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Abstract 

In regression problems, we usually try to estimate the parameters β  in the 

general linear regression model .uXY +β=  We need a method to 

estimate the parameter vector .β  The most common method is the 

Ordinary Least Squares (OLS) estimator. However, in the presence of 

multicollinearity, the OLS efficiency can be radically reduced because of 

the large variances of the estimates of the regression coefficients. An 

alternative to the OLS estimator has been recommended by Hoerl and 

Kennard [3], namely the ridge regression estimator. In this paper, a 

suggested method of finding the ridge parameter k is investigated and 

evaluated in terms of Mean Square Error (MSE) by simulation techniques. 

Results of a simulation study indicate that with respect to MSE criteria, 

the suggested estimators perform better than both the OLS estimators and 

the other estimators discussed here. 

1. Introduction and Ridge Estimation of β  

In multiple regression, it is known that the parameter estimates, based on 
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minimum residual sum of squares, have a high probability of being unsatisfactory if 

the prediction vectors, X, are multicollinear. In fact, the question of multicollinearity 

is not one of existence, but of degree. In the situation when the prediction vectors are 

far from being orthogonal, i.e., when strong multicollinearities exist in X, Hoerl and 

Kennard [3] suggested the ridge regression to deal with the problem of estimating the 

regression parameters. 

Consider the standard multiple linear regression model: 

 ,uXY +β=  (1) 

where Y is an ( )1×n  vector of observable random variable (the response or 

dependent variable), ( )pXXXX ...,,, 21=  is a known ( )pn ×  matrix of the 

explanatory variables (the regressor or independent variables) of full rank p, 

( )′βββ=β p...,,, 21  is a ( )1×p  vector of unknown regression coefficients, and 

finally, ( )INu 2,0~ σ  is an ( )1×n  vector of uncorrelated errors. We have left a 

constant term ( 0β  term), in order to simplify the discussion which follows. This is 

actually justifiable if we center all the data (i.e., offset it so that its mean is zero, both 

predictors variables and the response variable). 

The most common method estimator of β  is derived by the OLS estimator. We 

find the parameter values which minimize the sum of squared residuals (SSR) 

 .
2∑ β−=

i

XYSSR  (2) 

The solution turns out to be a matrix equation 

 ( ) ,ˆ 1
YXXX ′′=β −

 (3) 

where X ′  is the transpose of the matrix X, and the exponent ”1“−  indicates the 

matrix inverse of the given quantity.  We expect the true parameters to give us nearly 

the most likely result, so the least squares solution, by minimizing the SSR, defined 

by (2), gives the maximum likelihood values of the parameter vector .β  From the 

Gauss-Markov theorem, we know that the least squares estimate gives the best linear 

unbiased estimator of the parameters. And that is one of the reasons least squares is 

so popular. Its estimate are unbiased (the expected values of the parameters are the 
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true values), and of all the unbiased estimators, it gives the least variance. 

But, there are cases, however, for which the best linear unbiased estimator is not 

necessarily the “best” estimator. One pertinent case occurs when two or more of the 

predictor variables are very strongly correlated. Thus the matrix XX ′  has a 

determinant which is close to zero, which makes it ill-conditioned so the matrix 

cannot be inverted with as much precision as we would like, there is uncomfortably 

large variance in the final parameter estimates. So it may be worth sacrificing some 

bias to achieve a lower variance. 

One approach is to use an estimator which is no longer unbiased, but can greatly 

reduce the variance, resulting in a better MSE. This estimator is called “ridge 

regression estimator”. Ridge regression is like least squares but shrinks the estimated 

coefficients towards zero. Given a response vector Y and a predictor matrix X, the 

ridge regression coefficients are defined as 

 ( ) ( ) ,ˆ 1
YXkIXXk p ′+′=β −

 (4) 

where ,0, >kk  is the ridge parameter and I is the identity matrix. The amount of 

shrinkage is controlled by the ridge parameter k. Small positive values of k improve 

the conditioning of the problem and reduce the variance of the estimates. While 

biased, the reduced variance of ridge estimates often results in a smaller MSE when 

compared to least-squares estimates. Obviously the question is how to determine the 

parameter k.  Choosing an appropriate value of k is important and also difficult. 

For selecting the best ridge parameter estimator, in a given application, several 

criteria have been proposed in the literature (see for example, Hoerl and Kennard [3], 

Hoerl et al. [4], McDonald and Galarneau [9], Nomura [10], Hag and Kibria [2], 

Khalaf and Shukur [8], Muniz and Kibria [11], Khalaf [5], Khalaf [6] and Khalaf and 

Iguernane [7]. 

2. Estimators included in the Study 

In this section, we discuss some formulas for determining the value of k to be 

used in (4). The classical choice is the ridge trace method, proposed by Hoerl and 

Kennard [3]. They suggested that the best method for achieving an improved estimate 

( )kβ̂  (with respect to MSE) is to employ a ridge trace. The ridge trace is a graph of 

the estimates of the regression coefficients plotted against the corresponding k- 
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values ( )10 ≤≤ k  with the aid of which one selects a single value of k and a unique 

improved estimator for .β  

In using the ridge-trace, a value of k is chosen at which the regression 

coefficients have reasonable magnitude, sign and stability, while the level of the MSE 

is not grossly inflated. In fact, letting maxβ  denote the maximum of ,β  Hoerl and 

Kennard [3] showed that choosing 

 ,
ˆ

ˆˆ
2
max

2

β

σ
=k  (5) 

implies that ( ( )) ( ),ˆˆ β<β MSEkMSE  where 2σ̂  is the usual estimate of ,
2σ  defined 

by 

 
( ) ( )

.
1

ˆˆ
ˆ 2

−−

β−′β−
=σ

pn

XYXY
 (6) 

This estimator will be denoted by HK. Hoerl et al. [4] suggested that, the value of k is 

chosen small enough, for which the MSE of ridge estimator is less than the MSE of 

OLS estimator. They showed, through simulation, that the use of the ridge with 

biasing parameter given by 

 
ββ′

σ
=

ˆˆ

ˆˆ
2

p
kHKB  (7) 

has a probability greater than 0.50 of producing estimator with a smaller MSE than 

the OLS estimator, where 2σ̂  is the usual estimator of ,
2σ  defined by (6). The ridge 

estimator using eq. (7) will be denoted by HKB. 

Alkhamisi and Shukur [1] used the estimator 

 ,
1

ˆ

ˆ
maxˆ

2

2















λ
+

β

σ
=

ii

ASk  (8) 

where ,...,,2,1, pii =λ  is the ith eigenvalue of the matrix .XX ′   They concluded 

that the ridge estimator using ,ˆ
ASk   given by (8), performed very well indeed and 

that it was substantially better than any of the other estimators included in their study. 

The ridge estimator using ASk̂  will be denoted by AS. 
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In the light of the above remarks, which indicate the satisfactory performance of 

ASk̂  on the one hand, and the potential for improvement on the other hand, we 

propose the following modification of the ridge estimator using ASk̂  to suggest the 

following three estimators 

,
1

ˆ

ˆ
maxˆ

2

2

1 













λ
+

β

σ
=

ii

k  (9) 

,
1

ˆ

ˆ
medianˆ

2

2

2 













λ
+

β

σ
=

ii

k  (10) 

.
1

ˆ

ˆ
medianˆ

2

2

3 













λ
+

β

σ
=

ii

k  (11) 

The ridge estimators using 21
ˆ,ˆ kk  and 3k̂  will be denoted by 21, KIKI  and ,3KI  

respectively. 

3. Simulation Study 

In this section, we describe the simulation techniques which were used to 

examine the performance, relative to the OLS estimator and other ridge estimators, of 

the new ridge estimators 21 KI,KI  and 3KI  using 21
ˆ,ˆ kk  and ,ˆ

3k  defined by, 

respectively, (9), (10) and (11). Since 21 KI,KI  and 3KI   are modifications of AS, 

given by (8). This estimator was included for purposes of comparison in addition to 

the estimators HK and HKB, defined by (5) and (7), respectively. 

Following McDonald and Galarneau [9], the explanatory variables are generated 

by 

( ) ,,...,2,1,,...,2,1,1 2

1
2

pjnizzx ipijij ==ρ+ρ−=  

where ijz  are independent standard normal pseudo-random numbers, and ρ  is 

specified so that the correlation between any two explanatory variables is given by 

.2ρ  Three different sets of correlation are considered, corresponding to ,85.0=ρ  

95.0  and .99.0  The explanatory variables are then standardized so that XX ′  is in 

correlation form. 
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Observations on the dependent variable are determined by 

,...,,2,1,...110 niexxy iippii =+β++β+β=  

where 0β  is taken to be identically zero. Five values of 2σ  are investigated which 

are 5.0,10.0,05.0,01.0  and .00.1  Then the dependent variable is standardized so 

that yX ′  is the vector of correlation of dependent variable with each explanatory 

variable. In this experiment, we choose 10=p  and 15 for 50=n  and 100. Then 

the experiment is replicated 8000 times by generating new error terms. 

3.1. Judging the performance of the estimators 

To investigate the performance of the different proposed ridge regression 

estimators and the OLS method, we calculate the MSE using the following equation: 

( ) ( )

,

ˆˆ

1

R
MSE

R

i

ii∑
=

β−β′β−β

=  

where β̂  is the estimator of β  obtained from the OLS or the other different ridge 

parameters, and R equals 8000 which corresponds to the number of replications used 

in the simulation. 

4. Results and Discussion 

Ridge estimators are constructed with the aim of having smaller MSE than the 

MSE for the least squares. Improvement, if any, can therefore be studied by looking 

at the MSE of ridge estimator and that of least squares. These MSEs are reported in 

Tables (1) and (2).  

The MSEs are always less than the MSE of the OLS for all estimators (they 

exceeded the MSE of the OLS for AS at certain values of 2σ  and ).σ  This is to say 

that ridge estimators dominate least squares. Further, they do not exceed the MSE of 

the OLS for all estimators when 05.0,01.02 =σ  and 1.0  for the different values of 

.ρ  
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Table 1. The Estimated MSE when 10=p  

    01.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 11685 5146 2756 9.9998 9.9872 9.9989 9.9702 
0.85 

100 5144 2314 1254 9.9991 9.9613 9.9955 9.9144 

 

    01.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 37631 15942 8545 9.9999 9.9924 9.9996 9.9795 
0.95 

100 16371 7186 3810 9.9997 9.9767 9.9982 9.9403 

 

    01.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 204160 82595 43822 10 9.9969 9.9999 9.9909 
0.99 

100 89874 36713 20101 10 9.9905 9.9996 9.9724 

 

    05.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 457 202 109 9.88 8.65 9.39 7.22 
0.85 

100 204 94 51 9.53 6.84 7.88 4.53 

 

    05.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 1477 620 332 9.96 9.12 9.73 7.89 
0.95 

100 655 284 153 9.83 7.72 8.98 5.43 
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    05.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 8231 3372 1786 9.99 9.61 9.94 8.89 
0.99 

100 3587 1498 796 9.97 8.91 9.76 7.27 

 

    1.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 116 53 29 8.70 4.76 4.99 2.25 
0.85 

100 51 26 14 6.92 3.03 1.86 1.14 

 

    1.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 373 157 85 9.46 5.54 6.94 2.71 
0.95 

100 162 72 39 8.08 2.85 3.18 0.92 

 

    1.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 2059 836 455 9.90 7.50 9.15 4.66 
0.99 

100 899 371 201 9.57 4.73 7.10 1.85 

 

    5.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 4.60 3.85 2.26 5.57 1.28 0.77 1.11 
0.85 

100 2.03 1.88 1.33 5.59 1.02 0.54 0.77 
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    5.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 14 9.50 4.83 3.84 076 0.63 1.12 
0.95 

100 6.51 5.09 2.76 3.86 0.63 0.61 1.10 

 

    5.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 83 63 19 2.36 0.32 0.10 0.30 
0.99 

100 35 17 9.50 1.99 0.28 0.27 0.71 

 

    12 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 1.15 1.09 0.84 5.39 0.80 0.41 0.53 
0.85 

100 0.51 0.50 0.44 5.34 0.57 0.327 0.325 

 

    12 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 3.73 3.14 1.83 3.76 0.49 0.46 0.84 
0.95 

100 1.63 1.51 1.05 3.86 0.38 0.27 0.55 

 

    12 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 20 11 5.84 2.01 0.29 0.48 0.99 
0.99 

100 9.09 6.39 3.28 2.03 0.25 0.55 1.07 
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If we focus on these values of  ,
2σ  we find that among the ridge estimators 

considered, 21 KI,KI  and 3KI  are the best followed by AS, HKB then HK. Further, 

the MSEs decrease as 
2σ  increases, especially when 1

2 =σ  and .85.0=ρ  

In comparing models, exhibiting high multicollinearity and where 10=p  and 

15, respectively, we notice that the MSEs are lowest for 10=p  in case of 3KI  

followed by 2KI  and .KI1  This is to say that the ridge estimators are more helpful 

when high multicolliearity exists, especially when 
2σ  is not too small and n is large. 

Table 2. The Estimated MSE when p = 15 

    01.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 20748 2992 4581 14.9997 14.9787 14.9978 14.9375 
0.85 

100 8304 4105 1936 14.9987 14.9333 14.9907 14.8201 

 

    01.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 65721 29824 13617 14.9999 14.9870 14.9991 14.9556 
0.95 

100 27106 12627 5925 14.9996 14.9598 14.9961 14.8727 

 

    01.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 365230 159770 73413 15.00 14.9946 14.9998 14.9791 
0.99 

100 146910 65668 30841 14.9999 14.9831 14.9992 14.9388 

 

    05.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 525 398 184 14.85 12.79 13.76 9.62 
0.85 

100 334 168 80 14.35 9.84 10.84 5.29 
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    05.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 2664 1204 561 14.95 13.54 14.54 10.77 
0.95 

100 1072 508 240 14.77 11.12 12.88 6.51 

 

    05.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 14701 6509 2940 14.99 14.35 14.87 12.69 
0.99 

100 5935 2641 1253 14.95 13.19 14.48 9.51 

 

    1.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 206 101 48 12.33 6.85 6.18 2.40 
0.85 

100 84 46 22 10.99 4.46 1.94 1.30 

 

    1.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 660 303 141 14.31 7.93 9.18 2.82 
0.95 

100 269 128 61 12.37 3.88 3.40 0.84 

 

    1.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 3649 1579 725 14.87 10.85 13.22 5.32 
0.99 

100 1489 667 312 14.40 6.40 9.28 1.73 
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    5.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 8.23 6.95 3.63 9.49 1.89 0.97 1.61 
0.85 

100 3.33 3.11 2.05 9.59 1.51 0.66 1.13 

 

    5.02 =σ      

ρ  N OLS HK HKB AS 
1KI  2KI  3KI  

50 26 17 7.67 6.69 1.09 0.82 1.63 
0.95 

100 10.76 8.57 4.22 6.74 0.81 0.79 1.59 

 

    5.02 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 143 65 30 4.20 0.48 0.12 0.43 
0.99 

100 58 31 14 3.70 0.37 0.38 1.07 

 

    12 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 2.04 1.94 1.38 9.19 1.12 0.51 0.80 
0.85 

100 0.83 0.81 0.69 9.31 0.91 0.38 0.49 

 

    12 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 6.53 5.50 2.85 6.66 0.64 0.59 1.23 
0.95 

100 2.74 2.55 1.62 6.85 0.49 0.34 0.81 
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    12 =σ      

ρ  n OLS HK HKB AS 
1KI  2KI  3KI  

50 36 21 9.28 3.52 0.33 0.65 1.46 
0.99 

100 14.78 10.65 4.96 3.67 0.28 0.76 1.58 

5. Summary and Conclusions 

Several procedures for constructing ridge estimators have been proposed in the 

literature. These procedures were aiming at a rule for selecting the constant k in 

equation (4). 

The results of our simulation indicate that the estimators 21 KI,KI  and ,KI3  

suggested by us, performed well in this study. They outperform the estimator AS and 

they are also considerably better than both HK and HKB. Also, they appeared to 

offer an opportunity for large reduction in MSE, especially when the degree of 

multicollinearity is high. Since the potential reduction using the ridge estimators is 

measured by the MSE, then the performance of 21 KI,KI  and ,KI3  in comparison 

with the other estimators included in our simulation study, is very good from this 

point of view, see the Tables 1 and 2. 
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