A NON-UNITAL ALGEBRA HAS UUNP IFF ITS UNITIZATION HAS UUNP

M. EL AZHARI

Ecole Normale Supérieure Avenue Oued Akreuch Takaddoum, BP 5118, Rabat Morocco e-mail: mohammed.elazhari@yahoo.fr

Abstract

Let *A* be a non-unital Banach algebra, S. J. Bhatt and H. V. Dedania showed that *A* has the unique uniform norm property (UUNP) if and only if its unitization has UUNP. Here we prove this result for any non-unital algebra.

1. Preliminaries

Let A be a non-unital algebra and let $A_e = \{a + \lambda e : a \in A, \lambda \in C\}$ be the unitization of A with the identity denoted by e. For an algebra norm $\|.\|$ on A, define $\|a + \lambda e\|_{op} = \sup\{\|(a + \lambda e)b\| : b \in A, \|b\| \le 1\}$ and $\|a + \lambda e\|_1 = \|a\| + |\lambda|$ for all $a + \lambda e \in A_e \cdot \|.\|_{op}$ is an algebra seminorm on A_e , and $\|.\|_1$ is an algebra norm on A_e . An algebra norm $\|.\|$ on A is called regular if $\|.\|_{op} = \|.\|$ on A. A uniform norm $\|.\|$ on A is an algebra norm satisfying the square property $\|a^2\| = \|a\|^2$ for all

© 2016 Fundamental Research and Development International

Keywords and phrases: unitization, unique uniform norm property, regular norm.

²⁰¹⁰ Mathematics Subject Classification: 46H05.

Received January 15, 2016; Accepted January 31, 2016

 $a \in A$; and in this case, $\|.\|$ is regular and $\|.\|_{op}$ is a uniform norm on A_e . An algebra has the unique uniform norm property (UUNP) if it admits exactly one uniform norm.

2. The Result

Theorem. A non-unital algebra A has UUNP if and only if its unitization A_e has UUNP.

Proof. Let ||.|| and |||.||| be two uniform norms on A_e , then ||.|| = |||.||| on A since A has UUNP, and so $||.||_{op} = |||.|||_{op}$ on A_e . By [3, Corollary 2.2(1)] and since two equivalent uniform norms are identical, it follows that $(||.|| = ||.||_{op} \text{ or } ||.|| \cong ||.||_1)$ and $(|||.||| = ||.||_{op} = ||.||_{op} \text{ or } ||.|| \cong ||.||_1 = ||.||_1)$; equivalently, at least one of the following holds:

- (i) $\|.\| = \|.\|_{op}$ and $\|\|.\| = \|\|.\|_{op} = \|.\|_{op}$;
- (ii) $\|.\| = \|.\|_{op}$ and $\|\|.\| \cong \|.\|_1 = \|.\|_1$;
- (iii) $\|.\| \cong \|.\|_1$ and $\|\|.\|\| = \|\|.\|_{op} = \|.\|_{op}$;
- (iv) $\|.\| \cong \|.\|_1$ and $\|\|.\| \cong \|.\|_1 = \|.\|_1$.

If either (i) or (iv) is satisfied, then $\|.\| = \|.\|$. By noting that (ii) and (iii) are similar by interchanging the roles of $\|.\|$ and $\|.\|$, it is enough to assume (ii). Let $(c(A), \|.\|^{\sim})$ be the completion of $(A, \|.\|)$, we distinguish two cases:

(1) c(A) has not an identity:

 $\|\cdot\|^{\sim} \text{ is regular since it is uniform. By [1, Corollary 2], } \|\cdot\|_{op}^{\sim} \leq \|\cdot\|_{1}^{\sim} \leq 3 \|\cdot\|_{op}^{\sim} \text{ on } c(A)_{e} \quad (\text{unitization of } c(A)). \text{ Let } a + \lambda e \in A_{e} \subset c(A)_{e}, \|a + \lambda e\|_{1}^{\sim} = \|a\|^{\sim} + |\lambda| = \|a\| + |\lambda| = \|a + \lambda e\|_{1} \text{ and } \|a + \lambda e\|_{op}^{\sim} = \sup\{\|(a + \lambda e)b\|^{\sim} : b \in c(A), \|b\|^{\sim} \leq 1\}$ $= \sup\{\|(a + \lambda e)b\| : b \in A, \|b\| \leq 1\} = \|a + \lambda e\|_{op}. \text{ Therefore } \|\cdot\|_{op} \leq \|\cdot\|_{1} \leq 3\|\cdot\|_{op}.$ By (ii), $\|\cdot\|$ and $\|\cdot\|$ are equivalent uniform norms, and so $\|\cdot\| = \|\cdot\|$.

Let $(c(A_e), |||.|||^{\sim})$ be the completion of $(A_e, |||.||)$. Since ||.|| = |||.||| on A, c(A)can be identified to the closure of A in $(c(A_e), |||.||^{\sim})$ so that $||.||^{\sim} = |||.|||^{\sim}$ on c(A). Let $a + \lambda e \in A_e \subset c(A)$,

$$||a + \lambda e|| = ||a + \lambda e||_{op} \text{ by (ii)}$$

= $\sup\{||(a + \lambda e)b|| : b \in A, ||b|| \le 1\}$
= $\sup\{||(a + \lambda e)b||^{\sim} : b \in c(A), ||b||^{\sim} \le 1\}$
= $||a + \lambda e||^{\sim} \text{ since } c(A) \text{ is unital}$
= $||a + \lambda e||^{\sim} = ||a + \lambda e||$. Thus $||.|| = ||.||$.

Conversely, let $\|.\|$ and $\|\|.\|\|$ be two uniform norms on A, then $\|.\|_{op}$ and $\|\|.\|\|_{op}$ are uniform norms on A_e , hence $\|.\|_{op} = \|\|.\||_{op}$ since A_e has UUNP. Therefore $\|.\| = \|.\|_{op} = \|\|.\||_{op} = \|\|.\||$ on A since $\|.\|$ and $\|\|.\||$ are regular.

References

- [1] J. Arhippainen and V. Müller, Norms on unitizations of Banach algebras revisited, Acta Math. Hungar. 114(3) (2007), 201-204.
- [2] S. J. Bhatt and H. V. Dedania, Uniqueness of the uniform norm and adjoining identity in Banach algebras, Proc. Indian Acad. Sci. (Math. Sci.) 105(4) (1995), 405-409.
- [3] H. V. Dedania and H. J. Kanani, A non-unital * -algebra has UC*NP if and only if its unitization has UC*NP, Proc. Amer. Math. Soc. 141(11) (2013), 3905-3909.