- T_0 " iff (X, T) is "not- T_1 ".

Proof. Since (X, T) is $(Q1 \text{ or } ((\text{weakly } Q1) \text{ and "not-} T_0 "))$, where both Q1 and $((\text{weakly } Q1) \text{ and "not-} T_0 ")$ exist and are distinct, then (X, T) is not Q1.

Since weakly $Q1 = ((\text{weakly } Q1) \text{ and } L) = ((\text{weakly } Q1) \text{ and } (T_1 \text{ or "not-} T_1"))$ = $((\text{weakly } Q1)1 \text{ or } ((\text{weakly } Q1) \text{ and "not-} T_1")) \text{ and } (\text{weakly } Q1)1 = Q1 [4], \text{ then}$ $(X, T) \text{ is } (Q1 \text{ or } ((\text{weakly } Q1) \text{ and "not-} T_1")) \text{ and, since } (X, T) \text{ is not } Q1, \text{ then}$ both Q1 and $((\text{weakly } Q1) \text{ and "not-} T_1") \text{ exist and are distinct. Thus } ((\text{weakly } Q1)) \text{ and "not-} T_1") \text{ and "not$

Corollary 2.1. Let Q be a topological property for which weakly Q1 exists. Then weakly $Q1 = (Q1 \text{ or } ((weakly Q1) \text{ and "not-}T_1"))$, where both Q1 and $((weakly Q1) \text{ and "not-}T_1")$ exist, are distinct, and neither of which are weakly P1 properties.

The negation of Theorem 2.2 gives the next result.

CHARLES DORSETT

Corollary 2.2. Let Q be a topological property for which weakly Q1 exists and let (X, T) be a weakly Q1 space. Then (X, T) is T_0 iff (X, T) is T_1 .

Within the study of weakly *P*o properties, the introduction and investigation of "not-*P*" topological properties raised questions about "not-(weakly *P*o)" for a weakly *P*o property *P*o, which led to the following discoveries. For a topological property *P* for which weakly *P*o exists, "not-(weakly *P*o)" exists and is a topological property, both (*P* and T_0) and (*P* and "not- T_0 ") exist, ("not-*P*")o = ("not-*P*o")o, weakly (("not-*P*")o) exists, weakly (("not-*P*")o) = weakly (("not-(*P*o)")o) = "not-(weakly *P*o)" \neq weakly *P*o, and ("not-*P*")o \neq *P*o [5] raising similar questions for weakly *P*1 properties, which are addressed below.

3. "(Not-(Weakly P1)" Properties for Weakly P1 Properties

Since for a topological property Q for which Q1 is a weakly P1 property, Q0 is a weakly P0 property [4], the results below follow immediately from the results above.

Corollary 3.1. Let Q be a topological property for which weakly Q1 exists. Then Q0 is a weakly P0 property and "not-(weakly P0)" exists and is a topological property, both (P and T_0) and (P and "not- T_0 ") exist, ("not-P")0 = ("not-P0")0, weakly (("not-P")0) exists, weakly (("not-P")0) = weakly (("not-(P0)")0) = ("notweakly P0)" \neq weakly P0, and ("not-P)" $0 \neq$ P0.

Theorem 3.1. ("Not- R_0 " and T_1) does not exist.

Proof. Let (X, T) be a "not- R_0 " space. Let $O \in T$ and let $x \in O$ such that $Cl(\{x\})$ is not a subset of O. Let $y \in Cl(\{x\}) \setminus O$. Then every open set containing y contains x and (X, T) is not T_1 . Hence ("not- R_0 " and T_1) does not exist.

Theorem 3.2. Let Q be a topological property for which weakly Q1 exists. Then ("not-(weakly Q1)" and T_1) does not exist and thus "not-(weakly Q1)" is not a weakly P1 property.

Proof. Since weakly $Q1 = ((\text{weakly } Q0) \text{ and } R_0)$, then weakly Q1 implies R_0 and "not- R_0 " implies "not-(weakly Q1)". Since "not- R_0 " implies "not-(weakly Q1)"

is true, then ("not- R_0 " and T_1) implies ("not-(weakly Q1)" and T_1) is true and, since ("not- R_0 " and T_1) does not exist, then ("not-(weakly Q1)" and T_1) does not exist and "not-(weakly Q1)" is not a weakly P1 property.

Theorem 3.3. Let Q be a topological property for which weakly Q1 exists. Then ("not-Q1)0 exists, "not-(weakly Q1)" = weakly ("not-Q1")0, and ("not-Q1")0 is a weakly P0 property.

Proof. Since a space is weakly Q1 iff its T_0 -identification space is Q1, then a space is "not-(weakly Q1)" iff its T_0 -identification space is "not-Q1". Since all T_0 -identification spaces are T_0 [7], then a space is "not-(weakly Q1)" iff its T_0 -identification space is ("not-Q1"). Thus "not-(weakly Q1)" = weakly ("not-Q1") exists and ("not-Q1") is a weakly Po property.

References

- A. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly 68 (1961), 886-893.
- [2] C. Dorsett, Weakly P properties, Fundamental J. Math. Math. Sci. 3(1) (2015), 83-90.
- [3] C. Dorsett, T_0 -identification P and weakly P properties, Pioneer J. Math. Math. Sci. 15(1) (2015), 1-8.
- [4] C. Dorsett, Weakly P1, weakly P0, and T_0 -identification P properties, Fundamental J. Math. Math. Sci. 6(1) (2016), 33-43.
- [5] C. Dorsett, Weakly *P* corrections and new, fundamental topological properties and facts, Fundamental J. Math. Math. Sci. 5(1) (2016), 11-20.
- [6] W. Dunham, Weakly Hausdorff spaces, Kyungpook Math. J. 15(1) (1975), 41-50.
- [7] M. Stone, Application of Boolean algebras to topology, Mat. Sb. 1 (1936), 765-771.