A NON-UNITAL ALGEBRA HAS UUNP IFF ITS UNITIZATION HAS UUNP

M. EL AZHARI

Ecole Normale Supérieure Avenue Oued Akreuch Takaddoum, BP 5118, Rabat Morocco e-mail: mohammed.elazhari@yahoo.fr

Abstract

Let *A* be a non-unital Banach algebra, S. J. Bhatt and H. V. Dedania showed that *A* has the unique uniform norm property (UUNP) if and only if its unitization has UUNP. Here we prove this result for any non-unital algebra.

1. Preliminaries

Let *A* be a non-unital algebra and let $A_e = \{a + \lambda e : a \in A, \lambda \in C\}$ be the unitization of *A* with the identity denoted by *e*. For an algebra norm $\|\cdot\|$ on *A*, define $a + \lambda e \big|_{op} = \sup \{ \|(a + \lambda e)b\| : b \in A, \|b\| \le 1 \}$ and $\|a + \lambda e\|_1 = \|a\| + |\lambda|$ for all $a + \lambda e \in A_e$, is an algebra seminorm on A_e , and $\| A \|_1$ is an algebra norm on *A_e*. An algebra norm $\|.\|$ on *A* is called regular if $\|.\|_{op} = \|.\|$ on *A*. A uniform norm $\|$ on *A* is an algebra norm satisfying the square property $\|a^2\| = \|a\|^2$ for all

© 2016 Fundamental Research and Development International

Keywords and phrases: unitization, unique uniform norm property, regular norm.

²⁰¹⁰ Mathematics Subject Classification: 46H05.

Received January 15, 2016; Accepted January 31, 2016

 $a \in A$; and in this case, $\| \cdot \|$ is regular and $\| \cdot \|_{op}$ is a uniform norm on A_e . An algebra has the unique uniform norm property (UUNP) if it admits exactly one uniform norm.

2. The Result

Theorem. *A non*-*unital algebra A has UUNP if and only if its unitization A^e has UUNP*.

Proof. Let $\|\cdot\|$ and $\|\cdot\|$ be two uniform norms on A_e , then $\|\cdot\| = \|\cdot\|$ on A since *A* has UUNP, and so $\|\cdot\|_{op} = \|\cdot\|_{op}$ on A_e . By [3, Corollary 2.2(1)] and since two equivalent uniform norms are identical, it follows that $(||.|| = ||.||_{op}$ or $||.|| \cong ||.||_1$) and $(\|\cdot\| = \|\cdot\|_{op} = \|\cdot\|_{op}$ or $\|\cdot\| \cong \|\cdot\|_1 = \|\cdot\|_1$); equivalently, at least one of the following holds:

- (i) $\|\cdot\| = \|\cdot\|_{op}$ and $\|\cdot\| = \|\cdot\|_{op} = \|\cdot\|_{op}$;
- (ii) $\|\cdot\| = \|\cdot\|_{op}$ and $\|\cdot\| \cong \|\cdot\|_1 = \|\cdot\|_1$;
- (iii) $\| \cdot \| \equiv \| \cdot \|_1$ and $\| \cdot \| = \| \cdot \|_{op} = \| \cdot \|_{op}$;
- (iv) $\| \cdot \| \cong \| \cdot \|_1$ and $\| \cdot \| \cong \| \cdot \|_1 = \| \cdot \|_1$.

If either (i) or (iv) is satisfied, then $\|.\| = \|.\|$. By noting that (ii) and (iii) are similar by interchanging the roles of $\|\cdot\|$ and $\|\cdot\|$, it is enough to assume (ii). Let $(c(A), \| \| \cdot \|^{2})$ be the completion of $(A, \| \| \cdot \|)$, we distinguish two cases:

(1) $c(A)$ has not an identity:

. $\|\tilde{\theta}\|_{\text{on}} \leq \|\theta\|_{\text{on}}^2 \leq \|\theta\|_{\text{on}}^2 \leq 3$ 1 $\sum_{op}^{\infty} \leq ||.||_1^{\infty} \leq$ \int_{op}^{∞} on $c(A)_{e}$ (unitization of $c(A)$). Let $a + \lambda e \in A_{e} \subset c(A)_{e}$, $||a + \lambda e||_{1}^{2} = ||a||^{2} +$ $a + \lambda e \in A_e \subset c(A)_e, \|a + \lambda e\|_1^{\infty} = \|a\|_1^{\infty}$ λ = ||a|| + |\lemetric ||a + \lemetric ||a $\|\cos\theta\| = \sup\{\|(a + \lambda e)b\| : b \in A, \|b\| \le 1\} = \|a + \lambda e\|_{op}.$ Therefore $\|\cdot\|_{op} \le \|\cdot\|_{1} \le 3\|\cdot\|_{op}.$ By (ii), $\|\cdot\|$ and $\|\cdot\|$ are equivalent uniform norms, and so $\|\cdot\| = \|\cdot\|$.

Let $(c(A_e), \| \| \| \infty)$ be the completion of $(A_e, \| \| \|)$. Since $\| \| = \| \| \|$ on A, $c(A)$ can be identified to the closure of *A* in $(c(A_e), \|\cdot\|)^{\sim}$ so that $\|\cdot\|^{\sim} = \|\cdot\|^{\sim}$ on $c(A)$. Let $a + \lambda e \in A_e \subset c(A)$,

$$
||a + \lambda e|| = ||a + \lambda e||_{op} \text{ by (ii)}
$$

= sup{||(a + \lambda e)b|| : b \in A, ||b|| \le 1}
= sup{||(a + \lambda e)b||^{\sim} : b \in c(A), ||b||^{\sim} \le 1}
= ||a + \lambda e||^{\sim} since c(A) is unital
= ||a + \lambda e||^{\sim} = ||a + \lambda e||. Thus ||.|| = ||.||.

Conversely, let $\|\cdot\|$ and $\|\cdot\|$ be two uniform norms on *A*, then $\|\cdot\|_{op}$ and $\|\cdot\|_{op}$ are uniform norms on A_e , hence $\| \cdot \|_{op} = \| \cdot \|_{op}$ since A_e has UUNP. Therefore $\|.\| = \|.\|_{op} = \|.\|_{op} = \|.\|$ on *A* since $\|.\|$ and $\|.\|$ are regular.

References

- [1] J. Arhippainen and V. Müller, Norms on unitizations of Banach algebras revisited, Acta Math. Hungar. 114(3) (2007), 201-204.
- [2] S. J. Bhatt and H. V. Dedania, Uniqueness of the uniform norm and adjoining identity in Banach algebras, Proc. Indian Acad. Sci. (Math. Sci.) 105(4) (1995), 405-409.
- [3] H. V. Dedania and H. J. Kanani, A non-unital *-algebra has UC^*NP if and only if its unitization has *UC*^{*}*NP*, Proc. Amer. Math. Soc. 141(11) (2013), 3905-3909.