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Abstract 

Geometric mean is a statistical parameter with fair properties. Because of 

its robustness, it is used for aggregating cardinal preferences, especially to 

guarantee strategy-proofness. The Geometric Voting Function (GVF) is a 

simplified formulation of a voting function based on this parameter. It is 

presented in this article as an innovative voting function with many 

democracy-desired properties. In addition, it is supplied with a tie-
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breaking mechanism involving standard deviation to guarantee its 

resoluteness. A characterization of the method was carried out as well as a 

study of its time complexity. 

1. Introduction 

Voting is a vital activity in any modern democratic society. It consists on 

collecting individuals’ preferences in order to find the social preference for the 

community. In this hypothesis, it can be seen as an effective way for a community to 

make collective decisions. To find the collective preference, one uses a mathematical 

function called “aggregation function”. A voting function is a method that is designed 

to aggregate individuals’ preferences into a collective one. In social choice theory, 

there are many kinds of such functions but all of them are vulnerable to electoral 

paradoxes and are struck by impossibility theorems. Nevertheless, some voting 

methods are likely more democratic than others. This is the case for expressive 

voting methods. In group decision theory, several procedures have been proposed to 

determine, from individual preferences, a collective preference. 

However, it is not easy to always decide which is the best function among all of 

existing ones. Baujard and Igersheim [4] argue that the legitimacy of a voting 

function lies on the confidence which the voters have in its successive restrictions 

and its capacity to accurately represent their preferences. In addition, Norris [15] has 

proposed four normative criteria to evaluate an electoral system: government 

effectiveness, government responsiveness and accountability, fairness to minor 

parties and social representation. 

Several criticisms are therefore made towards voting methods by social choice 

theoreticians and especially in relation to the controversial results they generate. 

Most of these controversial results are due to voters' strategic manipulation, the 

algorithmic complexity and the methods calculation procedures. 

Many authors have questioned the majority system, which seems to give 

sometimes surprising results. It appears that the ordinal approach of individual 

preferences, widely used in the beginning of the social choice theory (see Borda [6] 

and Condorcet [8]), is now disputed by authors such as Hillinger [12], Balinski and 
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Laraki [2]. These authors reject ranking voting systems and propose aggregation 

methods based on the evaluation principle. 

Smaoui and Lepelley [19] agree with the fact that ranking voting systems use 

voters’ ordinal preferences and do not make it possible to judge (or appreciate) 

independently the different options. Moreover, the one or two-round majority voting 

system has a large number of widely known and proven defects such as failure in 

Condorcet winner and loser conditions, majority requirement, participation, 

reinforcement, monotonicity, etc. (see Condorcet [8] and Felsenthal [9]). 

In this paper, we suggest a simple voting mechanism based on evaluation 

principle where geometric mean is used to determine final score for a candidate. As 

we will show that further, herein presented method meets many democracy-desired 

properties and needs only but a polynomial time to converge. Therefore, our paper is 

organized as follows: Section 2 is devoted to important concepts and preliminaries. 

Section 3 deals with voting functions. A novel voting rule called “Geometric Voting 

Function” (GVF) is presented in Section 4. Sections 5, 6, 7 and 8 are, respectively, 

devoted to the characterization of GVF, its robustness and time complexity, desirable 

properties it fills and paradoxical results it yields when used in real life. Concluding 

remarks are given in Section 9. 

2. Basic Terminology and Preliminaries 

Definition 2.1 (Average). Let S  be an arbitrary set and let R  denote the system 

of real numbers. For each function f from S  to ,R  we define an “average” or 

“mean” as a function ( )fM  that satisfies the following axioms: 

• Axiom 1: ( )fM  is a real number; 

• Axiom 2: ( ) ( )fMccfM .=  for any real constant c; 

• Axiom 3: ( ) 0≥fM  for all functions f what assume only nonnegative values; 

• Axiom 4: ( ) ,11 =M  where 1 denotes the function on S  that everywhere 

assumes the value 1; 
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• Axiom 5: ( ) ( ) ,gfgMfM ≤∀≤  i.e., ( ) ( ) .Sssgsf ∈∀≤  

Axiom 2 is called homogeneity condition. It assumes that multiplying the 

argument f by a constant c is worth to multiply M  by c. It is a consequence of 

Axioms 2 and 4 that ( ) ., R∈∀= aaaM  

Definition 2.2 (Arithmetic mean). Let a function denoted A  be an average. A  is 

called “arithmetic mean” if and only if it satisfies the following supplementary 

axiom: 

• Axiom 6: ( ) ( ) ( )gAfAgfA +=+  for any two functions f and g. 

Definition 2.3 (Geometric mean). Let f be a positive function on S  and log f its 

natural logarithm. We define the “geometric mean” ( )fG  by 

( ) ( ),log fAefG =  

where e is the base of natural logarithms. 

Definition 2.4 (Extended mean function). Stolarsky [20] has generalized mean 

by an expression as follows: 
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are, respectively, artithmetic and geometric means. 

Definition 2.5 (Completely monotonic function). A function f is said to be 

completely monotonic on an interval RI ⊆  if f has derivatives of all orders on I  

and 
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( ) ( ) ,01 ≥− tf nn  

for all It ∈  and .N∈n  

Definition 2.6 (Bernstein function). A function [ [∞+→⊆ ,0: RIf  is called 

a “Bernstein function” on I  if ( )tf  has derivatives of all orders and ( )tf ′  is 

completely monotonic on .I  

A theorem due to Schilling et al. [17] characterizes Bernstein functions. It states 

that a function ] [ R→1,0:f  is a Bernstein function if and only if it admits the 

representation 

( ) ( ) ( ) ,1
0

tdebxaxf
xt µ−++= −

∞+

∫  

where 0, ≥ba  and µ  is a measure on ] [∞+,0  satisfying 

( ) ( ) .,1min
0

+∞<µ∫
∞+

tdt  

Theorem 2.1. Arithmetic and geometric means are Bernstein functions. 

Proof. It is easy to see that the arithmetic mean 

( ) ( ) ( ) ,,,, tyxAtytxAtA yx +=++=  

is a trivial Bernstein function of ( ){ }∞+−∈ ,,min yxt  for .0, >yx  

To establish the second part of the theorem, it is clear that geometric mean 

( )tG yx,  satisfies 
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where ( )
ty

xy

ty

tx
tuu yx −
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+
== 1,  if ,0 yx <<  then ( ) ,10 , <′< tu yx  

] [., ∞+−∈∀ xt  On the other hand, the function ( )uf  is positive and 
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for ,N∈i  which implies that the function ( )uf  is completely monotonic on ] [.1,0  

So, when ,0>> xy  the derivative ( )tG yx,′  is completely monotonic and the 

geometric mean ( )tG yx,  is a Bernstein function.  � 

2.1. Additional properties 

Let ( ).,,, 21 naaafM K=  In other words, M  is some unknown function, f, 

of .,,1 naa K  We assume .0>ia  Since M  is an unweighted expected value or 

mean, the function f must satisfy the following three properties: 

Property 1 (Reflexive property): 

( ) .,,, aaaaf =K  

Property 2 (Symmetric property): 

( ) ( ( ) ( ) ( ) ),,,,,,, 2121 nn aaafaaaf σσσ= KK  

for all permutations σ  of the numbers .,,1 nK  This second property maintains that 

the order of the arguments of f does not affect .M  

Property 3 (Multiplicative property): 

( ) ( ) ( ).,,,,,,,,, 2121221 nnnnl bbbfaaafbababaf KKK =  

2.2. Characterization of the geometric mean 

Fleming and Wallace [10] characterize the geometric mean as follows: 
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Theorem 2.2 (Fleming and Wallace [10]). The unique function that fills 

Properties 1 through 3 is the geometric mean. 

Proof. See related paper from Fleming and Wallace [10]. 

3. Voting Functions 

In practice, according to Balinski and Laraki [3], voting invokes issues that go 

well beyond the problem of how to elect one candidate among several or how to 

determine their order of finish. Candidates may be elected as the representatives of 

regions to legislatures, or as the representatives of political parties, or of both regions 

and parties, to legislatures. A multitude of different systems are used; they raise 

different problems, invoke different information, ask for different inputs, and are 

resolved with different mechanisms. Nevertheless, several central problems are 

common to many electoral systems. 

There are mainly two frameworks for preference expression: ranking and 

grading. The first model (ranking) also called traditional or Arrow’s framework (see 

Arrow [1]) is consecrated by some seven centuries of use wherein individuals’ 

opinions as to preferences are often given in a pairwise binary choice format. While 

traditional model is dedicated to ordinal preferences, the second model is concerned 

by cardinal preferences. Voting procedures are more and more designed in this 

framework to answer the social choice theory central question: how can we 

amalgamate the appreciations or evaluations of many individuals into one collective 

appreciation or evaluation? 

Most of these voting functions use statistical parameters to aggregate 

individuals’ grades into a collective grade. So, approval voting (AV), range voting 

(RV) and Borda Majority Count (BMC) are arithmetic mean-based voting functions. 

Majority Judgment (MJ) is a median-based voting function. Mean-Median 

Compromise Method (MMCM) hybridizes mean and median to aggregate cardinal 

preferences1. 

                                                           
1
For more details, we refer the interested reader to Brams and Fishburn [7] for AV, Balinski and Laraki 

[3] for MJ, Zahid and De Swart [22] for BMC and RV, and Ngoie et al. [14] for MMCM. 
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3.1. Social grading functions 

Let { }pggg ,,, 21 K=Λ  be a finite set called a common language or a well-

defined grading system. Voters have to grade candidates using .Λ  The grading 

system can be made by a range of positive integers, a set of letters, words or phrases 

denoting the opinion or how the voter finds (judges) the candidates. Following 

Balinski and Laraki [3], a common language is a set of strictly ordered grades. A 

profile ( )JA,Φ  is an nm ×  matrix of the grades ( ) Λ∈Φ jai ,  assigned by each 

voter Jj ∈  to each of the candidates .Aai ∈  

Definition 3.1 (Method of grading). A method of grading is a function F  

defined as follows: 

mnmF Λ→Λ ×:  

( ) ( )∗∗
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with ijg  the grade given by judge j to candidate ,ia  and Λ∈∗
ig  the final grade 

assigned to ia  by function .F  

MJ and AV are social grading functions as they assign to each candidate a 

unique grade taken in the adopted common language. Notice that for AV common 

language is the binary set { }1,0=Λ  where 0 = “approved” and 1 = “disapproved”. 

We recommend interested reader to Balinski and Laraki [3] for more details on MJ 

common language. 

3.2. Social ranking functions 

Given a finite language ,Λ  judges assign grades to any number of competitors 

that are the inputs or profile 
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Let us consider { }nS ,,2,1 K=  a set of n voters and two candidates A  and .B  By 

definition, 

• BA S�  indicates that A  is collectively preferred to B  according to the 

chosen decision rule; 

• BA S≈  if BA S�  and ;AB S�  

• BA Sf  if BA S�  but it is not true that .BA S≈  

Definition 3.2 (Method of ranking). A method of ranking is a nonsymmetric 

binary relation S�  that compares any two competitors, A  and ,B  whose grades 

belong to some profile .Φ  

Readers can easily check that AV, MJ, BMC, and MMCM are social ranking 

functions. 

3.3. Desirable properties for voting functions 

There are many democracy-desired properties for voting functions. In the social 

choice literature, many authors such as Arrow [1], Balinski and Laraki [3], Felsenthal 

[9] and Taylor [21], agree with the following fair properties for a voting functions: 

• Universality ( ):U  A fair voting function must guarantee a certain freedom of 

the individuals taking part in the decision-making process. In addition, each of their 

preferences must be taken into account in the process of deciding the election winner. 

• Unanimity or Pareto ( ):P  If all the individuals involved in the collective 

decision making process prefer an alternative a to another b, this same decision must 

be transcribed to the collective decision. 
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• Resoluteness ( ):R  Given m candidates ,,,, 21 mccc K  the function must 

always decide who is the winner among them. 

• Independence of irrelevant alternatives ( ):I  The collective decision between 

two options a and b must depend only on individual preferences on both options even 

when individuals modify their preferences among other options while leaving 

unchanged their preferences on a and b. 

• Neutrality ( ):N  Permuting the names of the alternatives will result in the same 

permutation in the final outcome. 

• Non-dictatorship ( ):D  A fair voting function must exclude any situation in 

which an individual would be able to impose her or his choice to all the individuals 

involved in the decision process. 

• Monotonicity ( ):M  A winning alternative is never harmed whenever some 

voters decide to lift up this alternative in their grades or rankings without changing 

anything else. 

• Anonimity ( ):A  Permuting the names of the voters do not have any impact on 

the final outcome. 

• Clone-resistance ( ):C  Whenever a clone of a losing alternative is introduced, 

this does not alter the original outcome. 

• Homogeneity ( ):H  Given a preference profile and the corresponding outcome, 

replicating this profile λ  times ( )N∈λ>λ ,1  does not change the outcome. In our 

framework, we will say that a voting function is homogeneous if whenever we 

replicate λ  times the original profile, the outcome remains unchanged. 

• Reinforcement condition ( ):RC  The reinforcement condition requires that 

when an electorate is divided into two groups of voters and the voting outcome is the 

same for both groups, this outcome will remain unchanged when both groups of 

voters are merged. 

• Participation condition ( ):PC  A decision rule is said to meet the Participation 
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condition if when some voters supporting a winning candidate are added, this will not 

turn this candidate into a losing one. 

• Majority condition ( ):MC  A decision rule is said to meet the Majority 

condition if when an absolute majority prefers a candidate a to another candidate b, it 

always returns candidate a as winner. 

• Condorcet Winner condition ( ):CW  A decision rule is said to meet the 

Condorcet Winner condition if it always selects the Condorcet winner when it exists. 

A Condorcet winner is a candidate who is preferred by an absolute majority to any 

other candidate. 

• Condorcet Loser condition ( ):CL  A decision rule is said to meet the Condorcet 

Loser condition if it never selects the Condorcet loser when it exists. A Condorcet 

loser is a candidate who is defeated by any other candidate in one-to-one match. 

• Transitivity condition ( ):TC  A decision rule is said transitive if BA S�  and 

CB S�  implies .CA S�  This condition demands that the Condorcet paradox be 

avoided. 

• Simpson’s condition ( ):SC  A decision rule is said to meet Simpson’s 

condition when it does yield the Simpson’s paradox: a phenomenon where an 

apparent relationship in different groups seems to be reversed when the groups are 

combined. 

• Liberalism ( ):L  A decision rule is said to guarantee liberalism if for each voter 

Si ∈  there is at least two candidates A  and B  such that BA i�  ( )AB i�.,resp  

implies ( )..,resp ABBA SS ��  This condition means that each voter must be 

decisive in both ways on at least a pair of candidates. 

• Minimal liberalism ( ):∗L  A decision rule is said to guarantee liberalism if 

there are at least two decisive voters in both ways on at least two distinct candidates. 

• Non-manipulability condition ( ):NM  A decision rule is said to be manipulable 

if a voter can modify final result (social candidates’ ranking) by modifying his 
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individual preference. 

3.4. Impossibility theorems 

3.4.1. General possibility theorem 

The General Possibility Theorem stated by Arrow [1] shows that there is no 

aggregation method that simultaneously satisfies the four conditions ,,, PUI  and D  

when at least two individuals have to decide on at least three options. 

3.4.2. Paretian liberal impossibility theorems 

Sen [18] stated two impossibility theorems after introducing the concept of 

liberalism (condition L) and its associate weak formulation of minimal liberalism 

(condition ∗
L ). 

Theorem 3.1 (Sen [18]). There is no aggregation method that simultaneously 

satisfies the three conditions U, P and L. 

Theorem 3.2 (Sen [18]). There is no aggregation method that simultaneously 

satisfies the three conditions U, P and .∗
L  

3.4.3. Gibbard-Satterthwaite theorem 

Gibbard [11] and Satterthwaite [16] state the following impossibility theorem: 

Theorem 3.3. If there is at least three candidates, no aggregation function can 

simultaneously satisfy conditions U, D and NM. 

4. Geometric Voting Function 

In this section, we propose a voting function based on the geometric mean of 

grades allotted by voters to candidates. The proposed function is called Geometric 

Voting Function (GVF). Let us recall that for n strictly positive real numbers 

nggg ,,, 21 K  the geometric mean of these numbers denoted G  is defined as 

follows: 

.
1

n
i

n

i

gG ∏
=

=  
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The above-defined mean is indicated in case of long-queueing distributions. In fact, 

when one deals with a normal distribution, arithmetic mean, mode and median are the 

same. But most of cases, other means are preferred to the arithmetic mean as the 

latter is very sensitive to data individual variations. 

For example, to evaluate a political candidate c, his partisans would allot to him 

the highest mark. So, they tend to multiply the candidate’s real value by 2, 3 or more. 

In addition, c’s opponents will tend to divide his real value by 2, 3 or more. The 

correct central tendency parameter is therefore the geometric mean, not the arithmetic 

one nor other means. 

As we will show that later in this article, the geometric mean is more robust than 

the arithmetic one. While arithmetic mean is very sensitive to extreme values and 

increases with the standard deviation, geometric mean is as higher as the standard 

deviation is smaller. For example, consider three candidates ,A  ,B  and C  with 

respective list of grades { } { },8,7,5,4,1,6,6,5,4,4  and { }.5,5,5,5,5  As it is 

shown in Table 1, all the three candidates are equal according to arithmetic mean. 

However, we can notice that there is a consensus for candidate C  who is the best 

candidate according to geometric mean. So, while we have CBA ≈≈  with 

arithmetic mean, we easily check that for geometric mean there is no tie with the 

three candidates as .BAC ff  

Table 1. Statistics for candidates BA,  and C  

Candidate Arithmetic mean Geometric mean Standard deviation 

A 5.00000 4.91902 1.00000 

B 5.00000 4.07234 2.73861 

C 5.00000 5.00000 0.00000 

In case the distribution is very large, we use logarithms to compute the geometric 

mean. Indeed, 

( ) ( ),
1

1
i

n

i

xLog
n

GLog ∑
=

=  
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where ( )ixLog  is the decimal logarithm of .ix  

4.1. Geometric score 

Consider a set E  of m candidates for an election, with 2≥m  and a set of s 

voters with .2≥s  The Geometric Voting Function (GVF) is defined as follows: 

Each voter allots to each candidate a unique grade as defined in Balinski and 

Laraki [3] common language. For more accuracy, the literal marks correspond to a 1-

10 scale of numerical data (see Table 2). 

For example, if a voter judges that a candidate deserves “Very Good” as final 

grade, she or he may allot to him 7 or 8 points. 

The method consists in considering the geometric mean of each candidate’s 

numerical grades. As it is not easy to compute such a value for large electorate 

(presidential election for example), we suggest the use of corresponding geometric 

grades which are the decimal logarithms of numerical grades. 

We notice from Table 2 that the grading variation is not linear in the geometric 

scale. This is one of advantages of the geometric mean. In real life, it is easier for a 

voter to increase (resp., decrease) a candidate’s grade from 2 to 3 (resp., from 3 to 2) 

than she or he could do the same from 8 to 9 (resp., from 9 to 8). 

Table 2. Common language and corresponding geometric scale 

Literal grade Numerical grade Geometric grade (log) Variation 

To reject 1 0.00 − 

 2 0.30 − 

Poor 3 0.48 60.00% 

 4 0.60 25.00% 

Acceptable 5 0.70 16.67% 

Good 6 0.78 11.43% 

 7 0.85 8.97% 

Very Good 8 0.90 5.88% 

 9 0.95 5.56% 

Excellent 10 1.00 5.26% 
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Definition 4.1 (Geometric score). The geometric score for a candidate j denoted 

( )jG  is the sum of all obtained geometric grades from n voters, i.e., 

( ) ,
1

1

∗

=
∑= ij

n

i

g
n

jG  

where ( ) ( )nigLogg ijij ≤≤=∗ 1  indicates the geometric grades allotted by voters to 

candidate j. Finally, the candidate with the highest rating is the one who represents 

the consensus. 

Notice that the geometric score for a candidate is always less or equal to 1. It can 

be expressed as percentage. 

For example, a candidate with grades 10, 5, 4 and 1 receives as geometric score 

%.5.57
4

00.060.070.000.1
=

+++
 

The geometric mean is a robust statistical parameter with desirable properties. It 

does not compensate for weak grades by high ones like the arithmetic mean which is 

widely used in many voting systems. It favors candidates who do not have very weak 

scores and whose grades are not very dispersed. For that reason, we suggest a tie-

breaking mechanism taking into account data dispersion. 

4.2. Tie-breaking mechanism 

As the probability of ex  aequo is high when one deals with small electorates, we 

suggest a tie-breaking mechanism in this subsection. When the geometric score of 

two candidates are different, the one with the higher geometric score naturally ranks 

ahead of the other. The geometric ranking gf  between two candidates a and b 

evaluated by the same jury is determined as follows: 

• If ( ) ( ),bGaG >  then ;ba gf  

• If ( ) ( ),bGaG =  then the one with the lower Standard Deviation (SD) ranks 

ahead of the other. 
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4.3. Numerical examples 

Example 1. Small electorate. 

Five judges evaluate the performance of two skaters. The results are presented as 

follows: 

246510:a  

35774:b  

Using the corresponding geometric grades, we have: 

( ) %,6.67
5

30.060.078.070.000.1
=

++++
=aG  

( ) %.6.69
5

48.070.085.085.060.0
=

++++
=bG  

We then finally have .ab gf  

Example 2. Small electorate with ex aequo. 

Four judges evaluate the performances of three skaters. The results are presented 

as follows: 

14510:a  

5245:b  

102101:c  

Using the corresponding geometric grades, we have: 

( ) %,5.57
4

00.060.070.000.1
=

+++
=aG  

( ) %,5.57
4

70.030.060.070.0
=

+++
=bG  

( ) %.5.57
4

00.130.000.100.0
=

+++
=cG  
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We then have ( ) ( ) ( )cGbGaG ==  and must use the appropriate tiebreaking 

mechanism. The SD for candidates ,, ba  and c are, respectively, 3.74, 1.41, and 

4.92. The candidate with the lowest SD ranks ahead of the others. So, we finally have 

.cab gg ff  

Example 3. Large electorate. 

For large electorates, data can be represented as percentages and the geometric 

score is then the balanced arithmetic mean of geometric grades. Let us consider the 

following profile in Balinski-Laraki’s framework: 

  10 9 8 7 6 5 4 3 2 1 

a : 12% 8% 5% 3% 3% 30% 15% 8% 10% 6% 

We can compute the geometric score as follows: 

( ) ( 378.0385.0590.0895.01200.1 ×+×+×+×+×=aG  

) %.83.65100600.01030.0848.01560.03070.0 =×+×+×+×+×+  

5. Characterization of GVF 

In this section, we study fair properties that only GVF and no other function can 

meet. Let us recall that GVF is equivalent to the decimal logarithm of the above-

defined geometric mean. And thus, what Fleming and Wallace [10] stated for 

geometric mean in Theorem 2.2 above is also true for GVF. In addition, the 

following theorem is true: 

Theorem 5.1 (Characterization of GVF). The GVF is the unique voting rule that 

meets simultaneously the reflexive property, the symmetric property, the 

multiplicative property and the additive property. 

Proof. Observe that for any 0>k  

( )kkkk ,,, Kf=  

( ) ( ) ( )kkk ,,1,11,,,11,,1, KKKK fff=  

( ) .1,,1, n
f Kk=  
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The first equality follows from reflexive property, the second is arrived at by 

repeated applications of multiplicative property, and the last is symmetric property. 

Hence, ( ) nf
1

1,,1, kk =K  for any .0>k  Then we note that symmetric and 

multiplicative properties, together with the above calculation, imply that 

( ) ( ) ( ) ( )nn afafafaaaf ,,1,11,,,11,,1,,,, 2121 KKKKK =  

( )1,,,,1
1

KK i

n

i
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=
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To finally establish our theorem, we use decimal logarithm 
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The last equality (which reflects the additive property) is the definition of the 

geometric score.  � 

6. Computational Issues 

6.1. Robustness of GVF 

In this subsection, we present the results of an in silico experiment. We have 

generated 10 000 000 random numbers on the 1-10 discrete scale and calculated their 

arithmetic and geometric means as well as the median and the standard deviation. 

The following stage was to select in a random way 5%, 10%, 25%, and 50% of these 

data which will be replaced by extreme values (1 if the number is lower than the 

average and 10 otherwise). The results are given in Table 3 below. The last column 
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indicates a simulation where all the data were modified. It is about the case where all 

the voters are strategic. 

Table 3. Simulation of strategic voting 

Strategic voters 0% 5% 10% 25% 50% 100% 

Median 6.00000 6.00000 6.00000 6.00000 6.0000 10.00000 

GVF 0.67272 0.66920 0.68173 0.69550 0.71849 0.61065 

GM 4.70678 4.66873 4.80542 4.96024 5.22989 4.07990 

AM 5.49339 5.53935 5.65799 5.90982 6.33016 6.49585 

SD 2.62916 2.75169 2.78644 2.99388 3.26821 4.38845 

GVF: Geometric Voting Function   GM: Geometric Mean   AM: Arithmetic Mean   SD: Standard Deviation 

Table 4 indicates, for each proportion of strategic voters, the relative variation of 

the parameter compared to the initial data (column of 0% in Table 3). It follows that 

GVF is the parameter which is the most strategy-proof after the median. If one 

considers an electorate where all the voters are strategic, GVF is shown even more 

robust than the median. 

Table 4. Parameters relative variation 

Strategic voters 0% 5% 10% 25% 50% 100% 

Median 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 66.6666% 

GVF 0.0000% − 0.5232% 1.3393% 3.3862% 6.8027% − 9.2267% 

GM 0.0000% − 0.8084% 2.0957% 5.3850% 11.1139% − 13.3186% 

AM 0.0000% 0.8366% 2.9963% 7.5805% 15.2323% 18.2484% 

SD 0.0000% 4.6604% 5.9821% 13.8721% 24.3062% 66.9145% 

GVF: Geometric Voting Function   GM: Geometric Mean   AM: Arithmetic Mean   SD: Standard Deviation 

6.2. Complexity study 

It is obvious that GVF can be computed in a polynomial time. For an n-data set, 

if data are not grouped, one needs 1−n  additions and a final division. If data are 

already grouped in 10 classes (1 to 10) the number of operations is constant (10 

multiplications, 9 additions and 1 division). In general, we claim that time complexity 
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for GVF is ( ).nO  

7. Desirable Properties Filled by GVF 

Let us consider a set of m candidates { }mi ccc ,,,,1 KK=C  and a finite set of 

n voters { }.,,,,1 nj KK=J  A problem is completely specified by a profile 

( ) :, JCΦ=Φ  an nm ×  matrix of the grades ( ) Λ∈Φ jI ,  assigned by each of the 

voters J∈j  to each of the candidates .C∈ic  

A method of grading is a function F  that assigns to any profile Φ  one final 

grade in the same language for every candidate .: mnmF Λ→Λ ×  Designed to assign 

grades, it must satisfy certain basic properties. 

Balinski and Laraki [2] notice that the mean value function (may it be arithmetic 

or geometric) is the universally used aggregation function in practice, though 

sometimes highest and lowest grades are dropped. This means that the output 

language is almost always richer than the input grades (inputs are usually restricted to 

discrete levels). 

In conformity with most practical applications, the common language is 

parametrized as a subset of real numbers and whatever aggregation is used, small 

changes in the parametrization or the input grades should imply small changes in the 

final grades. Hence, with Balinski and Laraki [2], we agree that if the initial language 

is finite, all possible prametrizations must be considered. We will naturally take the 

output common language to be [1, 10] and impose the continuity condition to GVF. 

By doing so we can then consider GVF as a method of grading and establish the 

following theorem: 

Theorem 7.1. GVF is a social grading function (SGF). 

Proof. We know that the aggregation function f for GVF is the geometric mean. 

This means that for every ,C∈ic  we have ( ) ( ) ( )( ),ii cfcGVF Φ=Φ  where f is the 

geometric mean. According to possibility theorem stated by Balinski and Laraki [2], 

the latter equality means that GVF satisfies neutrality, anonymity, unanimity, 

monotonicity and independence of irrelevant alternatives. As the considered 
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aggregation function f (geometric mean) is a Bernstein function, we can easily check 

that GVF is continuous. A social grading function (SGF) is a method that satisfies the 

six previous conditions. � 

GVF defines, and is defined by a unique continuous aggregation function f that is 

geometric mean. In the sequel, because a SGF and its aggregation function go hand 

in hand, properties are defined in terms of aggregation functions, theorems stated in 

terms of SGFs. 

Theorem 7.2. GVF meets universality, resoluteness, cloneresistance, homogeneity, 

reinforcement, and participation conditions. 

Proof. The resoluteness is guaranteed by the tie-breaking mechanism. The clone-

resistance property is corollary to the independence of irrelevant alternatives. Since 

geometric mean is homogeneous, we can easily check that GVF is homogeneous. 

Universality, reinforcement and participation conditions are evident since the 

geometric mean (even simple addition and multiplication) fills them.  � 

As Balinski and Laraki [2] argued, enriching a language by embedding it into a 

real interval opens the door to many more methods of grading, but it will turn out that 

the aggregation functions that emerge as those that must be used are directly 

applicable in the seemingly more restrictive finite language as well. 

8. Paradoxical Results with GVF 

In this section, we present weaknesses of GVF in a controversial example. We 

prove that GVF fails the majority requirement, the Condorcet winner criterion and 

the Condorcet loser criterion. 

In fact, consider three candidates cba ,,  and five voters 54321 ,,,, vvvvv  with 

preferences as indicated in Table 5. 

Table 5. Voters’ preferences and GVF results 

  
1v  2v  3v  4v  5v  Geometric score SD 

a : 5 8 2 5 5 66.0% 2.44949 

b : 10 1 2 10 10 66.0% 4.92443 

c : 1 10 5 8 5 66.0% 3.91578 
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The reader can easily check that candidate b is the Condorcet winner while 

candidate a is the Condorcet loser. However, GVF with its tie-breaking mechanism 

selects candidate a as the best one. It follows that the GVF fails the majority 

requirement, the Condorcet winner criterion and the Condorcet loser criterion. Notice 

also that MJ, BMC, and MMCM select b as the best candidate and returns a as the 

worst. 

9. Concluding Remarks 

The aggregation of individual preferences into a collective preference is 

performed by means of aggregation functions, which are generally mathematical 

formulas or social choice functions. These formulas make it possible to rank 

candidates to an election on the basis of voters’ appreciation or evaluation. 

Determining a social choice function with desirable properties allows the 

transformation of individuals’ choice into a choice representing the general interest. 

Especially, in this article, we have presented a geometric mean-based function to 

circumvent electoral paradoxes often observed with common voting rules such as one 

and two-round majority systems. We have therefore brought to the literature a good 

voting system in the sense that it fills many democracy-desired properties even 

though, according to impossibility theorems, it still remains vulnerable to a restricted 

number of electoral paradoxes such as failure to majority requirement, the Condorcet 

winner and the Condorcet loser criteria. 

To circumvent computing complexity, the herein presented voting system 

proposes to voters a logarithmic scale of evaluation. Final scores for candidates are 

then expressed in percent. The resoluteness is guaranteed in all cases since the 

function is supplied with a tie-breaking mechanism. In addition, its time complexity 

is linear. That is to say that it does not take much time, even at human level, to 

converge to the result. 

In electoral field, it is known as stated by Baujard et al. [5] that the choice of a 

voting method shapes the democracy in which we live. In accordance with Igersheim 

et al. [13], it appears that the experimental results confirm that, for given preferences, 

changing the voting system is likely to change the outcome of the election. Studies 

highlight then the fact that aggregate results differ from one voting system to another. 

In this paper, we advocate for GVF a fair voting rule since it yields results such that 
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at least two normative criteria for a “good” electoral system as stated by Norris [15] 

are filled: Government effectiveness and fairness to minor parties. Research into the 

handling of this function to linear and continuous scales and finding other 

paradoxical results can be an important contribution to the field. 

Data Availability 

Results on GVF robustness are computed from a spreadsheet. Interested reader 

can request the file by mailing to the corresponding author (Ruffin-Benoit M. Ngoie: 

benoitmpoy@hotmail.com). 
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