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Abstract 

We introduce a new sharp approximation for the Gamma function as a 

continued fraction, which is faster than the classical Stirling series. 

1. Introduction 

There are many situations in pure mathematics or in other branches of science 

when we are forced to manipulate large factorials, e.g., see [1, 2, 5, 6]. Maybe one of 
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the most well-known formulas for approximation the factorial function is the so-

called Stirling’s formula 
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Up to now, many researchers made great efforts in the area of establishing more 

precise inequalities and more accurate approximations for the factorial function and 

its extension gamma function, and had a lot of inspiring results. Recently, some 

authors also paid attention to giving increasing better approximations for the gamma 

function using continued fractions. For example, Mortici [5] found Stieltjes’ 

continued fraction 
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In addition, Mortici [6] also provided a new continued fraction approximation 

starting from Nemes’ formula as following: 
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Recently, Lu [9] provided a new continued fraction approximation starting from 
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Burnside’s formula as following: 
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It is their works that motivate our study. In this paper, based on the early works of 

Mortici [5, 6, 8], we provide a similar continued fraction approximation for the 

fractorial function as follows: 

Theorem 1. For the factorial function, we have 
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Remark 1. We get the coefficients 9...,,2,1, =nan  by Mathematica. When 

calculating ,9a  the computer has to spend more than one minute. So we do not 

continue to calculate 10, ≥nan  because of the computational difficulties. 

It is easy to see that Burnside’s formula is only a particular case of Theorem 1 

for all .1,0 ≥= iai  Next, using Theorem 1, we provide some inequalities for the 

gamma function. 
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Theorem 2. There exists an m, such that for every ,mx >  it holds: 
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Remark 2. This is not only a more sharp inequalities than these similar 

inequalities in [5, 9], but also it has fast rate of convergence as a continued fraction 

than others. We give more tight upper and lower bounds for the approximation of 

gamma function. To obtain Theorem 1, we need the following lemma which was used 

in [5, 6] and is very useful for constructing asymptotic expansions. 

Lemma 1. If the sequence ( )
N∈nnx  is convergent to zero and there exists the 

limit 

 ( ) [ ],,lim 1 ∞+∞−∈=− +
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with ,1>s  then 
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Lemma 1 was first proved by Mortici. From Lemma 1, we can see that the rate of 

convergence of the sequence ( )
N∈nnx  increases together with the value s satisfying 

(1.9). 

2. The Proof of Theorem 1 

Based on the argument of Theorem 2.1 in [5] or Theorem 5 in [6], we need to 

find the value R∈1c  which produces the most accurate approximation of the form 
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To measure the accuracy of this approximation, a method is to define a sequence 

( )
N∈nnu  by the relations 
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and to say that an approximation (2.1) is better if nu  converges to zero faster. From 

(2.2), we have 
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Developing the power series in ,
2

1
 we have 

31211
1

12

11

24

1

n
a

n
auu nn 






 ++






 +−=− +  

.
11

320

41
541 







+






 +−

n
O

n
a  (2.5) 

From Lemma 1, we know that the rate of convergence of the sequence ( )
N∈nnu  is 

even higher as the value s satisfying (1.9). Thus using Lemma 1, we have: 

1. If ,
24

1
1 −≠a  then the rate of convergence of the sequence ( )

N∈nnu  is 
n

1
 

since 
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and the rate of convergence of the sequence ( )
N∈nnu  is 
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We know that the fastest possible sequence ( )
N∈nnu  is obtained only for 
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Next, we define the sequence ( )
N∈nnv  by the relation 
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Using the same method, we have that the fastest possible sequence ( )
N∈nnv  is 

obtained only for .
2

1
2 =a  

Then, we define the sequence ( )
N∈nnw  by the relation 
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Using the same method, we have that the fastest possible sequence ( )
N∈nnw  is 

obtained only for .
60

7
3 −=a  
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By induction, we have =−==−== 87654 ,
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This completes the proof of Theorem 1. 

3. The Proof of Theorem 2 

We need the following basic result of Alzer [2], who defined the function ( )xRn  

by 
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where ( )xRn  is completely monotonic on ( ) jB,,0 ∞+  is the jth Bernoulli number 

defined by the power series expansion 
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In particular, ( )xRn  is positive, and for 9=n  and ,10=n  we get the following 

inequalities, for ,0>x  
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Now the conclusion follows the inequalities 

( ) ( ),815 nxH η>   (3.3) 
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This completes the proof of Theorem 2. 
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